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Chapter 1

Introduction

‘The first commercial quantum computer’ sold by the Canadian company D-Wave Sys-

tems Inc., attracted a lot of attention among scientists as well as among a broader public

in recent years. From the beginning, however, quantum physicists doubted, whether this

special type of a quantum annealer [1] could compete with their vision of a universal

quantum computer [2], or whether this device is quantum at all [3]. As it turns out, skep-

tics seem to be right after all, as no quantum speedup of the D-Wave device compared

to conventional computers has been demonstrated so far [4]. Nevertheless, the success

of D-Wave Systems in selling several of their devices can be considered an incentive for

the research towards a working universal quantum computer. Before the latter will be

realized, a lot of progress needs to be made [5], also concerning its basic building block,

the quantum bit (qubit). The physical system used by D-Wave is a specific type of su-

perconducting flux qubit. The comparably poor coherence properties of these qubits are

in fact not so detrimental to quantum annealing. For the much more promising universal

quantum computer, however, good coherence properties are of great importance. The

refinement of (another version of) a flux qubit in this respect is the essence of this the-

sis. Although our work is motivated rather by experiments on fundamental light-matter

interaction [6] or quantum simulations [7–9] than by the challenging, long-term task of

building a quantum computer, the basic requirements on qubits are essentially the same:

combining large in situ tunability with sufficient qubit coherence time. The gradiometric

tunable-gap flux qubit constitutes one step in this direction.

The persistent current flux qubit is one example of a superconducting quantum circuit,

whose main characteristic is macroscopic quantum coherence: Although macroscopic in

size, containing many billions of atoms, these systems have discrete energy levels, resulting

in experimentally observable phenomena such as macroscopic quantum tunneling [10].

Due to the existence of discrete quantum states just as for electronic states in atoms, we

can refer to these quantum circuits as artificial atoms. In particular, a quantum two-level

system – a qubit – can be realized when the two lowest energy levels are well separated

from higher levels due to the presence of a strong nonlinearity causing an anharmonic

1



2 Chapter 1 Introduction

potential. For superconducting circuits, this task is taken over by the Josephson junction

(JJ).

This nonlinear tunnelling junction is the common ingredient of several types of Joseph-

son qubits. The most popular superconducting qubits are the Cooper pair box [6, 11], the

transmon qubit [12–14], the phase qubit [15–17], the fluxonium [18], and the persistent

current or flux qubit [19–22]. The coupling of these qubits to linear quantum systems,

such as superconducting resonators, has been particularly fruitful, leading to the rapid de-

velopment of the prospering field of circuit quantum electrodynamics (QED). The name

circuit QED was coined, because, there, artificial atoms formed by electronic circuits

replace the natural atoms in cavity QED systems.

In general, circuit QED systems benefit from their high degree of tunability, both in

situ and by fabrication, and from the large achievable coupling strength. More precisely,

the combination of high electromagnetic field strength (small mode volume) inside quasi-

1D transmission line resonators and the large magnetic or electric dipole moments of

the macroscopic superconducting qubits allows us to reach the interesting strong cou-

pling regime straightforwardly. In this regime, the coupling strength is larger than all

decoherence rates, and a coherent exchange of excitations between qubit and resonator

becomes observable [23]. Circuit QED systems were also used, for example, to generate

non-classical states of light [12, 15], to establish single artificial atom masing [24], to

realize controlled symmetry breaking [25, 26], or to demonstrate quantum teleportation

[27], quantum gates [13, 28] and quantum computing protocols [29–31].

For the implementation of circuit QED experiments, mostly transmon and phase qubits

were used for the following reasons. First, the relevant qubit parameters can be controlled

within sufficiently narrow margins in the fabrication process. Second, a controlled cou-

pling/decoupling to a microwave resonator acting as a quantum bus is possible by a fast

change of the qubit transition frequency. Third, the coherence properties of the qubit do

not strongly degrade during such operations. Unfortunately, the original design of the

persistent current flux qubit [20] consisting of a superconducting loop intersected by three

Josephson junctions cannot fulfill these requirements simultaneously. First, although the

flux qubit transition frequency ωq can be varied over a wide range by applying an ex-

ternal magnetic flux, the coherence time of the flux qubit rapidly decreases when tuning

the qubit away from a particularly favorable operating point, the so-called degeneracy

point, with minimum transition frequency ωq = ∆, the qubit gap. Only at this point, the

flux qubit is well protected from the relevant 1/f -noise and coherence times exceeding

1 µs can be reached [32, 33]. Second, for the flux qubit the minimal energy splitting

~∆ between the ground and excited state depends exponentially on the critical current

and capacitance of the Josephson junctions [22] and therefore is difficult to precisely

control in fabrication. This does not allow to control the point of optimum coherence
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to a sufficient degree during fabrication. On the other hand, flux qubits have specific

advantages. First, their anharmonicity, that is, the separation between the qubit states

and the third level, is by one or two orders of magnitude larger than for transmon and

phase qubits. This property allows for fast qubit operations without leakage to higher

states. Second, flux qubits can be coupled ultrastrongly to resonators. Relative coupling

strengths g/ωr > 0.1, where ωr is the resonator frequency and g the coupling strength,

were successfully demonstrated [34–36].

In order to overcome the drawback of the fixed minimum energy splitting in supercon-

ducting flux qubits, Orlando et al. [22] proposed a modified design, which subsequently

has been implemented by Paauw et al. [37] and meanwhile successfully used in several

experiments, either in gradiometric [33, 37, 38] or non-gradiometric design [39–42]. In

this tunable-gap flux qubit one of the Josephson junctions, the so-called α-junction, is re-

placed by a small loop with two Josephson junctions. This dc superconducting quantum

interference device (SQUID) acts as a junction whose critical current can be controlled

in situ by the flux threading the SQUID loop. As a consequence, also the qubit gap ∆

can be tuned in such a configuration. The additional control allows for a fast variation of

the qubit transition frequency, while still operating the flux qubit at its degeneracy point

[33, 37, 38]. In this manner, a tunable-gap flux qubit was coupled to a lumped-element

LC resonator [33, 35] and to an ensemble of electron spins in diamond [42].

This thesis presents the realization of a tunable-gap qubit in a gradiometric design and

the first integration of such a qubit into a circuit QED environment by coupling it to a

superconducting transmission line resonator.

Thesis outline

A summary of the fundamental theory relevant for superconducting circuits is given

in Chapter 2, including a description of the Josephson junction, the dc SQUID and

the superconducting resonator. Then, we introduce the persistent current flux qubit in

Chapter 3. We explain the details of a tunable gap and of the gradiometric design. Also,

we combine flux qubit and superconducting resonator in the description of circuit QED.

With this theoretic background, we turn to the experimental techniques in Chapter 4,

presenting our methods for sample pre-characterization and the setups for the measure-

ments of the two following chapters. Chapter 5 deals with the flux qubit alone. We

characterize the stepwise evolution from a standard non-tunable flux qubit to a gradio-

metric version and to the gradiometric tunable-gap qubit. In Chapter 6, we couple the

gradiometric tunable-gap qubit to a transmission line resonator. In particular, we an-

alyze the qubit-resonator coupling and investigate the tunability of the qubit gap with

respect to the resonator. After summarizing the results of this thesis, we give an outlook
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on future experiments with gradiometric tunable-gap flux qubits in Chapter 7.



Chapter 2

Basics of superconducting quantum

circuits

This chapter is aimed at introducing the superconducting quantum circuits used in this

work and at recapitulating some basic physical concepts necessary to understand these

systems. Why do we use superconducting circuits in order to investigate quantum physics

despite the need to cool these systems to low temperatures? The answer is found in some

unique benefits of superconducting materials stemming from the quantum mechanical

nature of superconductors. On the one hand, superconductors possess an energy gap,

protecting their ground state from electronic excitations, they obey flux quantization

and can have a significant kinetic inductance. On the other hand, superconductors allow

for the formation of Josephson junctions, whose nonlinear properties make them unique

quantum devices. For a conclusive description, we start with the macroscopic quantum

model of superconductivity in Sec. 2.1, leading to the phenomenon of flux quantization in

Sec. 2.2, where we also discuss the influence of kinetic inductance. In Sec. 2.3 the physics

of a Josephson junctions is introduced, followed by a description of the dc superconduct-

ing quantum interference device (SQUID) in Sec. 2.4. After that we continue with the

quantum mechanical description of superconducting circuits in Sec. 2.5 and explain as

first example superconducting transmission line resonators in Sec. 2.6.

2.1 The macroscopic quantum model of

superconductivity

The BCS theory [43, 44] constitutes a groundbreaking microscopic explanation of super-

conductivity in metals and has also verified the phenomenological macroscopic quantum

model of superconductivity. The latter is very adequate to describe flux quantization

and the Josephson effect in the following sections. The macroscopic quantum model is

based on the one main assumption that the ensemble of Cooper pairs forming the super-

5



6 Chapter 2 Basics of superconducting quantum circuits

conducting state can be described by one space- and time-dependent macroscopic wave

function

Ψ(r,t) =
√
ns(r,t) · eiθ(r,t), (2.1)

where the density of Cooper-pairs ns(r,t) provides normalization and θ(r,t) is the macro-

scopic phase of the wave function. Using some basic relations of quantum mechanics and

electrodynamics such as Schrödinger and continuity equation, the quantum mechanical

supercurrent density

Js =
qs~

2msi
(Ψ∗∇Ψ−Ψ∇Ψ∗)− q2

s

ms

ΨΨ∗A, (2.2)

can be deduced. Here, qs =−2e and ms = 2me are charge and mass, respectively, of

a Cooper pair, e is the elementary charge and me the electron mass. A denotes the

magnetic vector potential linked with the magnetic flux density B =∇×A. Applying

the macroscopic wave function from Eq. (2.1) to the supercurrent density of Eq. (2.2)

yields

Js(r,t) =
~qsns(r,t)

ms

{
∇θ(r,t)− qs

~
A(r,t)

}
︸ ︷︷ ︸

≡γ

(2.3)

with the gauge invariant phase difference γ. With this expression, one can easily deduce

the London equations for the case ns = const and thus explain the two fundamental foot-

prints of superconductivity, namely the vanishing electrical resistance and the Meissner-

Ochsenfeld effect. Moreover, and more relevant for this work, the macroscopic quantum

model allows for the formal description of flux/fluxoid quantization.

2.2 Fluxoid quantization

Based on the quantum coherent properties of the superconducting state as discussed

above, a formal consideration results in the quantization of the magnetic flux inside

multiply connected superconductors. This has first been proposed by London and then

experimentally been proved by Doll and Näbauer at WMI [45] and, independently, by

Deaver and Fairbanks [46]. Since the quantitative analysis of these experiments involves

a superconducting charge qs =−2e, they constitute the first proof of the existence of

Cooper pairs, which are one main ingredient of the BCS theory. Besides this importance

of flux quantization for the progress of the theory of superconductivity, it is also of great

practical relevance for loop-shaped devices such as SQUIDs and, especially, the gradio-

metric qubits studied in this work. The latter not only underly flux quantization but

actively make use of it to trap magnetic flux quanta for a magnetic bias. Equivalently to

the microscopic description of electronic states in atoms leading to the quantization of the
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electrons’ angular momentum, the macroscopic wave function of a superconductor needs

to interfere constructively along a closed contour which leads to flux quantization for mul-

tiply connected superconductors as shown in Fig. 2.1a. In this toroidal superconductor

two examples for stationary wave functions (black and red lines) are depicted.

Formally, flux quantization becomes evident when integrating the supercurrent density

of Eq. (2.3) along a closed contour C (represented also by the black line in Fig. 2.1a).

Introducing the London coefficient

Λ = ms/
(
nsq

2
s

)
= µ0λ

2
L, (2.4)

which is also linked to the London penetration depth λL , the path integral reads∮
C

ΛJs(r,t) · dl +

∮
C

A(r,t) · dl =
~
qs

∮
C

∇θ(r,t) · dl. (2.5)

The second integral on the left hand side can be evaluated using Stoke’s theorem to∮
C

A(r,t) · dl =

∫
F

B · dF = Φ

with the magnetic flux Φ penetrating the area F enclosed by the contour C. The path

integral on the right hand side of Eq. (2.5) over the gradient of the scalar θ is not zero,

as the macroscopic phase θ of the same start and end point are not necessarily the same.

In fact, the macroscopic phase can take an infinite number of values

θ(r,t) = θ0(r,t) + 2πn, n ∈ Z . (2.6)

and still fulfills the necessary uniqueness of the wave function of Eq. (2.1). Finally, the

integral of Eq. (2.5) leads to∮
C

ΛJs(r,t) · dl +

∫
F

B · dF =
~
qs

2πn = nΦ0, (2.7)

which expresses the quantization of the so called fluxoid [left hand side of Eq. (2.7)]

in terms of the magnetic flux quantum Φ0≡ h
2e

= 2.067833758(46)× 10−15 Vs. This very

general expression Eq. (2.7) also includes the case of simply connected shapes of su-

perconductors such as solid cylinders or spheres. Then, the contour C and area F can

become infinitesimally small and the integrals in Eq. (2.7) vanish, approving that there

is no fluxoid quantization in simply connected superconductors. For multiply connected

shapes, the integrals in Eq. (2.7) are in general non-zero and the quantization condition

holds. However, there are two cases that need to be distinguished: flux quantization and

fluxoid quantization.
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Flux quantization

If the dimensions of the multiply connected superconductor are large compared to the

London penetration depth, e.g., in a hollow cylinder with sufficient wall thickness, the

whole integration path C can be located in the field- and current-free region of the

material. Then, the integral over the supercurrent density Js in Eq. (2.7) is zero leading

to the flux quantization condition∫
F

B · dF = Φ = nΦ0. (2.8)

This flux quantization is observed when applying a magnetic flux before cooling the super-

conductor below the critical temperature. In the superconducting state the resulting flux

is always quantized according to Eq. (2.8), which is the essence of these first experiments

by Doll/Näbauer and Deaver/Fairbanks.

Fluxoid quantization

However, for the nanoscale superconducting devices used in this work, dimensions fall be-

low the London penetration depth of the material. Our aluminum films are less than one

hundred nanometers thick, whereas the penetration depth is several hundred nanometers

[47, 48]. Then, the finite supercurrent density contributes to the integral in Eq. (2.7) and

not the flux alone, but the fluxoid is quantized. In other words, the quantized fluxoid

consists of the total magnetic flux

Φ = Φex + Φg + Φk (2.9)

composed of the flux Φex due to external magnetic field and the flux Φg induced by the

circulating current I associated with a magnetic field and a part Φk generated by the

charge carriers of the supercurrent. These two latter parts are also linked to the geometric

and the kinetic inductance.

Kinetic inductance

A superconductor not only comes with a geometric inductance but also with kinetic

inductance. The common geometric inductance Lg is related to the magnetic field en-

ergy Emag = 1
2
LgI

2 of a conductor with electrical current I and induces a magnetic flux

Φg =LgI. However, the charge carriers also have a kinetic energy Ekin = 1
2
Nsmsv

2 = 1
2
LkI

2,

where Ns and v are the number and mean velocity of the charge carriers and Lk is the

kinetic inductance. The latter is also linked to the London coefficient in Eq. (2.4) and
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10 2-1 fex

Eloop
n=0
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n=1

f0

iii
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a b

Figure 2.1: a Sketch illustrating fluxoid quantization in a multiply connected superconductor.
Red and black lines represent constructively interfering macroscopic wave func-
tions. b Energy consideration of flux trapping: In the normal-conducting state a
frustration f0 is applied (i). After cooling below the critical temperature energy is
minimized by trapping an integer number of flux quanta, in this example n0 = 1
(ii). With the removal of the external magnetic field the loop energy increases (iii).

the first term of Eq. (2.7) via∮
Γ

ΛJs · ds =
Λs

A
I = LkI ≡ Φk , (2.10)

where s and A denote length and cross-sectional area of the conductor, respectively.

For normal metals the effect of kinetic inductance can be neglected (except for high

frequency ac currents) due to the high scattering rate of the charge carriers. However,

for the dissipation-free dc currents in superconductors the kinetic inductance can become

significant and even exceed the geometric inductance. From Eq. (2.10) it is obvious that

the kinetic inductance increases with decreasing cross-sectional area of the conductor;

therefore kinetic inductance is relevant for our aluminum wires with dimensions of only a

few hundreds of nanometers. With this knowledge on kinetic and geometric inductance

we can now evaluate Eq. (2.7) to

2π
LkI

Φ0︸ ︷︷ ︸
φk

+ 2π
LgI

Φ0︸ ︷︷ ︸
φg

+2π
Φex

Φ0︸︷︷︸
fex

= 2πn , (2.11)

where the right hand side is the phase difference of Eq. (2.6). Therefore we can also

define two terms on the left hand side as a kinetic phase difference φk and a geometric

phase difference φg. Also, the magnetic frustration fex = Φex

Φ0
of the superconducting

loop is introduced. It is discussed in more details in Sec. 3.3.2 that the ratio between

geometric and kinetic inductance determines how much magnetic flux can penetrate a

superconducting loop. Note that with negligible kinetic inductance, the induced flux

always compensates a change in the external flux, meaning that we cannot adjust the
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total flux inside the loop at will. Therefore a more detailed understanding of the relative

size of kinetic and geometric inductance is of great practical importance for our flux based

devices.

Energy consideration of flux trapping

As explained above, a superconducting ring with a circulating current I possesses both

a potential energy linked with the geometric inductance and a kinetic energy linked with

the kinetic inductance. In total, the energy of the loop reads

Eloop =
1

2
(Lk + Lg)I2 =

Φ2
0

2(Lk + Lg)
(fex − n)2, (2.12)

where Eq. (2.11) is used to eliminate the current I. With this energy the trapping of

magnetic flux can be illustrated in Fig. 2.1b. First a magnetic frustration fex = f0 is

applied to the normal conducting loop. When cooling it to the superconducting state, a

circulating current is induced to fulfill fluxoid quantization. Owing to energy minimiza-

tion the induced current is such that the number of flux quanta n takes the integer value

n0 closest 1 to f0. After removing the external frustration, the loop keeps the state of n0

trapped flux quanta and its energy is higher due to the circulating current generating n0

flux quanta. A change of n in the superconducting state is, in principle, also possible.

Such a phase slip process is inhibited by an energy barrier E∆n = Ic,wΦ0 [49–51], where

Ic,w is the critical current of the wire. However, with a critical current on the order of

1 mA, the energy barrier corresponds to a temperature Tslip > 10 000 K. This condition

makes a phase slip very unlikely.

2.3 The Josephson junction

The Josephson junction (JJ) is the most fundamental building block of superconducting

quantum circuits due to its nonlinear nature. It is named after Brian D. Josephson who

first described the physics of such a junction theoretically [52]. A JJ consists of two

superconducting electrodes separated by a normal conducting or insulating layer. If this

barrier is thin enough (i.e., several nanometers), Cooper pairs can tunnel through this

layer. Although this Cooper pair tunnelling seems very unlikely from a statistical point

of view, it is as likely as single electron tunnelling due to the quantum coherent properties

of the superconducting state. In other words, the macroscopic wave functions of the two

electrodes overlap in the region of the barrier and thus enable a tunnelling current of the

superconducting carriers.

1To achieve a trapping of n0 flux quanta, f0 needs to fulfill |f0 − n0|< 0.5.



2.3 The Josephson junction 11
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ba c
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Figure 2.2: a Schematic of a Josephson junction (JJ) consisting of two superconductors (S)
separated by a thin insulating layer (I). b Equivalent circuit of a JJ within the
RCSJ model. c Simplified wiring symbol of a JJ.

2.3.1 Josephson equations

It can be derived from Eq. (2.3), that the dc supercurrent Is through a JJ is then given

by the first Josephson equation,

Is = Ic sinφ, (2.13)

where φ denotes the gauge invariant phase difference between the two superconductors

[i.e., the path integral of the gauge invariant phase gradient of Eq. (2.3)]. Ic is the

maximum supercurrent that can be reached by tunnelling of Cooper pairs only. Above

Ic, also single electrons contribute to the current through the junction, which causes a

voltage drop, which is described by the second Josephson equation,

∂φ

∂t
=

2π

Φ0

V, (2.14)

linking the time evolution of the phase difference with the voltage drop V . Integrating

this equation over time and inserting it into Eq. (2.13) yields an ac supercurrent

Is = Ic sin(2π
V

Φ0

t+ c′) (2.15)

through the junction with frequency ν = V
Φ0

and an integration constant c′.

2.3.2 Josephson inductance

Evaluating the time derivative of the first Josephson equation, Eq. (2.13), and inserting

the second one, Eq. (2.14), yields

dIs

dt
= Ic cosφ · 2π

Φ0

V, (2.16)

which makes evident that the JJ can be assigned a nonlinear inductance

LJ =
Φ0

2πIc cosφ
. (2.17)
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This Josephson inductance is unique in the sense that it can take, depending on φ, also

negative values, which causes the oscillating supercurrent at a constant voltage drop as

discussed above. Yet, it is of more general importance that the strong nonlinearity of

the Josephson inductance is an essential property for the formation of qubits consist-

ing of superconducting circuits containing JJs. Moreover, it must be noted that the

Josephson inductance for the devices of this work is typically on the order of a few

nanohenry (example: Ic = 1 µA ⇒ LJ & 0.3 nH) and thus dominates the total inductance

(Lk +Lg' 10 pH) of the superconducting lines connected to the JJ. Since – from an elec-

trotechnical point of view – an inductance usually allows for the storage of energy, we

consider the characteristic energies of a JJ next.

2.3.3 Characteristic energy scales

The energy linked with the Josephson inductance is the Josephson coupling energy EJ.

It can be interpreted as the binding energy between two weakly coupled superconductors

similar to the coupling of two atoms to a molecule. Although a JJ causes no direct energy

dissipation in the zero-voltage state, energy is needed to accelerate the superconducting

charges. Therefore, a finite voltage is supplied by an external current source, which is

typically connected to a JJ. The potential energy of a JJ is thus the electrical power

supplied by the external source integrated over time and reads

U(φ) =

∫ t′

0

V Is · dt =

∫ t′

0

Φ0

2π

dφ

dt
Ic sinφ · dt =

Φ0Ic

2π

∫ φ(t′)

0

sinφ · dφ (2.18)

and finally yields

U(φ) =
Φ0Ic

2π
(1− cosφ) = EJ(1− cosφ) (2.19)

with the Josephson coupling energy EJ. Its name stresses the analogy to the coupling of

two atoms to a molecule as, in both cases, this is based on the overlap of the corresponding

wavefunctions.

Besides, a JJ also possesses an energy linked with the charge carriers on the JJ capac-

itor. The total field energy is given by

Efield =
Q2

2C
=

(2Ne)2

2C
= 4EcN

2, (2.20)

where C is the capacitance of the JJ, Q= 2Ne is the total charge of N Cooper pairs and

Ec ≡
e2

2C
(2.21)

is the characteristic charging energy corresponding to a single electron charge located on
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one of the capacitor plates.

2.3.4 RCSJ model and mechanical analog

The resistively and capacitively shunted junction (RCSJ) model [53, 54] constitutes a

very convenient approximation of an actual JJ in order to easily understand its dynamic

properties. Essentially, the JJ is represented by an ideal JJ with its nonlinear inductance

LJ [cf. Eq. (2.17)] shunted with a voltage-independent normal tunnelling resistance R

and the capacitance C between the electrodes. Applying Kirchhoff’s law, this parallel

resonant circuit can then be described by the differential equation(
Φ0

2π

)2

C︸ ︷︷ ︸
M

d2φ

dt2
+

(
Φ0

2π

)
1

R︸ ︷︷ ︸
η

dφ

dt
+ Ic

[
sinφ− I

Ic

]
︸ ︷︷ ︸

d
dφ
U

= 0, (2.22)

which is equivalent to the dynamics of a particle with mass M and damping η in a

potential

U(φ,I) = EJ

(
1− cosφ− I

Ic

φ

)
. (2.23)

This so-called tilted washboard potential extends the Josephson potential energy from

Eq. (2.19) by the bias current I as external driving force causing the tilt (cf. Fig. 2.3a).

For I < Ic the phase particle is trapped in a local potential minimum where it oscillates

with its plasma frequency ωp = =
√

8EJEc/~. Since, in this case, the time average of φ

is constant, this situation represents the zero-voltage state. Only by quantum tunneling

or by thermal activation (”shaking of the washboard potential”) the particle can escape

a local minimum unless the bias current reaches Ic. Then, potential barriers can be over-

come and the phase particle moves down the potential, thereby generating a voltage drop.

When the bias current is again reduced below Ic the phase particle only gets immediately

trapped in a minimum if its kinetic energy is decreased by strong damping. Otherwise, a

voltage drop still persists below Ic, leading to a hysteretic current-voltage characteristic.

In order to distinguish these cases, one uses the Stewart-McCumber parameter [53]:

βC =
2π

Φ0

IcR
2C

� 1 strongly overdamped

� 1 strongly underdamped.
(2.24)

With this understanding of the underlying physics we now discuss a typical current-

voltage (IV) characteristic of a JJ.
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V

I

Vgap

Ic

Ir

~1/R

φ

U/EJ
I=0

I ≥ Ic

I ≤ Ic

a b

Figure 2.3: a Tilted washboard potential of a JJ according to Eq. (2.23) for three values of
bias current I. When I ≥ Ic the phase particle (yellow dot) starts moving down the
potential. b Current-voltage characteristic of an underdamped JJ with hysteretic
switching behavior.

2.3.5 Current-voltage characteristic of a JJ

The IV characteristic of a JJ, schematically shown in Fig. 2.3b, enables valuable insight

into the physical parameters determining the JJ properties. When the current I through

the JJ provided by an external constant-current-source is increased from zero, this current

is carried by tunnelling of Cooper pairs [cf. Eq. (2.13)] without a voltage drop up to Ic.

Above this maximum supercurrent value, quasiparticles tunnel through the JJ and a

finite voltage drop develops. Considering the gap in the energy density of states of

quasiparticles in a superconductor, it is clear that this voltage is approximately given by

the so-called gap voltage

Vgap =
2∆0

e
, (2.25)

where ∆0 = 1.764 kBTc denotes the superconducting energy gap within the BCS theory

with the Boltzmann constant kB and the critical temperature Tc of the superconductor.

The theory of Ambegaokar and Baratoff [55] gives an upper limit for Ic with the value

IAB
c =

π

4

Vgap

R
. (2.26)

Moreover, the IV curve approaches the linear slope corresponding to the normal resistance

R for currents I� Ic. When decreasing the current bias again, a hysteretic behavior is

possible for the case of low damping (βC� 1). Even below Ic the phase particle possesses

enough kinetic energy to overcome the now existing potential barrier (cf. Fig. 2.3a) and

there is still a voltage drop at the JJ. In the case of strong damping (βC� 1), however,

already at Ic the kinetic energy is dissipated and the phase particle gets re-trapped,

yielding the zero-voltage state and the same curve as for increasing current.
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Figure 2.4: a Schematic of a current biased dc-SQUID consisting of two JJ in parallel. b Flux
dependence of the maximum supercurrent of a dc-SQUID. Modulation is maximal
for negligible loop inductances (black curve).

2.4 The dc-SQUID

The first JJ-based circuit that is described here is the direct current superconducting

quantum interference device (dc-SQUID). It is widely used as a highly sensitive magne-

tometer [56, 57]. In this work, we use it to read out the state of a persistent-current flux

qubit (see Sec. 4.3) and as an effective JJ with a tunable Ic.

The dc-SQUID consists of a parallel circuit of two (identical) JJs as depicted in

Fig. 2.4a. In the absence of a magnetic field, the dc-SQUID can then simply be un-

derstood as one JJ with effective parameters2 R′=R/2, C ′= 2C and I ′c = 2Ic and the IV

characteristic looks like in Fig. 2.3b.

However, the unique physical properties of this device are not only based on the Joseph-

son equations but also on fluxoid quantization, which comes into play when a magnetic

flux is applied to the area of the SQUID loop. Assuming that the two JJ are identical

they have in particular the same Ic. Yet, the gauge invariant phase differences of the two

JJ are not independent. They are connected via the fluxoid quantization condition given

in Eq. (2.5), which finally yields the relation

φ2 − φ1 =
2π

Φ0

Φ . (2.27)

Note that, here, Φ is again the total flux Φ = Φex + (Lg +Lk)Icirc with the current Icirc

circulating in the SQUID loop. The contributions of geometric and kinetic inductance

depend on the wire geometry. For the case of negligible flux contribution due to Icirc, i.e.,

Φ = Φex, the SQUID exhibits a maximum supercurrent

Imax
s = 2Ic

∣∣∣∣cos

(
π

Φex

Φ0

)∣∣∣∣ (2.28)

2This assumption holds for negligible screening, βL� 1, see below.
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before switching to the voltage state. Since the periodicity of this flux dependence, shown

in Fig. 2.4b, is given by the elementary flux quantum, an adequate technical implemen-

tation enables the measurement of very small magnetic fields. The more general case of

non-negligible inductance can no longer be calculated analytically but numerically [58]

and yields the same flux dependence. Only the modulation of the maximum supercurrent

is reduced depending on the so-called screening parameter

βL =
2LIc

Φ0

(2.29)

with the total loop inductance L = Lg +Lk. This screening parameter quantifies the

flux induced by a circulating current Icirc = Ic in units of Φ0/2. In Fig. 2.4b, the red

curve represents the case of βL = 1, where the modulation depth is reduced to 50 per-

cent. For βL� 1, the modulation depth further decreases linearly with 1/βL [58]. For

the application of a SQUID as a magnetometer a maximum modulation, i.e., βL = 0, is

desirable for best flux sensitivity. Moreover, we need to fulfill βL . 2/π in order to avoid

a hysteretic flux dependence of the maximum supercurrent of the SQUID [59]. However,

for the practical SQUIDs used in this work, especially for the SQUIDs as tunable α-JJ

of the qubit, the screening may become relevant in a quantitative analysis as discussed

in Sec. 6.4.

Finally, it must be emphasized that the switching of both a single JJ as well as a

dc-SQUID into the voltage state is a statistical process. It occurs when the phase par-

ticle escapes the local potential minimum or metastable state by thermal activation or

quantum tunneling. Hence, for a large number of repeated measurements the switching

current underlies a distribution around a mean value Isw with a standard deviation σ.

If the switching is dominated by thermal activation, the distribution broadens and its

mean value is slightly lowered. If the escape is dominated by quantum tunnelling, the

standard deviation σ depends on the plasma frequency ωp and, hence, on the mass M

of the phase particle. For higher mass, the plasma frequency, which corresponds to the

attempt frequency for the escape, and thus the escape rate of the phase particle decrease.

As a result, the switching current distribution gets narrower and the sensitivity of the

magnetometer improves. In practice, the mass of the phase particle is often increased by

enlarging the capacitance C ∝M by additional shunting capacitors (cf. Sec. 4.3).

2.5 Superconducting quantum circuits

The above discussion on JJs and SQUIDs is based on the macroscopic quantum model of

superconductivity. However, apart from the assumption of a macroscopic wave function,

the description of these elements is classical in the sense that the relevant variables
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such as the phase difference are described by classical equations of motion. But for the

investigation of qubits and resonators in the following a quantum mechanical treatment

needs to account for quantized energy levels and the exchange of single excitations. To

follow the usual path of quantum mechanics, first, the Hamiltonian of the system is

derived from classical energies and then, classical variables are replaced by their quantum

operator equivalents. As it turns out [60, 61], the operators Φ̂ and Q̂ for flux and charge,

respectively, are canonically conjugate variables and obey the commutation relation[
Φ̂, Q̂

]
= i~ (2.30)

just as position and momentum operators in mechanics. Consequently, the standard

deviations of flux and charge operators ∆Φ and ∆Q, respectively, also need to fulfill the

Heisenberg uncertainty relation

∆Φ∆Q ≥ ~
2
. (2.31)

The equations of motion are now found via the Schödinger or von Neumann equation.

It is easy to see how to bring simple superconducting circuits into the quantum regime.

Certainly, one needs to suppress thermal fluctuations below the energy level spacing by

cooling. For a Josephson junction, we additionally need to determine whether the energy

U

2EJ

φ

 
∝ (EJEc)

1/2

Figure 2.5: Discrete energy levels within the Josephson potential. For small junction size, the
quantum regime with well separated levels is reached.

levels inside one well of the Josephson potential are densely spaced (classical) ore well-

separated (quantum), as depicted in Fig. 2.5. To this end, we form the ratio between

the height of the Josephson potential and the level spacing, EJ/~ωp≈
√
EJ/Ec. Since

this ratio is proportional to the junction area, we conclude that small junctions are more

”quantum” than large junctions. In practice, JJ with submicron dimensions are required

for the construction of superconducting quantum circuits. However, before discussing

quantum bit circuits including JJ, the simplest quantum integrated circuit is introduced:

the quantum harmonic LC oscillator.
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2.6 Superconducting resonators

In this section, superconducting resonators are introduced as an import building block

for superconducting circuits. They feature, on the one hand, the capability to store mi-

crowave quantum states due to their better coherence properties as compared to super-

conducting qubits. On the other hand, the ability to couple superconducting resonators

and qubits strongly, promises to use them for qubit readout or as a quantum bus. Specif-

ically, a superconducting resonator is an alternative readout device for a flux qubit in

the experiments of Chapter 6 as compared to the SQUID readout used in Chapter 5.

Although this is important from an experimental point of view, this wording would, how-

ever, ignore the great importance of both, qubits and resonators in the fascinating field

of circuit QED (cf. Sec. 3.4). In the following, we first introduce the specific realization

of our superconducting resonator, followed by a description of it in terms of a quantum

harmonic oscillator.

2.6.1 Coplanar waveguide resonators

A coplanar waveguide resonator is the solid-state analog to an optical cavity in the field

of quantum optics, where laser light is reflected between to highly reflective mirrors and

thus forms a standing electromagnetic wave inside this resonator. Analogously, a super-

conducting resonator is built from a transmission line interrupted by two capacitors (cf.

Fig. 2.6a). While the line is matched to 50 Ω, the capacitors cause a high impedance mis-

match and therefore behave as semitransparent mirrors for a signal propagating along the

transmission line. Among different geometric realizations of superconducting transmis-

sion lines, we focus on the coplanar waveguide (CPW) layout, which can be considered

as a 2D-version of a coaxial cable (cf. Fig. 2.6a). It consists of an inner conductor of

width w separated on both sides by a distance s from large ground planes. A CPW

is very well-suited for our purposes due to several reasons. CPW transmission lines

can be reliably matched to a characteristic impedance Z0 = 50 Ω by adjusting the size

of w and s. The resonant frequency of a CPW resonator depends on the length of the

resonator, i.e., the distance between the two capacitors, and can be designed to match

typical transition frequencies of the flux qubit, which range from 1−10 GHz. With a

superconducting resonator material such as niobium, relatively high resonator qualities

can be reached. Most importantly, only the length scale along the CPW is on the order

of the wavelength, whereas the dimensions in transverse directions are much smaller than

the wavelength. For this quasi-1D element the mode volume Vmod of the standing elec-

tromagnetic field is very small. As a consequence, much higher vacuum magnetic field

strengths Bvac∝ 1/
√
Vmod as compared to optical cavities allow for stronger coupling to

the magnetic dipole moment of flux qubits in circuit QED (cf. Sec. 3.4).
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The capacitors implicate the boundary condition of nodes of the supercurrent at the

resonator ends. Consequently, the ground mode of the resonator with length l is a

λ/2-mode as visualized in Fig. 2.6a. The wavelength λ of the fundamental mode of

the standing wave obeys the relation l=λ/2. The different resonant modes come with

resonant frequencies

ωn = n
c

2l
√
εeff

= n
π

l
√
`c̃

(2.32)

where εeff is the effective dielectric constant of the CPW, ` is the inductance per unit

length, c̃ the capacitance per unit length, and n= 1,2,... is the mode number starting with

the fundamental mode n= 1. Via its capacitors, the CPW resonator is coupled to an input

and an output transmission line, which are also 50 Ω matched CPWs. With these, the

frequency dependence of the power transmitted through the resonator can be measured.

The resonator manifests itself in transmission maxima at its resonance frequencies. The

Lorentzian shape of such a resonance is shown in Fig. 2.6b. The FWHM (full width at

half maximum) linewidth of the resonance equals the decay rate κn of the photons in

mode n, which determines the quality factor

Qn =
ωn
κn

(2.33)

of the nth mode. The quality factor determined in this way from a measured spectrum

is, to be more precise, the loaded quality factor QL given by

1

QL

=
1

Qint

+
1

Qext

(2.34)

where Qint and Qext are the internal and external quality factors, respectively. The

internal quality is limited by resistive, radiative and, predominantly, dielectric losses. The

latter are believed to be caused at millikelvin temperatures and small photon numbers

in the resonator by two-level systems (TLS) in the substrate absorbing energy from

the resonator’s electromagnetic field. The external quality is mainly determined by the

coupling capacitors and can thus be adjusted. Typically, internal losses are dominant for

our resonators so that QL≈Qint (cf. Sec. 6.2.1).

From an electrotechnical point of view such a distributed resonator can also be mod-

eled as a lumped-element resonator, which is depicted in Fig. 2.6c. Near resonance, a

CPW resonator behaves as a parallel LCR circuit [62], that is on both sides connected

via a coupling capacitor Cκ to an external load RL. This representation is the basis

for the quantum mechanical treatment of a superconducting resonator in the following

subsection.
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Figure 2.6: a Schematic layout of a λ/2 coplanar waveguide (CPW) resonator. Fundamental
λ/2-mode (white) and λ-mode (red) of the standing wave resonator current are
illustrated. b Theoretical power transmission spectrum of a CPW transmission
line resonator. Near a resonant frequency ωn/2π, transmission exhibits a peak of
Lorentzian shape with full width at half maximum κn/2π. Away from resonance,
the CPW resonator is a strong transmission filter. c Equivalent circuit diagram of
a CPW resonator: Near resonance it can be modeled as a parallel LCR circuit that
is capacitively coupled (via Cκ) to an external load RL of input and output line.

2.6.2 The quantum harmonic oscillator

Following the recipe given in Sec. 2.5, a superconducting transmission line resonator can

be described as a quantum harmonic oscillator. In the lumped-element representation of

Fig. 2.6c we neglect the normal resistance R and end up with a parallel LC circuit with

a classical Hamiltonian

H =
1

2
LI2 +

1

2
CV 2 =

Φ2

2L
+
Q2

2C
=

Φ2

2L
+

1

2
Lω2

rQ
2 (2.35)

where Φ =LI is the magnetic flux in the inductor, Q=CV is the charge on the capacitor,

and ωr = 1/
√
LC is the resonant frequency of an LC circuit. It can easily be seen that

∂H/∂Q=−Φ̇ and ∂H/∂Φ = Q̇, meaning that Q and Φ correspond to the generalized

canonical position and momentum variables. Furthermore, Eq. (2.35) can be considered

an analog to the standard quantum harmonic oscillator with the substitutions x→Q,

p→Φ and m→L. Consequently, these variables Q and Φ are replaced by quantum

mechanical operators Q̂ and Φ̂ that can be expressed by

Q̂ =

√
~

2ωrL
(â† + â) and Φ̂ = i

√
~ωrL

2
(â† − â) (2.36)
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with the bosonic creation and annihilation operators â† and â, that fulfill the commutation

relation
[
â†, â

]
= 1. Substituting Eq. (2.36) in Eq. (2.35) finally yields the Hamiltonian

of a quantum harmonic oscillator

Ĥr = ~ωr

(
â†â+

1

2

)
(2.37)

with the photon number operator N̂ ≡ â†â. Finally it must be noted that the quantum

mechanical behavior described here can only be observed in an experimental regime of

negligible thermal excitations, i.e., kBT � ~ωr. For the resonator we use in Chapter 6 with

ωr/2π' 5 GHz, this scenario is achieved by cooling to temperatures of only T ' 20 mK.

Furthermore, a resonator occupation on the order of only one photon is desirable for

circuit QED experiments (cf. Sec. 6.2.3).





Chapter 3

The gradiometric and tunable-gap flux

qubit

This chapter concentrates on the theoretical description of the different types of persistent

current flux qubits that are investigated in this work. First, the standard 3-JJ flux qubit

is described with its potential energy and quantum mechanical behavior in Sec. 3.1.

The tunability of the qubit gap is explained and thus, the tunable-gap flux qubit is

introduced in Sec. 3.2. Then, we focus in Sec. 3.3 on the specific features that come

along with a gradiometric layout of a flux qubit. Finally, we bring together the flux qubit

with superconducting resonators as discussed in Sec. 2.6 to the field of circuit quantum

electrodynamics in Sec. 3.4. 1

3.1 The flux qubit

The simplest version of the flux qubit (cf. Fig. 3.1) consists of a small superconducting

loop with a diameter on the order of 10 µm intersected by three JJs with lateral dimensions

on the order of 100 nm [20]. While two of these JJs have the same area AJ and, hence,

the same critical current (typically, AJ' 0.03 µm2 and Ic' 600 nA), the third JJ, the so-

called α-junction, has a reduced area Aα =αAJ with α' 0.6−0.8, resulting in a reduced

critical current Ic,α =αIc and a reduced junction capacitance Cα =αCJ. As discussed in

more detail in the following subsections, for α' 0.6−0.8, the two-dimensional potential

energy landscape of the flux qubit can be simplified. At the symmetry point, where

the magnetic flux through the loop is equal to (n+ 1
2
)Φ0, with n being an integer, the

potential can be reduced to a one-dimensional double well [22]. The two minima of this

potential are associated with two degenerate persistent current states, corresponding to

clockwise and counter-clockwise circulating persistent currents ±Ip. Due to the finite

tunnel coupling of these states, their degeneracy is lifted. The resulting symmetric and

1Some parts of this chapter follow the author’s work in Ref. [63]

23
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Figure 3.1: Fixed-gap non-gradiometric 3-JJ flux qubit. a Circuit schematic: a superconduct-
ing loop (dark blue) with two JJs (light blue boxes) of area AJ and a third one
with reduced area αAJ. For an applied magnetic frustration fq 6= 0, dc screening
currents are induced. b Scanning electron microscope (SEM) image. The color
code corresponds to a. The dashed rectangles mark closeup regions. c Closeups on
one regular JJ (orange) and the α-junction.

anti-symmetric superposition states form the ground and excited state of the flux qubit

separated by the minimal energy splitting ~∆.

3.1.1 Potential energy of the flux qubit

Because of the negligible loop inductance 2, the potential energy of the 3-JJ flux qubit is

given by the sum over the Josephson energies [cf. Eq. (2.19)] of its 3 junctions,

Uq(φ1,φ2,φ3) = EJ[(1− cosφ1) + (1− cosφ2) + α(1− cosφ3)]. (3.1)

Similar to the situation for a dc-SQUID (cf. Sec. 2.4) the flux qubit as a supercon-

ducting ring only intersected by JJs needs to obey fluxoid quantization and Eq. (2.11) is

extended with the phase differences across the JJs to yield 3

φ1 + φ2 + φ3 + φg + φk + 2πfq = 2πn. (3.2)

Since the loop is small, the phase differences linked to geometric and kinetic inductance,

φg and φk, can be neglected again. Due to the 2π-periodicity of the Josephson poten-

tial, we only consider the case n= 0 without loss of generality. Inserting Eq. (3.2) into

Eq. (3.1), we obtain [22]

Uq(φ1,φ2, f) = EJ[2 + α− cosφ1 − cosφ2 − α cos (2πfq + φ1 + φ2)]. (3.3)

2Note that the assumption, that inductive energies of the loop are negligible in comparison with the JJ
energies is valid, regardless of the fact that the contributions of geometric and kinetic inductances
need to be considered for loops not directly containing JJs (cf. Sec. 2.2).

3Note that, in the literature, the phase difference φ2 is often defined with opposite sign.
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This 2π-periodic qubit potential energy has the shape of an egg carton where each cell

has some substructure. In particular, near fq'n+ 0.5 (n ∈ Z) and for 0.5<α< 1, two

stable minima are only separated by a small potential barrier and thus form a double-

well potential (cf. Fig. 3.2). The two minima are located at (φ1,φ2) = (−φ∗,−φ∗) and

(φ1,φ2) = (+φ∗,+φ∗), respectively, where cosφ∗= 1/(2α). Considering the first Josephson

equation, Eq. (2.13), shows that the minima are associated with circulating persistent

currents of opposite direction. There also exists a double-well potential containing two

minima of neighboring unit cells, illustrated as well in Fig. 3.2. However, for α< 1 the

potential barrier for the intracell tunnelling is lower and, thus, the tunnelling rate is

higher than for the case of tunnelling between neighboring cells. The circulating current

at the respective minimum can be calculated from Eq. (3.3). For fq = 0.5, one finds 4

± Ip =
∂Uq

∂Φq

∣∣∣∣
φ1=φ2=±φ∗

= ±Ic

√
1− 1/(2α)2. (3.4)

This symmetric constellation where the two minima are degenerate in energy and cor-

respond to persistent currents of opposite sign but with the same absolute value is only

given for fq =n+ 0.5, which is referred to as the degeneracy point. Going slightly away

from this point lifts the degeneracy and makes the one or the other local minimum ener-

getically favorable (cf. Fig. 3.3a) and the total current circulating in the loop becomes

finite (cf. Fig. 3.3b). Far away from the degeneracy point, only one stable minimum

(with a current +Ip or −Ip, respectively) exists.

So far, our analysis was completely classical. In the next section, we proceed with a

quantum description of the flux qubit.

3.1.2 Quantum two-level system

Near the degeneracy point of the flux qubit, fq≈n+ 0.5, the two (almost) degenerate

discrete energy levels of the double-well potential couple via a quantum tunnelling process.

This leads to the formation of new, non-degenerate superposition states. Formally, the

two-level system near the degeneracy point is described by a Hamiltonian

Ĥ =
1

2
~εσ̂z −

1

2
~∆σ̂x =

~
2

(
ε ∆

∆ −ε

)
. (3.5)

Here, σ̂z and σ̂x are the Pauli spin operators. The flux-dependent magnetic energy bias

~ε = 2
∂Uq

∂Φq

δΦq = 2IpδΦq (3.6)

4Remember that, in general, ∂U
∂Φ = ∂U

∂I
∂I
∂Φ = ∂(0.5LI2)

∂I
∂(Φ/L)

∂Φ = I.
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with δΦq = Φ0[fq− (n+ 1
2
)] is linked with the potential energy of Eq. (3.3) and the classi-

cal persistent current states |+Ip〉 and |−Ip〉. The off-diagonal (tunneling) matrix element

∆ causes the coupling of these classical persistent current states. As a consequence, the

energy eigenstates of Eq. (3.5) are separated by ~∆ at the degeneracy point. That is why

we also refer to ~∆ as the qubit gap. The energy levels are shown in Fig. 3.3c. Near the

degeneracy point, the two lowest energy levels are well-separated from the higher ones.

Right at δΦq = 0, we can write ground state |g〉 and first excited state |e〉 as

|g〉 =
1√
2

(|−Ip〉+ |+Ip〉) and

|e〉 =
1√
2

(|−Ip〉 − |+Ip〉) . (3.7)

In this situation, there is no net circulating current and, hence, no net magnetic moment.

Away from the degeneracy point, where ε�∆, the ground and excited states correspond

in good approximation to the current states |±Ip〉. As long as we are not too far away

from the degeneracy point, the energy difference between ground and excited state can

be approximated by

Eeg = ~ωq = ~
√

∆2 + ε2 (3.8)

with the qubit transition frequency ωq as depicted in Fig. 3.3d. This relation implies

that the qubit transition frequency is minimal at the degeneracy point and increases

when going away from it. Furthermore, at the degeneracy point, the qubit transition

energy does not depend on the magnetic flux to first order, ∂Eeg/∂Φq = 0. Consequently,

the qubit is much less sensitive to low-frequency external flux noise at this so-called

sweet spot. For this reason, the qubit should be operated at a fixed degeneracy point for
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optimal phase coherence.

3.1.3 Tunability of the qubit gap

For a standard 3-JJ flux qubit, the frequency is tuned by changing the magnetic energy

bias ε. Since this can be done by adjusting the frustration of the qubit loop with an ex-

ternal magnetic field, it is very easy to realize. Such frequency tunability is, for example,

highly desirable for coupling the qubit to or decoupling it from a microwave resonator.

However, tuning the qubit frequency via the magnetic energy bias ε has the drawback of

leaving the point of optimal phase coherence. The more promising approach is to tune

the qubit frequency while staying at the degeneracy point. In order to do so, one must

change the qubit gap ∆ via the barrier height of the double well potential.

From a tight-binding calculation of the qubit eigenstates [22], the gap ∆ can be approx-

imated to

∆ =

√
4EJEc(4α2 − 1)

~2α(1 + 2α)
exp

(
−a(α)

√
4α(1 + 2α)

EJ

Ec

)
, (3.9)

where a(α) =
√

1− (1/4α2)− [arccos(1/2α)/2α] with a(α)' 0.15 for α= 0.7. We see that

the qubit gap ∆ is exponentially dependent on the three parameters critical current Ic

(via EJ), junction capacitance C (via Ec) and the factor α. The parameters EJ and Ec

certainly have to lie within proper margins for a working qubit, but the value of α is the

most dominant for the qubit gap ∆. Apart from this, only α is accessible for an in-situ

variation (see following section). Typically, the qubit gap ∆ should be on the order of a

few gigahertz to match the resonance frequency of a microwave resonator. As it is shown

in Fig. 3.4, for typical values of charging energy Ec/h= 1 GHz and Josephson energies

EJ/h= 20. . .500 GHz, the qubit gap is far too low for values of α' 1. This corresponds to

the fact, that for α= 1 the barrier of the double-well potential reaches a maximum height

(cf. Fig. 3.2c) and tunnelling becomes very unlikely. Decreasing α from 1 to 0.5 results in

a strong increase of the exponential factor in Eq. (3.9) as the barrier height decreases. At

the same time, the prefactor (attempt frequency) decreases from the plasma frequency

of the JJ to zero, because the double well potential becomes a single well at α= 0.5.

Since the exponential factor dominates within the major part of the interval 0.5<α< 1,

a strong increase of ∆ is obtained by reducing α. The higher the ratio EJ/Ec, the steeper

is the increase of ∆(α).

Although the tight-binding approximation allows for an analytical illustration of the

basic ∆(α) dependence, reliable quantitative results can only be derived numerically from

the qubit Hamiltonian [cf. Eq. (3.5)]. To this end, the Hamiltonian is diagonalized and

its eigenenergies are calculated. The dependence ∆(α) determined in this manner is

also displayed in Fig. 3.4, revealing the limits of the tight-binding approximation. In
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Figure 3.4: a Dependence of the qubit gap ∆ on the value α. For different values of EJ/Ec,
we show the results of, both, the tight-binding approximation of Eq. (3.9) (dashed
lines), and the numerical diagonalization of the qubit Hamiltonian (solid lines).
The arrows mark the α values, at which the double-well barrier height equals the
thermal energy at 30 mK.

contrast to the latter, the numerical solution does not include a decrease of the qubit

gap for α≈ 0.5. In fact, we also do not observe this behavior in our data (cf. Sec. 5.3).

Close to α= 0.5, however, the decreasing barrier of the double-well potential lets thermal

excitations compete with quantum tunneling. Then, no quantum signature is visible at

all. A temperature of 30 mK corresponds to a thermal energy kBT/h= 0.63 GHz. We

calculate, at which α values the barrier height of the double-well potential equals this

thermal energy. These α values depend, of course, on EJ, which linearly enters the barrier

height [cf. Eq. (3.3)]. The calculated values are marked in Fig. 3.4.

In summary, the exponential dependency of the qubit gap on JJ fabrication parameters

causes the difficulty to build a fixed-gap flux qubit with a well-defined ∆. The values

EJ, Ec and α are determined by the dimensions (some hundreds of nanometers) and

by the oxide layer (few nanometer thickness) of the JJs and therefore underlie a large

uncertainty. This drawback of the fixed-gap flux qubit can be overcome by a tunable-gap

qubit, which is more tolerant to inevitable fabrication variations.

3.2 The tunable-gap flux qubit

According to Eq. (3.8), ωq cannot only be tuned by varying ε but also by varying ∆.

This is advantageous, since the operation point of the qubit stays at the symmetry point,

where phase coherence is optimal. Flux qubits with tunable ∆ are called tunable-gap flux

qubits. As pointed out by Mooij et al. already in their first proposal of the flux qubit
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[20], an in situ tunability of ∆ is achieved by replacing the α-junction by a small α-loop

containing two JJs (cf. Fig. 3.6b). In the language of Josephson physics, this means that

the α-junction is replaced by a dc-SQUID. Then, the critical current Ic,α of the α-loop

and, in turn, the qubit gap ∆ can be tuned by a control flux Φα≡Φ0fα threading the

α-loop [cf. Eq. (2.28)]. If we choose the area of the junctions in the α-loop to α0AJ/2,

we obtain

Ic,α = αIc = α0Ic| cos(πfα)| . (3.10)

In Fig. 3.5, we show the dependence α(fα) calculated from Eq. (3.10) for α0 = 1 together

Figure 3.5: Qubit gap ∆ (left axis) and value of α (right axis) versus the α-loop frustration fα.
In the shaded regions, α< 0.5 and the double-well potential vanishes.

with the dependence ∆(fα), which is calculated numerically from the qubit Hamiltonian

using the input parameters Ec/h= 1 GHz and EJ/h= 100 GHz. The strong nonlinear

dependence ∆(fα) allows us to significantly change the gap with only small variations in

the flux applied to the α-loop.

Successful implementations of this design have been reported recently [39, 64–66].

While the replacement of the α-junction by an α-loop allows for a tunable qubit gap

∆, applying any flux to the α-loop at the same time changes the flux threading the qubit

loop and hence the energy bias ε of the flux qubit. This is unintentional and has to be

compensated. To keep the energy bias of the flux qubit constant during variations of Φα,

a gradiometric design can be used.



3.3 The gradiometric tunable-gap flux qubit 31

3.3 The gradiometric tunable-gap flux qubit

Usually, a gradiometric design is used for magnetometers (also in combination with

SQUIDs) in order to increase the sensitivity of the measurement. Gradiometric means

that this object is not affected by homogenous magnetic fields, but is only sensitive to

gradients of magnetic fields. For a flux qubit, the intention of the gradiometric design

is to leave the usually flux-dependent potential energy of the qubit given by Eq. (3.3)

unaffected by a homogeneous magnetic field. This is equivalent to a constant net current

through the JJs of the flux qubit. The gradiometric versions of a fixed-gap and a tunable-

gap flux qubit are shown in Fig. 3.6c and Fig. 3.6d, respectively. In both cases, the main

structure is that of an eight-shaped gradiometric loop, where the screening currents in the

two subloops, generated by an applied homogeneous magnetic field, cancel each other on

the central line, thus leaving the qubit potential energy unaffected. For the tunable-gap

Ic Ic αIc

ba

 d

Ic Ic
αIc

Ic αIcIε

Iα

Ic Ic αIc

 c

A A
B

Ic

B

trapping loop trapping loop

α - loop

Figure 3.6: Circuit schematics of a the three-Josephson-junction (3-JJ) flux qubit with α-
junction, b the simplest 3-JJ flux qubit with the tunable α-junction realized by
a dc-SQUID, c the gradiometric 3-JJ flux qubit without tunable α-junction, and d
the gradiometric 3-JJ flux qubit with tunable α-junction. The α- and ε-lines can
be used to change the magnetic frustration of the α- and qubit loop independently.

gradiometric flux qubit of Fig. 3.6d, an applied homogeneous magnetic field does not af-

fect the energy bias of the flux qubit but it changes Φα and allows for tuning of the qubit

gap. The immediate consequence of the gradiometric layout is that an inhomogeneous

magnetic field is required to adjust the energy bias ε of the flux qubit when needed. This

inhomogeneous field can be generated by feeding a small current through the so-called

ε-flux line, which couples asymmetrically to the qubit loop (cf. Fig. 3.6d). It generates

different flux densities B in the two subloops of area A1≈A2 (see also Fig. 3.7b), leading

to different amounts of total flux Φ1 =
∫
A1
B1 dA and Φ2 =

∫
A2
B2 dA. This results in the
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Figure 3.7: Sketch illustrating the penetration or screening of magnetic fields for a a probe
inside the trapping loop and for b the experimental situation of the gradiometric
tunable-gap qubit.

magnetic frustration

fq = f12 =
Φ1 − Φ2

Φ0

(3.11)

by the ε-flux line, which is used to change the energy bias ε of the gradiometric flux qubit.

Correspondingly, the deviation of f12 from the value (n+ 1
2
) at the symmetry point is

δfq = δf12 = f12 −
(
n+

1

2

)
. (3.12)

Furthermore, the outer ring of the gradiometric qubit, denoted as the trapping loop,

can be used to trap an integer number of magnetic flux quanta, e.g., by cooling below Tc

in an applied magnetic field. This allows for a pre-biasing of the qubit near the symmetry

point. We note, however, that the exact amount of flux threading the qubit loop and

the α-loop, respectively, depends on the ratio of the kinetic and geometric inductances.

Since an understanding of this point is important for a controlled design of a gradiometric

qubit with tunable gap, it is discussed in more detail in Sec. 3.3.2. Within this work, we

investigate both fixed-gap and tunable-gap gradiometric 3-JJ flux qubits. The former is

an ideal model system to study the principle of flux biasing.

3.3.1 Flux trapping

Besides its reduced sensitivity to homogenous flux noise, the gradiometric layout comes

with another advantage. When trapping magnetic flux in its outer loop, the so-called

trapping loop (cf. Fig. 3.6c and Fig. 3.6d), the qubit can be pre-biased close to the

degeneracy point. Flux biasing is based on fluxoid quantization as described in Sec. 2.2.

The total magnetic flux (i.e., the fluxoid) in a closed superconducting loop such as the

trapping loop is quantized in units of Φ0 or, equivalently, the phase of the superconducting
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order parameter changes by 2πn around the closed trapping loop. Therefore, in the fully

symmetric gradiometric qubit designs of Fig. 3.6c and Fig. 3.6d, the trapping of an odd

number n= (2n′+ 1) (n,n′ ∈N) of flux quanta in the trapping loop leads to a phase

difference of (2n′+ 1)π between the points A and B. This corresponds to a flux bias

of (n′+ 1
2
)Φ0, i.e., a flux bias at the symmetry point. The flux trapping is realized by

applying externally a magnetic flux close to the desired value (cf. Fig. 2.1 in Sec. 2.2)

while cooling the sample into the superconducting state. In contrast to the flux bias

with an external coil, which is connected to an external current source, the bias via flux

trapping is, in principle, noise free. On the other hand, once a specific flux state has been

frozen in, it can no longer be changed without heating the sample above Tc. Therefore,

in practice flux trapping is often used for pre-biasing at an operation point, while an

additional magnetic field is used for making fast changes around this operation point.

In order to enable such flux control, one has to take care of the right size of kinetic and

geometric inductances in the superconducting loop, which is discussed in the following

subsection.

3.3.2 Effect of kinetic inductance

The relative magnitudes of kinetic and geometric inductances of the superconducting lines

forming the gradiometric (tunable-gap) qubits are of great technical relevance. They

determine to which extent magnetic flux actually affects the qubit or how much it is

screened by the closed trapping loop. This is crucial for applying an inhomogeneous field

to the qubit via the ε-line as well as for frustrating the α-SQUID when tuning the qubit

gap.

In Sec. 2.2, the difference between flux and fluxoid quantization has already been

explained and the kinetic inductance has been introduced. To illustrate the following

considerations we use the simple Gedankenexperiment of Fig. 3.7a. There, an external

homogenous magnetic field is applied to a superconducting loop (trapping loop), that

contains a probe structure for magnetic flux inside the loop. In the special case of flux

quantization, the total flux Φ inside the loop consist of the externally applied flux Φex

and the flux Φg generated by the circulating current in the ring due to its geometric

inductance. Flux quantization requires that this total flux Φ = Φex + Φg =nΦ0 is always

quantized in terms of the flux quantum. Therefore the probe can only experience this

quantized, yet no continuously varying flux. This situation changes for the case of fluxoid

quantization that holds when the width of the superconducting lines is made small enough

(on the order of λL), which is actually the case for the structures used in this work. Then,

the first term on the left hand side of Eq. (2.7) and the kinetic inductance Lk become

relevant and allow for a partial penetration of the applied magnetic field. According to
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Eq. (2.11), the fluxoid quantization condition reads as

Φex

Φ0

+
LkI

Φ0

+
LgI

Φ0

= fex + fk + fg = fex + fk + βfk = n , (3.13)

where we introduce the parameter

β ≡ Lg/Lk = fg/fk. (3.14)

Thus, we can solve Eq. 3.13 for

fk =
n− fex

1 + β
. (3.15)

The frustration fk is not associated with a magnetic field, but with the kinetic energy of

the charge carriers (cf. Sec. 2.2). Thus, it does not contribute to the net frustration that

is linked with the magnetic field inside the trapping loop. Nevertheless, we use Eq. 3.15

in order to calculate the net trapping loop frustration

ftr,net = fex + fg = fex + βfk =
1

1 + β
fex +

β

1 + β
n . (3.16)

This is the frustration effectively linked with a magnetic field Bprobe = Φ0ftr,net/Aprobe

that is experienced by the probe structure inside the trapping loop. From Eq. (3.16)

the influence of the kinetic inductance can be understood easily. For negligible kinetic

inductance, i.e., dominant geometric inductance (β� 1), the situation becomes formally

equivalent to the case of flux quantization. The screening by the circulating current in the

trapping loop is so strong that we can no longer change the flux in the loop by varying

the applied field. The frustration of the trapping loop is fixed to the value ftr,net≈n
frozen in during cool-down.

In contrast, if the kinetic inductance is dominant (β� 1), the contribution of the cir-

culating screening current is negligible and ftr,net≈ fex. In this case, the superconducting

lines cannot screen magnetic fields and we can change the magnetic frustration of the

trapping loop and the probe continuously by varying the applied magnetic field. In this

sense, β can be interpreted as a screening factor.

These considerations can now be adapted from a theoretical probe structure to the

real situation of the α-loop implemented within the trapping loop (cf. Fig. 3.7b). The

net magnetic frustration of the α-loop is, in first approximation, obtained by multiplying

Eq. (3.16) with the area ratio Aα/Atr of the α- and the trapping loop:

fα,net =
Aα
Atr

ftr,net . (3.17)

Here, we neglect effects arising from the fact that the α-loop is not centered in the trap-
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ping loop. This means that we consider the field Bprobe to be homogenous in the area

of the α-loop, whereas this assumption is not true very close to the lines of the trapping

loop. Furthermore, we neglect any possible effects due to the direct galvanic connection of

trapping and α-loop as such influences would be suppressed by the symmetry of the gra-

diometric layout. Then, the critical current of the α-loop becomes Ic,α(fα,net) =α(fα,net)Ic

[cf. Eq. (3.10)] with

α(fα,net) = α0 |cos (πfα,net)|

= α0

∣∣∣∣cos

(
π
Aα
Atr

[
1

1 + β
fex +

β

1 + β
n

])∣∣∣∣ . (3.18)

Of course, the limiting cases of dominant or negligible screening parameter β apply in the

same way to the α-loop as discussed above. However, a value of β' 1 is more realistic

and also desirable for our structures. With a suitable value of β, adjusted via a suitable

width of the superconducting lines, α can be varied both by changing fex via an external

magnetic field and by changing the number n of flux quanta frozen into the trapping loop

during cool-down. For example, n could be used for pre-biasing at a specific α value and

the external magnetic field provided by a current sent through an on-chip control line for

small variations around this value. The pre-biasing with trapped flux has the advantage

that it is not affected by the noise added by the current source, while the variations with

the on-chip control line can be very fast.

For zero applied magnetic field, Eq. (3.18) reduces to

α(fα,net)|fex=0 = α0

∣∣∣∣cos

(
π
Aα
Atr

β

1 + β
n

)∣∣∣∣ . (3.19)

This expression applies to the experimental situation, where an odd number n= (2n′+ 1)

of flux quanta is frozen into the trapping loop to bias the gradiometric flux qubit at its

symmetry point and no additional external magnetic field is applied. Fixing α0' 1 by the

fabrication process, we can change the number of trapped flux quanta to choose α in the

desired regime 0.5<α< 1. Of course, flux trapping only allows for a step-wise variation

of α. For continuous and fast variations of α, magnetic fields generated by an external

coil or on-chip control lines have to be used. For a typical value of β' 0.8, we obtain

fα,net' 0.08n for fex = 0. This calculation shows that we need only a small number of

trapped flux quanta to significantly modify α. Furthermore, we obtain ftr,net = 0.55fex

for n= 0, meaning that about half of the applied magnetic flux is effectively frustrating

the α-loop and thus changing the qubit gap ∆.

Finally we note, that for the frustration of the qubit the situation is qualitatively

similar but quantitatively a bit more complex. The qubit frustrationfq≡ f12 = f1− f2

depends on the exact spatial distribution of the inhomogeneous field generated by the
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ε-line. Nevertheless, the screening or penetration of this field depends analogously on the

value of the screening parameter β.

3.3.3 The gradiometer quality

A perfect gradiometer should be completely insensitive to a homogeneous magnetic field.

However, in reality there are always imperfections such as slight differences of the areas

A1 and A2 of the two subloops of the eight-shaped gradiometer and/or of the geometric

inductances Lg1 and Lg2 and kinetic inductances Lk1 and Lk2 of the superconducting

lines forming the subloops. Due to these imperfections there is a finite imbalance δfimb

of the magnetic frustration of the two subloops. According to Eq. (3.13), δfimb can be

expressed as

δfimb = δfex + δfg + δfk =
δΦex

Φ0

+
δΦg

Φ0

+
δΦk

Φ0

=
Φex

Φ0

δA

A
+
IδLg

Φ0

+
IδLk

Φ0

. (3.20)

With I = (n− fex)Φ0/(Lg +Lk) we can rewrite this expression to

δfimb = fex

(
δA

A
− δLg + δLk

Lg + Lk

)
︸ ︷︷ ︸

≡1/Qgrad,ex

+n

(
δLg + δLk

Lg + Lk

)
︸ ︷︷ ︸
≡1/Qgrad,n

. (3.21)

The total gradiometer quality Q is given by Q−1 =Q−1
grad,ex +Q−1

grad,n. The first term

describes imbalances of the frustration when a homogeneous external field is applied,

and the second those when an integer number of flux quanta is frozen in. Obviously, the

higher the Q the lower is δfimb. As it is shown in Sec. 5.2.3, Q values on the order of 500

are feasible for fixed-gap gradiometric qubits. In Sec. 5.3.3, we explore, to which extent

the implementation of an α-loop affects the gradiometer quality.

3.4 Circuit QED

Having introduced both superconducting harmonic resonators (cf. Sec. 2.6) and persis-

tent current flux qubits, they are now combined in structures used in circuit quantum

electrodynamics (QED). The fascinating and rapidly growing field of circuit QED is often

referred to as quantum optics on a chip, which emphasizes its analogy to cavity QED.

There, single atoms interact with the quantized electromagnetic field inside a 3D optical

or microwave cavity. In our solid-state analog, superconducting qubits as artificial atoms

are coupled to superconducting resonators. For a flux qubit, the physical properties of
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these combined qubit-resonator system are described by the Hamiltonian

Ĥ = ~ωr

(
â†â+

1

2

)
+

1

2
~εσ̂z −

1

2
~∆σ̂x + ~gσ̂z

(
â† + â

)
. (3.22)

Here, the first term equals the resonator Hamiltonian of Eq. (2.37), second and third

term the one of the qubit in Eq. (3.5). The fourth term describes the essential interaction

between qubit and resonator field â†+ â with a coupling rate

g = MIpIr/~ . (3.23)

The latter stems from the interaction between the qubit persistent current Ip and the

resonator vacuum current Ir mediated by the qubit-resonator mutual inductance M . In

circuit QED, the important strong coupling limit, where the coupling rate g exceeds the

loss rates γ and κ of qubit and resonator, respectively, can be reached straightforwardly.

In this limit, the coherent exchange of an excitation between qubit and resonator is

experimentally accessible. Furthermore, the general Hamiltonian of Eq. (3.22) can be

simplified by a base transformation and a rotating wave approximation (RWA) to the

renowned Jaynes-Cummings-Hamiltonian [67]

ĤJC = ~ωr

(
â†â+

1

2

)
+

1

2
~ωqσ̂z + ~g sin θ

(
â†σ̂− + âσ̂+

)
. (3.24)

Again, the first term describes the resonator and the second one the qubit with its flux de-

pendent transition frequency ωq given by Eq. (3.8). The third term with θ= arctan (∆/ε)

and the qubit raising and lowering operators σ̂+≡ |e〉 〈g| and σ̂−≡ |g〉 〈e|, respec-

tively, corresponds to the Jaynes-Cummings interaction. The RWA is only valid for

ωr +ωq� g, |ωr−ωq|, which is well fulfilled for the measurements presented in this work.

Only when the coupling strength g reaches a considerable portion g/ωr & 0.1 the RWA is

no longer sufficient to describe the physics of this so-called ultrastrong coupling regime

[34].

Due to the qubit-resonator interaction including off-diagonal terms, the qubit ground

and excited states |g〉 and |e〉 as well as the photon number state |N〉 of the resonator

are no longer eigenstates of the Hamiltonian of Eq. (3.24). The new eigenstates – the

so-called dressed states of the joint qubit-resonator system – are the superpositions [68]

|−,N〉 = cos Θ |g,N〉 − sin Θ |e,N − 1〉 and

|+,N〉 = sin Θ |g,N〉+ cos Θ |e,N − 1〉 , (3.25)

where Θ = 1/2 arctan(2g
√
N/δ) is the photon-number dependent mixing angle with the



38 Chapter 3 The gradiometric and tunable-gap flux qubit

qubit-resonator detuning δ=ωq−ωr. The latter is used to distinguish two different

experimental regimes.

Resonant regime

For vanishing detuning δ' 0, the qubit transition frequency very well matches the res-

onator frequency and energy is coherently exchanged between qubit and resonator. For

the special case of δ= 0, the eigenstates of Eq. (3.25) turn to the symmetric and anti-

symmetric superpositions

|±,N〉 =
1√
2

(|g,N〉 ± |e,N − 1〉) , (3.26)

which is analogous to the formation of flux qubit eigenstates in Eq. (3.7). Figure 3.8a

shows the so-called Jaynes-Cummings ladder, which is very instructive to visualize the

dressed eigenstates. The uncoupled states |g,N〉 and |e,N−1〉 are energetically degen-

erate. However, due to the interaction, the mixed states |±,N〉 split by an amount of

2~g sin θ
√
N , forming doublets. For N = 1, this leads to the situation where a single pho-

ton can be coherently exchanged at a frequency 2g sin θ, the vacuum Rabi frequency. As

stated before, this interpretation holds only in the strong coupling regime. As the qubit

transition frequency is flux dependent according to Eq. (3.8), the application of magnetic

flux tunes the system away from the resonant regime. Moreover, for a large bias energy

ε�∆, the angle θ in Eq. (3.24) approaches zero and thus, the interaction strength be-

comes vanishingly small. In this flux regime, the uncoupled qubit and resonator states

are again the eigenstates of the system. From an experimental point of view, we expect

the appearance of an avoided crossing (anticrossing) in the flux dependent spectrum of

qubit and resonator due to the formation of the Jaynes-Cummings doublets. This effect

is clearly visible in the experimental data in Chapter 6.3.

Dispersive regime

When qubit and resonator are significantly detuned, i.e., |δ|� g, there is no longer a

coherent exchange of excitations between them. However, qubit and resonator still in-

teract via virtual photons, which leads to a dispersive shift of the energy levels as shown

in Fig. 3.8b. In this regime, the Jaynes-Cummings Hamiltonian of Eq. (3.24) can be

approximated via a unitary transformation [69] to the dispersive Hamiltonian

Ĥdisp = ~
(
ωr +

g2 sin2 θ

δ
σ̂z

)(
â†â+

1

2

)
+

1

2
~ωqσ̂z . (3.27)
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Figure 3.8: Jaynes-Cummings ladder: Energy level diagram illustrating the change from un-
coupled qubit and resonator levels (black lines) to the coupled system following the
Jaynes-Cummings Hamiltonian (red lines). a Resonant case. b Dispersive limit.
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In this notation, the system can be interpreted as an uncoupled qubit (second term) and

a resonator with an effective resonant frequency ωr± g2 sin2 θ
δ

, that is dependent on the

state of the qubit. In this way, the qubit can be measured by observing its influence

on the dispersive shift of the resonator, which is the basis for the two-tone-spectroscopy

of the qubit (cf. Sec. 4.4.2 and Sec. 6.3). Furthermore, this is the basis for a quantum

non-demolition (QND) readout of the qubit with the resonator[70–74]. Alternatively, one

can rewrite this Hamiltonian in the form

Ĥdisp = ~ωr

(
â†â+

1

2

)
+

1

2
~ω̃qσ̂z (3.28)

with

ω̃q = ωq +
2g2 sin2 θ

δ
â†â+

g2 sin2 θ

δ
. (3.29)

In this form, the system appears as an uncoupled resonator (first term) and a qubit with

modified frequency ω̃q. The latter contains two contributions of dispersive shift: The term

g2 sin2 θ/δ is a constant shift, which is the analog to the Lamb-shift in atomic physics.

The other term 2g2 sin2 θâ†â/δ is associated with an ac-Zeeman shift of the qubit. Due

to its dependence on the photon number N = 〈â†â〉 in the resonator, the ac-Zeeman shift

of the qubit can be used to calibrate the power inside the resonator (cf. Sec. 6.2.3).

Finally, we note that both resonant and dispersive limit are important because they

allow for an extraction of important qubit parameters from the measurement data in

Chapter 6 using analytical formulas. Nevertheless, we also use the full Jaynes-Cummings-

Hamiltonian from Eq. (3.24) to fit the qubit-resonator spectrum in both resonant and

dispersive regime in Sec. 6.3.



Chapter 4

Experimental techniques

Superconducting quantum circuits require sophisticated fabrication and measurement

techniques. In particular, the JJs of the flux qubit with sub-micron lateral dimensions

need to be fabricated with electron beam lithography. Furthermore, the comparably high

current densities can only be achieved with a well-controlled oxidation process under

UHV conditions. All samples characterized in this thesis have been fabricated at WMI

facilities. They are based on aluminum thin film structures and Al/AlOx/Al Josephson

junctions fabricated by electron beam lithography and two-angle shadow evaporation on

thermally oxidized silicon wafers. Although the author of this thesis has put great effort

on a reproducible and continuously improved sample fabrication, we refer to Ref. [75]

for an overview of the fabrication process. Further fabrication details of gradiometric

tunable-gap qubits can be found in the work of Ref. [76], which was conducted under

supervision of the author of this thesis.

In this chapter, we first focus on the pre-characterization of JJs in Sec. 4.1. Next, we

investigate the principle of phase-biasing in Sec. 4.2. The measurement setups used in

the following chapters for qubit characterization are described in Sec. 4.3 and Sec. 4.4.

4.1 Characterization of Josephson junctions

A thorough pre-characterization of the JJs later forming the flux qubit is of great im-

portance, mainly for two reasons. First, the successful implementation of a flux qubit

poses strong requirements on the JJ parameters. The relevant parameters Ec, EJ and α

– linked with the more fundamental JJ parameters capacitance C, critical current Ic and

areas A and Aα, respectively – have to lie within certain margins for a working flux qubit

(cf. Sec. 3.1). However, they are subject to unavoidable uncertainties within the fabrica-

tion process. Second, the measurement of flux qubits at millikelvin temperatures takes

considerable experimental effort, time and money (e.g., for liquid helium). Therefore,

we pre-characterize the JJs to a reasonable extent by means of electrical and imaging

measurements.

41
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500nm

a b

500nm

Figure 4.1: a SEM image (top view) of one of our Al-AlOx-Al JJs. Bottom Al layer (blue)
and top Al layer (red) overlap to form the JJ (purple rectangle in the middle). b
AFM image of a JJ (displayed at an angle of 45◦) visualizing the 3D structure of
the 40 nm and 70 nm thick Al layers.

4.1.1 SEM and AFM imaging of JJs

We first shortly describe the methods used for imaging the JJs, which give us access to

their cross-sectional areas. Since we assume the critical current density to be the same for

all three qubit junctions, the size of the α-JJ by definition determines the value of α. As

the qubit gap ∆ depends exponentially on α [cf. Eq. (3.9)], the ratio of areas should be

known as precisely as possible. A precisely controlled junction size is particularly crucial

for fixed-gap flux qubits; it is actually one big advantage of tunable-gap flux qubits that

fabrication uncertainties can be overcome. Nevertheless, the maximum value α0 of a

tunable α-loop should be adjusted properly. Furthermore, the absolute size of the JJs

determines critical current and capacitance and, thus, the relevant energies EJ and Ec (cf.

Sec. 2.3.3). In the complex electron beam fabrication process, the area of a JJ is exposed

to inevitable variations in, e.g., electron beam focus or resist development. Therefore, we

typically image the JJs after every fabrication run. Our standard technique for this is

taking a scanning electron microscope (SEM) image of the JJs as depicted in Fig. 4.1a.

However, as the exposition of the JJ’s oxide barrier to the charging by an electron beam

might cause electrical breakthrough, SEM imaging is only applied to additional test JJs

located on the sample or only after the full characterization of the JJ. Recently, we have

also used atomic force microscopy (AFM) to image JJs as shown in Fig. 4.1b. From

this technique we can also determine the junction area and furthermore learn about

topological properties such as surface roughness [77]. As AFM was proven to be non-

destructive for our JJs [78], it can even be used to pre-characterize the junctions before

further measurements.

4.1.2 Low temperature IV characteristic

Apart from a rough determination of its area, the most important characterization of a

JJ involves an electrical measurement in the superconducting state in order to determine
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the main junction properties. To this end, the JJ needs to be connected with electrical

feed lines. However, the flux qubits themselves cannot be connected with wires as this

would introduce an enormous amount of noise spoiling the quantum mechanical behavior.

Before a real qubit characterization, the parameters of the qubit junctions can therefore

only be deduced from additional test JJs fabricated on the same chip. This procedure

is justified as the oxidation process, which determines the critical current density of the

JJs, is the same for all JJs fabricated in the same run. We take care that the lithography

process is controlled adequately in order to yield, e.g., comparable junctions areas.

In fact, the JJs we characterize are always implemented in a dc-SQUID wired for a

four-point measurement. One main experimental part of this work (cf. Chapter 5) deals

with flux qubits with a SQUID readout, which is explained in detail in Sec. 4.3. For

these samples it is obvious to pre-characterize the readout SQUID in order to ensure the

function of the readout device as well as to check the qubit junction properties. For the

experiments on qubits integrated in a circuit QED layout (cf. Chapter 6), such a SQUID

is added for testing purposes at the edge of the microwave resonator chip. The cryogenic

measurement of these SQUIDs is performed at a temperature of approximately 500 mK

inside a well-shielded 3He evaporation cryostat. The details of this setup are described

in detail in Ref. [79] and Ref. [80].

Before showing low-temperature data, it must be stated that we have also established

the measurement of the JJs’ room temperature resistance to identify samples with electri-

cal breakthrough of the oxide layer. This measurement works best when the samples are

already connected to the sample holder of the cryostat profiting from a stable electrical

connection via bonding wires and from proper filtering of the feed lines (in contrast to ir-

reproducible results obtained when using a wafer prober). As it turns out, we can clearly

distinguish damaged JJs with a room temperature resistance below 100Ω from properly

working JJs with resistances of 200Ω to 300Ω corresponding to a critical current density

jc(500 mK)' 2 kA/cm2 for a typical junction size of AJ' 0.03 µm2. Thereby it must be

noticed that these resistance values not only contain the JJ resistance but also that of

additional aluminum on-chip lines, which do not contribute in the superconducting state.

More details of our measurements can be found in the appendix of Ref. [76]. Further in-

vestigations at the WMI of the room temperature resistance for a whole range of current

densities were made in Ref. [78].

IV characteristic of dc-SQUIDs

We now turn to the low-temperature measurements of dc-SQUIDs. As already mentioned,

dc-SQUIDs are pre-characterized at a temperature of 500 mK. If the sample passes

this test and is cooled down in a dilution refrigerator (cf. Sec. 4.3), the SQUID is, of
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a b

shuntedunshunted ≈

Figure 4.2: IV characteristics measured at T = 30 mK and for zero applied magnetic field (i.e.,
fSQ = 0) for two dc-SQUIDs: a An underdamped and unshunted dc-SQUID with
only slight hysteresis (Isw/Ir = 1.38). b A dc-SQUID with additional shunt capaci-
tors shows a more pronounced hysteresis with Isw/Ir = 5.02.

course, characterized again. Since these measurements at 30 mK yield more meaningful

results on JJ properties, they are shown here. Figure 4.2a shows a typical current-voltage

curve for one of our readout SQUIDs at 30 mK without any applied magnetic field, i.e.,

fSQ = 0. The curve basically follows the theoretical expectation for an underdamped JJ

as discussed in Sec. 2.3.5: With the bias current increasing from zero, no voltage drop

across the SQUID is measured (superconducting state) up to a current of 2Isw = 0.80 µA.

Then, a sudden voltage drop corresponding to the gap voltage Vgap = 360 µV of Al appears

followed by a linear region determined by the normal resistance Rn/2 = 197Ω. When the

current is again decreased below 2Ic, the SQUID remains in the voltage state until the

retrapping current 2Ir = 0.58 µA is reached. This hysteretic behavior results from a low

damping of the JJs. The intermediate regime between 2Ic and 2Ir features a complex

nonlinear characteristic dominated by quasiparticle tunnelling.

The measured value for the gap voltage is close to the theoretical gap voltage

V BCS
gap = 1.764kBTc = 365 µV with the bulk value Tc = 1.2 K, suggesting a good quality

of our aluminum thin films. From the gap voltage we determine the upper limit for the

critical current from the Ambegaokar-Baratoff relation, Eq. (2.26), to 2IAB
c = 1.45 µA,

which coincides well with the onset of the linear regime. Furthermore, we can use a

value for the junction area AJ = 0.028 µm2 – determined by SEM microscopy of several

JJs fabricated on the same chip in the vicinity of this sample – in order to calculate the

critical current density jc = 1.3 kA/cm2. As the latter is independent of the JJ area, it is

more directly related to the properties (mainly the thickness) of the JJ’s oxide barrier.

For comparison, Fig. 4.2b shows the IV characteristic of another dc-SQUID, that is

modified for an optimized readout device for qubits (cf. Sec. 4.3). With the implemen-

tation of large capacitors to ground in parallel with the SQUID, the total capacitance

of the dc-SQUID as LCR resonator is significantly enlarged. As this corresponds to a
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larger mass of the phase particle, the shunted dc-SQUID experiences less damping and its

hysteresis is much more pronounced. A strong hysteretic behavior prevents the SQUID –

once it has switched to the voltage state – from an unwanted return to the superconduct-

ing state due to current fluctuations. In this way, the readout fidelity of a dc-SQUID is

improved. Due to a shorter oxidation time, the critical current density jc = 3.5 kA/cm2

is increased. Also larger SQUID junction areas contribute to a higher critical current

2Isw = 3.29 µA. Thus, a stronger modulation of the switching current with magnetic flux

also contributes to better readout sensitivity. Moreover, the maximum switching cur-

rent is practically identical to the calculated 2IAB
c = 3.3 µA, benefiting from the filtering

properties of the shunt capacitors.

With the critical current extracted from the IV characteristic, we can also calculate

the Josephson energy EJ = Φ0Ic/2π [cf. Eq. (2.19)], which is essential to estimate the

behavior of the qubit made in the same fabrication process. For the two samples shown

here, we obtain EJ/h' 200 GHz and EJ/h' 800 GHz for the JJs of the unshunted and

the shunted SQUID, respectively. Note, that these two SQUIDs are the ones belonging to

the two gradiometric tunable-gap qubits characterized in Sec. 5.3. There, the EJ values

from the SQUID characterization are used again in order to consistently analyse the

qubit spectroscopy data. However, besides the Josephson energy EJ also the charging

energy Ec influences the qubit properties. To determine the latter, an investigation of

the junction capacitance is necessary.

Josephson junction capacitance

The capacitance of a JJ determines, together with critical current Ic and normal resistance

R, the behavior of a real JJ or SQUID as discussed within the RCSJ model (cf. Sec. 2.3.4).

Consequently, the capacitance can also be evaluated from a current-voltage characteristic

for certain junction conditions. Either the shape of the hysteresis or special features

originating from junction resonances [81–84] can be studied. For the latter, separate

dc-SQUIDs with larger geometric inductance would have been needed. Therefore, we

investigate the hysteresis of existing SQUIDs to determine the JJ capacitance.

The hysteresis of the IV curve reflects the damping of the JJs and is described by the

Stewart-McCumber parameter βC ∝C of Eq. (2.24) 1. A direct access to the capacitance

C is possible by determining βC . The latter can be extracted from the ratio a0 = Ir/Ic of

retrapping and critical current of underdamped JJs. To this end, the junction must not be

shunted with an additional capacitance as this would change the retrapping current. The

exact dependence βC(a0) can only be calculated numerically starting from the equation

of motion, Eq. (2.22). However, this numerical solution can be approximated very well

1Note that the dimensionless βC given by Eq. (2.24) is the same for a (symmetric) dc-SQUID consisting
of two identical JJs as for each single JJ.
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.

Figure 4.3: Capacitance C of Josephson junctions determined from hysteretic IV characteristics
plotted versus the junction area A. From a linear fit (blue line) to the data we
determine a specific capacitance cs' 790 fF/µm2.

with the analytical expression [85]

βC =
2− (π − 2)a0

a2
0

(4.1)

when a0 = 0.3...0.6, which is fulfilled for the JJs we investigate in this context. Then,

the capacitance can be calculated from Eq. (4.1) and Eq. (2.24), with the parameters

Ic, Ir and R directly determined from a current-voltage characteristic as the one shown

in Fig. 4.2a. Figure 4.3 shows the capacitance of several unshunted and underdamped

dc-SQUIDs determined in this manner. The capacitance is plotted versus the JJ area so

that the slope of a linear fit to the data yields the specific capacitance cs' 790 fF/µm2.

This value is in agreement with the simple estimation of cs = ε0εr/d of a plate capacitor

with a relative permittivity εr' 10 for aluminum oxide [86], and with an oxide thickness

d' 1.2 Å. It must however be stated that this value for the specific capacitance is about

eight times higher than a value determined previously on comparable JJs via SQUID

resonances [81]. Nevertheless, the correctness of the determined value is confirmed later

on. With this specific capacitance, we calculate a charging energy Ec/h' 1 GHz. As it is

shown during the analysis of (tunable-gap) qubits in Chapter 5, this value for Ec is very

well suited to describe the measured behavior of the qubit gap [cf. Eq. (3.9)].

4.2 Phase-bias by flux trapping

After the pre-characterization of JJs in the previous section, we now investigate some

properties of the superconducting loops. As discussed in Sec. 2.2, a knowledge of the

geometric and kinetic inductances Lk and Lg, respectively, is of great practical relevance

for the frustration of superconducting loops. In Sec. 4.2.1, we estimate these values with

the help of phase-biased SQUIDs. The basic principle of this phase-biasing is closely
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connected to the flux trapping for qubit biasing, that is described in Sec. 4.2.2. Before,

we want to comment shortly on the technical procedure of flux trapping. The typical

sequence is as follows: A certain magnetic field is applied to the sample via an external

coil. Then, the sample is heated above the critical temperature of aluminum for a time not

longer than a few seconds. When the sample has returned to the superconducting state

the magnetic bias field can be removed. The exact details of how the sample is heated

– either by heating the whole sample stage or by locally heating at the sample itself –

depend on the used cryostat and are described in detail in the appendix of Ref. [76].

4.2.1 Phase-biased SQUIDs

In the work of Ref. [76], which was conducted under supervision of the author of this

thesis, we extensively studied phase-biased SQUIDs; here, we shortly recapitulate the

basic principle and main results. A phase-biased SQUID [87] denotes a dc-SQUID that

contains an additional superconducting loop for flux trapping as depicted in Fig. 4.4a.

Depending on the length of the shared segment a with respect to the total trapping loop

circumference s, the kinetic phase difference φk,SQ of the SQUID contains an additional

part (a/s)φk,tr. Besides, the trapping loop adds an additional frustration to the SQUID

loop via a mutual inductance Mg between trapping and SQUID loop. In total, the flux-

dependent switching current of the SQUID is modified from Eq. (2.28) to

Isw(fSQ,n) = 2Ic

∣∣∣∣cos

(
πfSQ

[
1 + κ

Atr

ASQ

]
− κπn

)∣∣∣∣ , (4.2)

where

κ =
a
s

+ Mg

Lk

1 + β
(4.3)

and ASQ/Atr is the ratio of SQUID area to trapping loop area. Equation (4.2) implies that

the periodicity in magnetic frustration of Isw is changed by the factor (1 +κAtr/ASQ) and

that the Isw-curve is shifted stepwise by κπn. If Atr is small compared to ASQ, the ratios

Mg/Lg and a/s are equal so that κ≈ a/s, which can be used to bias a SQUID exactly at

a phase π using a/s= 0.5 [87]. We demonstrated the realization of both SQUIDs with a

bias of π (a/s= 0.5) and with a bias of π/2 (a/s= 0.25) [76].

The value of κ can be determined with Eq. (4.2) in two ways: First, the periodicity

of Isw(fSQ) is compared for one SQUID with trapping loop and one reference SQUID

without. Second, the shift of the Isw(fSQ,n) curve is determined for several numbers n

of trapped flux quanta. Measurement data for both methods are shown in Fig. 4.4b and

Fig. 4.4c, respectively. Both measurements consistently yield κ= 0.180± 0.002. However,

we cannot determine β directly from these measurements because of the unknown Mg
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Figure 4.4: Phase-biased SQUID: a Optical micrograph of a phase-biased SQUID, where the
trapping loop has the same dimensions as the one used for all gradiometric qubits
in this work (sketch on the lower part). b Change of the periodicity of Isw(fex) for
a phase-biased SQUID compared to a reference SQUID without trapping loop. c
Shift of the Isw(fex) curve for increasing number n of trapped flux quanta.

and Lk in Eq. (4.3).

In order to estimate the kinetic inductance of the superconducting lines we use the dirty

limit expression Lk = ~ρn`/π∆0S [88, 89], where ∆0 = 0.18 meV is the zero temperature

energy gap of Al. The use of this expression is justified, since the mean free path in our

90 nm thick Al films is limited by the film thickness and therefore is much smaller than

the coherence length ξ' 1.5 µm of Al. The normal resistivity ρn is determined by suitable

test structures fabricated on the same chip. For the cross-sectional area S= 500× 90 nm2

of the superconducting line forming the trapping loop, we obtain a kinetic inductance per

unit length of Lk/`' 1 pH/µm, resulting in Lk = 70 pH for the trapping loop of Fig. 4.4a.

Furthermore, the geometric inductance Lg of the superconducting loop can be calculated

according to Ref. [90] to Lg' 57 pH. This results in β' 0.81. Then, Eq. (4.3) is used to

make a consistency check. The resulting value of Mg = 3.3 pH is plausible with respect

to the maximum expected value (a/s)Lg = 16 pH.

Although the above discussion can only give a rough estimate for β, it is very helpful

to predict the approximate behavior of the trapping loop of the qubit as discussed in

Chapter 5, especially the net frustration of the α-loop [cf. Eq. (3.16) and (3.17)]. A

more accurate determination of β is performed in Sec. 5.3.2 from spectroscopy data

on a gradiometric tunable-gap qubit. The investigation of phase-biased SQUIDs also

demonstrates the successful trapping of flux quanta, which we transfer to the biasing of

gradiometric qubits in the following subsection.
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a b

Figure 4.5: Flux trapping in a gradiometric qubit loop: a The Isw(fex) curve of the readout
SQUID measured at 35 mK is shifted for different numbers of trapped flux quanta.
b The shift δfSQ of the Isw(fex) curve plotted versus the applied frustration fapp

shows the discrete steps characteristic for fluxoid quantization.

4.2.2 Flux trapping in the qubit loop

We now turn to the trapping of flux quanta in the outer loop of a gradiometric flux

qubit as introduced theoretically in Sec. 3.3.1. A real layout of such a sample is shown in

Fig. 5.3. Essentially, the difference concerning flux trapping to the previous subsection

on phase-biased SQUIDs is the fact, that SQUID and trap loop do not share a common

line segment. Consequently, Eq. (4.2) and Eq. (4.3) are also valid here after setting a= 0.

Thus, the trapping of different numbers n of flux quanta also results in shifted Isw(fSQ,n)

curves of the readout SQUID. Effectively, this shift can be attributed to the additional

flux in the SQUID loop generated via the mutual inductance by the circulating current

I = Φ0
n− ftr

Lk + Lg

(4.4)

[cf. Eq. (2.11)] in the trapping loop. From Eq. (4.4) one can determine a maximum

number nmax of flux quanta that result in a circulating current on the order of the critical

current of the loop (order of mA). With the values for the inductances calculated in the

previous subsection, we estimate nmax & 50. Here and for the qubit measurements in

Chapter 5, we trap at most 10 flux quanta and, hence, the trapping loop is always well

in the superconducting state.

Figure 4.5a shows a set of Isw(fSQ) curves, that are shifted according to the amount of

frustration fapp applied to the trapping loop during the flux trapping process 2. From the

2Note that the notation fapp is used here for the trapping loop frustration ftr in order to clearly denote



50 Chapter 4 Experimental techniques

flux periodicity of the SQUID and the known areas of SQUID and trapping loop, we can

quite accurately predict the necessary amount of fapp equivalent to a certain number n of

flux quanta [except for the small uncertainty of the factor κ, cf. Eq. (4.2)]. Nevertheless,

we also perform flux trapping with intermediate values between the expected ones to

check the stepwise flux trapping, that is illustrated in Fig. 4.5b. There, the shift δfSQ

of the switching current curve is plotted versus fapp. For clarity, for a certain number of

trapped flux only one data point is shown. The data follows a linear behavior with a slope

κ=Mg/Lk/(1 + β). The fact that δfSQ(fapp = 0) 6= 0 suggests a constant background field

in the cryostat. Thus, we typically do not exactly know the absolute number of trapped

flux. Nevertheless, for the biasing of a gradiometric qubit a distinction between odd and

even numbers of trapped flux quanta can easily be made by checking the existence of a

qubit signal (cf. Sec. 5.2.1). Summing up, our measurements show that we can selectively

and reproducibly trap different amounts of flux quanta, which is the basis for the biasing

of the gradiometric qubit near its degeneracy point.

4.3 SQUID readout of flux qubits
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Figure 4.6: a Schematic measurement setup with dc-SQUID readout: The qubit is inductively
coupled to the readout SQUID. A superconducting coil and/or an on-chip ε-line
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it as the frustration during the trapping process
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In this and the following section, we describe the measurement setups used to charac-

terize flux qubits in this work. The first setup is based on the detection of the magnetic

moment generated by the qubit persistent current with a dc-SQUID magnetometer. The

second measurement scheme is based on a circuit QED architecture of the qubit coupled

to a transmission line resonator (cf. Sec. 4.4). In both cases, the intended sensitivity

for quantum mechanical properties still enforces the requirements on experimental condi-

tions as compared to the pre-characterizations in the previous sections. To avoid thermal

excitations, e.g., from ground to first excited state of the qubit, the sample tempera-

ture T must be low enough to fulfill kBT � ~ωq. For typical qubit transition frequencies

ωq/2π' 5 GHz (corresponding to about 240 mK) this is sufficiently achieved by the use

of 3He/4He dilution refrigerators with a base temperature of T ' 35 mK (T ' 15 mK for

the circuit QED setup). It must be noted that the above condition cannot be achieved by

increasing the qubit transition frequency as it is bound by a second condition. Only when

~ωq� 2∆0, quasiparticle excitations in the superconducting aluminum are strongly sup-

pressed. With 2∆0 = 360 µeV determined in Sec. 4.1, which equals a frequency of 87 GHz,

this condition is well fulfilled for our qubits. Of course, the stable operation of the dilution

refrigerator at these temperatures requires a deliberate thermal shielding and anchoring

of wires connecting to the sample. Furthermore, the tiny magnetic field (B' 10−8 T)

linked with the qubit persistent current needs to be well protected from magnetic stray

fields by the use of mu-metal shields.

The details of the home-made cryostat used for the SQUID-based qubit measurements

are explained in Ref. [75] and Ref. [80]. We focus here on the schematic measurement

setup as depicted in Fig. 4.6a. The SQUID as the readout device for the qubit is located

on the sample chip and connected in a four-point geometry. Its feed lines are strongly

filtered from high-frequency noise by the use of homemade stainless steel powder filters

(cut-off frequency ' 2 GHz) at 35 mK, homemade LCR filters (cut-off 100 kHz) at 4 K

and commercial Mini-Circuit BLP (cut-off 1.9 MHz) at room temperature. The flux-

dependent switching current of the dc-SQUID is detected as follows: An analog current

source provides a current linearly increasing from zero with approximately 0.1 µA/ms

(cf. Fig. 4.6b). Once this current reaches Isw(Φ) of the SQUID, the corresponding gap

voltage is amplified by a differential voltage amplifier (Stanford Research SR560 ) and

fed into a voltage comparator. Only when the measured voltage exceeds a well-defined

threshold – higher than possible false premature voltage drops – a sample-and-hold circuit

is activated that allows to record the current at the moment of the detected switching

event. After that, the bias current is decreased again to zero or slightly below in order to

ensure the return of the SQUID to the zero-voltage state. The start of the next current

ramp is triggered by a square pulse signal of right length to envelope such a measurement

cycle. Since the switching of the SQUID into the voltage state is a statistical process, the
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cycle is repeated very often (typically 750 times) for each flux value to obtain a Gaussian

distribution of the switching events around a mean value 〈Isw〉 visible in the histogram

of Fig. 4.7b. The magnetic flux penetrating the SQUID and qubit loops is applied with

a superconducting coil located underneath the sample. In Fig. 4.7a, the flux-dependent

switching current distribution of a readout SQUID is shown.

The detection of the qubit relies on the change of magnetic flux in the SQUID caused

by the flux dependent magnetic moment or persistent current of the qubit (cf. Fig. 3.3b).

Formally, the total magnetic flux of the SQUID ΦSQ is composed of the applied external

flux Φex and the flux Φq−SQ induced by the qubit to yield

ΦSQ = Φex + Φq−SQ = (4.5)

= Φext + k
√
Lg,SQ · Lg,q · Ip .

Here, Lg,SQ and Lg,q denote the geometric inductances of SQUID and qubit, respectively,

and 0≤ k≤ 1 is a parameter for the (inductive) coupling strength between qubit and

SQUID. While k= 0 means no coupling, the limit k= 1 applies to a galvanic coupling over

infinite length. It is evident from Eq. (4.5), that the flux in the readout SQUID is affected

by changes in the amount and sign of the qubit persistent current Ip, which appear near

the degeneracy point. Technically, the detection of the qubit via the SQUID’s switching

current differs for gradiometric and for regular flux qubits. For regular flux qubits, a sweep

of the superconducting coil current frustrates both SQUID and qubit simultaneously.

Consequently, the qubit signature appears periodically in the Isw(Φ) curve of the SQUID,

where the exact positions depend on the ratio of the areas of SQUID and qubit. These

have to be adjusted (e.g., ASQ/Aq = 1.76) so that the qubit degeneracy points coincide

with a large (linear) slope and thus high flux sensitivity in the SQUID’s Isw(Φ) curve (cf.

Sec. 5.1). For gradiometric qubits, that are insensitive to the homogenous field of the

coil, an asymmetric on-chip ε-line is used to frustrate the gradiometric qubit. This ε-line

(as well as the α-line frustrating the tunable α-loop) is connected in the same way as the

SQUID with strongly filtered wires to a current source. Then, the coil is only used to bias

the SQUID at a position of high sensitivity and the SQUID is read out while sweeping

the ε-line current Iε. In both cases the qubit manifests itself in a continuous steplike

feature, that is depicted in Fig. 4.7c after subtracting the approximately linear portion

of the SQUID. It should be noted that this gradual continuous change of the magnetic

signal of the qubit is already a clear signature of the quantum mechanical superposition

states. In contrast, the switching of a classical bit would result in an abrupt discrete

step. Typically, the qubit step extends over a range of several mΦ0 of qubit flux.

Although it is in principle possible to extract the qubit gap ∆ from the shape of a qubit

step measured at different temperatures [91], a more direct and more precise technique
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for the qubit characterization is microwave spectroscopy [92, 93]. The spectroscopy tone
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Figure 4.7: a Color-coded switching current (Isw) histograms of the readout SQUID as a func-
tion of magnetic frustration fSQ applied with the superconducting coil. b A sin-
gle switching current histogram follows a Gaussian distribution with slightly more
weight to lower Isw due to thermally or noise-induced premature switching. c
Normalized switching current (SQUID signal subtracted) revealing the change in
magnetic flux due to the continuous switching of the persistent current qubit when
changing its frustration fq. d Qubit microwave spectroscopy: A CW microwave
signal of fixed frequency excites qubit transitions causing a characteristic pair of a
dip and a peak around the degeneracy point (see data in color-coded plot). Mea-
suring at various fixed frequencies (schematic black lines) the qubit hyperbola of
Eq. (3.8) can be determined.

is a continuous wave microwave signal. It is supplied by a microwave source and fed into

the cryostat with an coaxial cable that passes two thermally anchored attenuators for

noise reduction. At its end near the qubit sample, the cable is dismantled from its outer

conductor in order to act as an antenna. The antenna then irradiates the qubit with a

microwave signal of constant frequency ωs and power, while a qubit step is recorded with

the SQUID. At those flux values, where the flux dependent qubit transition frequency of

Eq. (3.8) matches the spectroscopy frequency, i.e., ωs =ωq(δΦq), the qubit is excited from

its ground to the excited state, changing the sign of the persistent current. In the qubit

step signature detected by the SQUID, this results in characteristic peaks and dips that

are located symmetrically with respect to the center of the step, the qubit degeneracy

point (cf. Fig. 4.7d). Repeating this measurement for several spectroscopy frequencies,
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the qubit hyperbola can be mapped out and with a fit of Eq. (3.8) to the measured data

the qubit parameters Ip and ∆ can be determined.

In summary, this technique is very well suited to investigate the basic properties of

fixed-gap as well as of tunable-gap flux qubits as it is shown in Chapter 5. The comparably

small dilution unit allows for quick cool-down cycles and two to four samples can be

mounted at once. However, it must be stated, that this kind of SQUID readout fails

exactly at the interesting degeneracy point of the qubit. Since the circulating currents

of opposite direction just cancel each other, in the time average no magnetic signal is

measured by the SQUID. Furthermore, any advanced experiments including microwave

resonators or time-domain measurements are not possible within this cryostat due to

limited space. Therefore, we also use another qubit measurement setup in a larger dilution

refrigerator, that is described in the following section.

4.4 Circuit QED readout of flux qubits

Compared to the previous setup, a circuit QED experiment such as in Chapter 6, where

extremely low power signals of ' 10−17 W need to be detected, requires a lot more com-

plexity in terms of shielding and additional bulky components such as circulators and

cold amplifiers. In the following, this alternative cryostat and the measurement schemes

for the circuit QED experiment are described.

4.4.1 Measurement setup

The homemade 3He/4He-dilution refrigerator used for theses experiments reaches a base

temperature of ' 10 mK. It is surrounded by a cryoperm and a mu-metal shielding in-

side and around the 4He/lN2 dewar, and is located inside a shielded room for a strong

suppression of electromagnetic noise. Concerning noise the most attention needs to be

paid to the input and output lines of the transmission line resonator sample. To avoid

a thermal population of the resonator, its input line is interspersed with several attenu-

ators. By thermally anchoring these attenuators to different temperature stages of the

cryostat, also the inner conductor of the microwave line is subsequently cooled. This

principle is illustrated in Fig. 4.8a. The configuration of attenuations is calculated to

guarantee a negligible number of thermal photons at the sample temperature. Details of

this calculation using Planck distribution can be found in Ref. [94] and Ref. [95]. Like the

resonator input line, the line connecting the antenna for qubit excitation is attenuated

and thermalized. In contrast, the very weak output signal of the qubit-resonator system

must not be attenuated but amplified. Therefore, a cryogenic HEMT amplifier (LNF,

noise temperature TN' 2 K, gain ' 40 dB in the frequency range 4 ... 8 GHz) is used at
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a temperature of 4 K followed by another amplifier at room temperature (MITEQ JS2,

gain ' 25 dB). To prevent noise – stemming, e.g., from the amplifiers – from entering

via the output line to the sample, cryogenic microwave circulators (Quinstar) are used,

where the third port is connected with 50 Ω for an absorption of incoming noise. The rf

coaxial cables at temperatures below 4 K are also chosen to minimize cables losses and

thermal conductivity. The cables have an inner conductor of superconducting niobium

(Nb) and an outer conductor of cupronickel (CN). For the input the thinner and more

flexible cable type UT47 is used. For the output line the cable UT85 with larger cross-

sectional area causes still less loss. Typically, the cables (including SMA connectors) at

the sample stage need to be tailored to every new experiment. Consequently, these cables

are tested before the experiment in a TDR (time domain reflectometry) measurement to

ensure impedance mismatches of less than 5 Ω. Also the complete input and output lines

are tested for transmission losses. The sample itself is located inside a gold-plated copper

box, that can be seen either closed or open in Fig. 4.8b and Fig. 4.8c. The 10x6 mm2

large sample chip is fixed inside the box with silver glue, that also provides good electrical

and thermal contact between the resonator ground plane and the sample box as well as

between the resonator inner line and the pin of the SMA connector (cf. Fig. 4.8c).

In order to connect the on-chip ε-flux bias line of a gradiometric qubit or any other

on-chip structure (SQUIDs) with dc lines, bond wires can be set between the chip and

a PCB with copper pads next to the chip inside the sample box. Copper wires soldered

onto these copper pads exit the sample box via small holes. The lines are then connected

to stainless-steel-powder filters, that are excellent low-pass filters for frequencies below

the GHz-regime [10, 96–101]. The dc lines continue up to 1K in form of superconducting

niobium-titanium (NbTi) wires in bronze or cupro-nickel matrix, that largely suppress

thermal conductivity. Manganin wires build up the dc lines from 1K to room temperature,

where they are passing additional low-pass filters (Mini-Circuits BLP-1.9 and home-made

RC low-pass filters) and connect to an analog current source. The latter is controlled by

the measurement program via a National Instruments PCI-6052E 16-bit acquisition card.

The same card and current source is used to generate a homogenous magnetic field at

the sample with a superconducting magnet coil. The coil consists of approximately 4400

windings of a NbTi wire in copper matrix [102] and is located just next to the sample

box (cf. Fig. 4.8b). The magnet is equipped with a persistent current switch allowing to

trap flux in the magnet coil for a stable constant magnetic field bias. However, for the

measurements presented here the coil is used in the non-persistent mode only.

To ensure the stable operation of the refrigerator and the success of the careful thermal-

ization several thermometers are placed at different temperature stages of the cryostat,

which are read out with an AVS-47 resistance bridge. Especially, one thermometer is

placed right on top of the sample box (gray block in Fig. 4.8b).
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Figure 4.8: a Schematic setup for circuit QED measurements of coupled qubit-resonator sys-
tems. The input signal ωrf generated by a VNA is heavily attenuated at different
temperature stages (background colors) in order to suppress thermal noise and to
reach the single-photon level inside the resonator. This applies similarly to the
qubit excitation signal ωs that stems from a microwave source and is fed to an
antenna near the qubit. The resonator output line contains two circulators for
noise reduction and two amplifiers. Twisted pair dc wires for the ε-line are filtered
several times. Not shown are the feed lines of the superconducting coil generating
the homogenous magnetic field Bcoil. b, c Photographs of the mounted and open
sample box.
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4.4.2 Measurement protocols

In order to spectroscopically analyse the coupled cavity-qubit system as a function of

an applied magnetic flux, basically two measurement protocols are used: a cavity power

transmission measurement and a so-called two-tone spectroscopy.

Cavity transmission spectroscopy

In this measurement scheme the transmitted power through the resonator is probed for

each flux value. This is realized by the use of a Rohde & Schwarz (R&S) ZVA24 vector

network analyzer (VNA), that measures the transmitted power (and also phase) of a

frequency sweep of fixed power sent to the sample (cf. Fig. 4.8). As described above, the

input line from the VNA to the sample is heavily attenuated by approximately −150 dB

(including additional −10 dB of estimated cable losses). Together with typical VNA

output powers of −10 dBm in the experiments of Chapter 6, this result in a power of

only 10−19 W. We verify in Sec. 6.2.3, that this corresponds to the regime of less than one

photon on average in the resonator sample. Consequently, one can assume that no photon

is transferred from resonator to qubit during this measurement. And even if the qubit

is excited, its expected lifetime is short compared to the timescale of the transmission

measurement. Therefore, the qubit resides in its ground state and the transmission

measurement probes the lowest energy eigenstate of the coupled qubit-resonator system

with the resonant and dispersive interactions described in Sec. 3.4. Especially, with this

measurement the coupling strengths between qubit and resonator modes are determined

in Sec. 6.3.

Two-tone spectroscopy

Two-tone spectroscopy is based on the dispersive interaction between qubit and resonator

and the dependence of the dispersive shift on the qubit state as described in Sec. 3.4. In

contrast to the cavity transmission measurement, the qubit is to be excited in two-tone

spectroscopy while the resonator is still probed as before. This is achieved by sending

another continuous wave signal, stemming from an R&S SMF microwave source, to

the qubit via the antenna line (cf. Fig. 4.8). Similar to the resonator input line, the

antenna line experiences a strong attenuation of approximately −72 dB (including cable

losses). With a typical output power of −20 dBm at the SMF, a power of around 10−12 W

reaches the antenna of the sample. This power is significantly larger than the one of the

resonator probe signal because of two reasons. First, this signal tone is in general not

resonant with the transmission line resonator and thus, does not experience a resonant

enhancement of field strength. In fact, only an unknown part of the microwave power

is transferred from the antenna to the qubit. Second, the qubit excitation needs to be
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Figure 4.9: a Schematic illustration of the two-tone measurement. Shown are the Lorentzian
transmission curves of an uncoupled resonator (gray), a resonator with dispersive
shift due to the interaction with a qubit in its ground state (blue) and the same
for the qubit in the excited state (red). When the qubit is excited, the change in
magnitude δM at the probe frequency ωp determines the measurement contrast.
b For reduced dispersive shift the measurement contrast decreases significantly.

strong enough to continuously excite the qubit despite its decay. As a consequence, the

qubit is in saturation with equal probabilities to be in its ground or excited state. The

measurement principle is further illustrated in Fig. 4.9: For a fixed magnetic flux bias,

at first a cavity transmission spectrum is recorded in order to determine the effective

resonant frequency ωr− g2 sin2 θ
δ

of the resonator with dispersive shift of a qubit in its

ground state (again in low photon number approximation, cf. Sec. 3.4). Then, the

resonator probe frequency ωp is fixed at this value and transmission is continuously

probed by the ZVA. Simultaneously, the signal frequency ωs is varied step by step. When

ωs matches the flux dependent qubit transition frequency, the qubit is excited. In the

probe signal of the ZVA, this manifests in a decrease of the transmitted power. Due

to the 50% population of ground and excited state, the decrease in transmission equals
1
2
δM with δM as defined by Fig. 4.9. By repeating this procedure for a range of magnetic

frustration around the degeneracy point, the flux dependent qubit transition frequency

can be mapped out and the essential qubit parameters persistent current Ip and, most

importantly, the qubit gap ∆ can be evaluated. However, the quality of the two-tone

measurement varies with magnetic flux bias. As can be seen from Fig. 4.9b, the detected

change in magnitude 1
2
δM decreases significantly when the dispersive shift is only of

the size of the transmission linewidth. Away from the degeneracy point the effective

coupling rate g̃= g sin θ with θ= arctan (∆/ε) decreases. Also, for very large detuning

δ=ωq−ωr the signal is reduced. Furthermore, by increasing the resonator probe power,

the dispersive shift also contains a photon number dependent contribution. This allows

us to calibrate the photon number inside the resonator from a two-tone experiment in

Sec. 6.2.3.
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Making the flux qubit tunable: A

spectroscopic study

One main goal of this thesis is to successfully operate a gradiometric tunable-gap flux

qubit at the WMI. Due to the much more complex design of this qubit as compared to

a standard 3-JJ qubit, considerable effort is spent on a systematic implementation. This

includes the careful pre-characterization described in the previous chapter, especially the

determination of JJ parameters by SQUID measurements in Sec. 4.1.2 and the study of

phase biasing and flux trapping in Sec. 4.2. Moreover, we perform a stepwise transition

from the standard 3-JJ qubit to the gradiometric tunable-gap qubit, which is reflected in

the arrangement of this chapter.

We first start with the characterization of two standard fixed-gap qubits in Sec. 5.1.

With these results we can confirm a successful qubit fabrication process and the function-

ality of our measurement technique. The determined qubit parameters form a reference

for the following samples. In Sec. 5.2, a gradiometric – but still 3-JJ fixed-gap – qubit is

investigated. Here, the trapping of magnetic flux for phase-biasing and the use of the on-

chip ε-line can be explored without too much increase of complexity coming along with

a tunable α-SQUID. The latter is finally realized in a gradiometric tunable-gap qubit in

Sec. 5.3. In particular, we test the tunability range of the qubit gap. The second of the

two samples we show is optimized by fabrication for a larger tunability of the qubit gap.

All the measurements in this chapter are performed inside a small homemade dilution

refrigerator with the dc-SQUID readout as introduced in Sec. 4.3. We use continuous

wave spectroscopy to determine the qubit parameters ∆ and Ip. This chapter closely

follows the author’s work from Ref. [63].

5.1 Regular fixed-gap flux qubits

We first discuss the properties of fixed-gap, non-gradiometric flux qubits serving as ref-

erence samples. The qubit gap ∆ and the persistent current Ip are determined by qubit

59



60 Chapter 5 Making the flux qubit tunable: A spectroscopic study

spectroscopy as discussed in Sec. 4.3. The main sample layout is depicted in the SEM

micrograph of Fig. 5.1a. The qubit is tightly surrounded by the readout SQUID, guaran-

teeing large mutual inductance between the two elements. For this non-gradiometric lay-

out, qubit and SQUID are frustrated simultaneously by the homogeneous magnetic field

of the external coil. The flux periodicity of qubit and SQUID is, however, different and

depends on the area ratio ASQ/Aq = 1.76, which is illustrated in Fig. 5.1b. It shows the

maximum switching current Isw of the readout SQUID with its flux dependence according

to Eq. (2.28). Possible qubit steps appear at the qubit degeneracy points marked with

the rectangles. The following measurements are performed at fq =−1.5 (red rectangle),

where a large linear slope of Isw(fSQ) provides good readout contrast. Figure 5.1c shows

one typical qubit spectrum, where the qubit frustration δfq = fq− (n+ 1
2
) = δΦq/Φ0 is

swept at fixed microwave frequency ωs/2π= 24.93 GHz. The clearly visible qubit step

is obtained after subtracting the flux dependence of the readout SQUID from the mean

value of the switching current histograms. Only at those δfq values where the microwave

driving is resonant with the qubit transition frequency ωq, a 50% population of the ex-

cited state occurs. This manifests itself in characteristic peak and dip structures in the

switching current Isw of the readout SQUID at frequency dependent δfq values. At

δfq'± 0.013 a dip and a peak, respectively, are visible due to the microwave excitation.

By Lorentzian fits (see the red curve at the dip) to these dips and peaks, we determine

their position in δfq.

For a full qubit spectroscopy these resonance positions are recorded for various excita-

tion frequencies ωs and we thus obtain ωq(δfq). Figure 5.2 shows typical spectra obtained

for two 3-JJ flux qubits with fixed α-junction. Assuming that jc has the same value for

all three junctions, the value of α=α0 =Aα/AJ can be determined from the measured

area ratio. Then a two-parameter fit of Eq. (3.8) to the spectroscopy data yields ∆ and

Ip = ~ε/2δΦq. The spectra in Fig. 5.2 are obtained for two flux qubits differing only in

their α0 values. For α0 = 0.75 and 0.55, we obtain ∆/2π= 1.39 GHz and 10.76 GHz and

Ip = 583 nA and 283 nA, respectively. Obviously, for α0 values closer to 0.5 (1.0) large

(small) ∆ and small (large) Ip values are obtained in agreement with Eq. (3.9) and (3.4).

A consistency check can be made by calculating the Ip values from Eq. (3.4). Here, the

unknown critical current Ic = jcA is estimated from the measured junction area and using

the jc value of the junctions of the readout SQUID. We obtain Ip = 619 nA and 270 nA

in good agreement with the values derived from the spectroscopy data.

We also perform numerical simulations based on the diagonalization of the full qubit

Hamiltonian using EJ, Ec and α=Aα/AJ as input parameters. They are based on the val-

ues for jc and cs derived from the IV characteristic of the readout SQUID (cf. Sec. 4.1.2)

and the measured junction areas. As shown in Fig. 5.2, there is very good agreement

between the simulation result and the two-parameter fit for α= 0.55. However, signifi-
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a b c
10 µm

Figure 5.1: a SEM micrograph of a standard fixed-gap qubit (highlighted with blue color)
enclosed by the readout SQUID (red). Positions of the JJs are marked by yellow
rectangles. b Flux periodicity of readout SQUID (bottom axis) and qubit (top axis).
Shown is the SQUID switching current. The rectangles mark the possible positions
of qubit steps (degeneracy points) consistent with the area ratio ASQ/Aq = 1.76.
Qubit spectroscopy is performed at fq = −1.5 (red rectangle). c Exemplary qubit
spectrum at a driving frequency ωs/2π= 24.93 GHz. The mean value of the SQUID
switching current clearly shows a qubit step and the characteristic peak and dip.
By Lorentzian fits (red curves) the dip and peak positions in δfq are extracted.

cant deviations appear for α= 0.75. The reason is that there are not enough data points

around δΦq = 0, where the readout of the qubit state by the dc-SQUID fails. This leads

to large uncertainties in ∆ for the two-parameter fit. Therefore, small ∆ values tend to

have larger error bars. Nevertheless, Fig. 5.2 clearly demonstrates that the numerical

simulation describes the experimental data very well.

a b

Figure 5.2: Transition frequency ωq/2π plotted versus δfq = fq− (n+ 1
2) = δΦq/Φ0 for two

fixed-gap flux qubits with a α0 = 0.75 and b α0 = 0.55. Also shown is a two-
parameter fit of the data (black lines) yielding ∆/2π and Ip and the result of a
numerical simulation based on the diagonalization of the full qubit Hamiltonian.
In b, the result of the two-parameter fit and the simulation are almost indistin-
guishable.
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Figure 5.3: a Circuit schematics of the fixed-gap gradiometric flux qubit with readout dc-
SQUID and ε-flux line. The outer loop of the flux qubit (broken olive line) forms
the trapping loop. b SEM image of the implemented circuit. The inset shows an
enlarged view of the α-junction.

In summary, the characterization of these two standard fixed-gap flux qubits demon-

strates the successful operation of the fabrication process ensuring a good starting point

for the fabrication of new qubit layouts. Furthermore, the above analysis proves that our

evaluation routine and the use of input parameters for EJ and Ec is suitable. Besides,

these data also emphasise one main motivation for a tunable-gap flux qubit: Although

the large difference in qubit gap for the two samples is in agreement with different values

for α0, limitations in the fabrication process hardly allow us to realize a qubit gap with

an accuracy of less than some hundred megahertz.

5.2 The fixed-gap gradiometric flux qubit

We next discuss the properties of fixed-gap gradiometric flux qubits to demonstrate the

operation of the gradiometric qubit design shown in Fig. 5.3a and Fig. 5.3b. Besides the

qubit’s eight-shaped gradiometric design, there are two differences to the standard qubits

studied in the previous section. First, the qubit frustration is now changed by sending a

current Iε through the on-chip ε-flux bias line. The external coil is still used to frustrate

the SQUID but should not affect the gradiometric qubit (cf. Sec. 5.2.3). Second, the

presence of the ε-line requires us to place the qubit next to instead of inside the readout

SQUID. From geometric considerations, we expect the mutual coupling between qubit

and SQUID to decrease by a factor of approximately two, which forces us to increase the

number of switching events per flux point by a factor four to achieve a similar readout

quality. Typically, we use a number of 750 switching events for each flux value for the

measurements on gradiometric qubits in this chapter.
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5.2.1 Qubit bias by flux trapping

We start the characterization of the gradiometric qubit with a demonstration of the qubit-

biasing by flux trapping. In Sec. 4.2, we explore the technique of flux trapping and the

phase-biasing of SQUIDs. Here, we show the effect of flux trapping on the gradiometric

fixed-gap qubit. Therefore, we trap different numbers of flux quanta in the qubit trapping

loop (cf. Fig. 5.3a) and then sweep the current through the ε-line to change the qubit

frustration while reading out the dc-SQUID continuously.

a b

Figure 5.4: a Mean switching current versus ε-line current Iε for an increasing number n of
trapped flux quanta in the outer qubit loop. Only for an odd number of trapped
flux (n= 1,3), a qubit step and dips and peaks (marked with red arrows) due to
qubit excitation with ωs/2π= 8.13 GHz are visible. b Illustration of the working
points of the readout SQUID corresponding to the spectra in a, explaining the
different signal amplitudes and quality.

In Fig. 5.4a, the mean switching current is plotted versus the current Iε for n= 0 . . . 3

trapped flux quanta. For n= 1 and n= 3, these curves clearly show a qubit step near

Iε = 0 and the characteristic dips and peaks (marked with red arrows) due to the excita-

tion with a continuous microwave signal of frequency ωs/2π= 8.13 GHz. In contrast, the

data for n= 0 and n= 2 do not reveal any indication of the qubit. These experimental

results are in full agreement with the expected behavior of flux biasing as described the-

oretically in Sec. 3.3.1. The flux qubit is biased close to its symmetry point by freezing

in an odd number n= (2n′+ 1) (n′ ∈N) of flux quanta in the trapping loop during cool-

down. This results in a phase difference of (2n′+ 1)π between points A and B, equivalent

to a flux bias of (n′+ 1
2
)Φ0 of the gradiometric flux qubit at its symmetry point. Freezing

in an even number n= 2n′ of flux quanta, however, results in a phase difference between

points A and B of 2πn′. This corresponds to a flux bias of the gradiometric qubit by
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2n′Φ0/2 =n′Φ0. That is, the qubit is biased far away from its symmetry point and no

qubit transitions should be observable near Iε = 0. A large current Iε would be neces-

sary to reach the degeneracy point in this situation. Technically, we could not provide

such a large current as heating in contact resistances in the feed lines would suppress

superconductivity in the sample first (see the discussion on heating effects in Ref. [76]).

It should also be mentioned that the four spectra in Fig. 5.4a differ in signal amplitude

and signal-to-noise ratio (SNR) as a consequence of different readout working points of

the dc-SQUID. This is illustrated in Fig. 5.4b, showing that, with increasing number

n of trapped fluxoids, the SQUID working point is shifted from the maximum to the

minimum of the Isw(fSQ) curve. This is consistent with an increasing circulating current

in the trapping loop and, following Eq. (4.5), an additional flux induced in the SQUID.

Consequently, the absolute value of the switching current decreases, but the detected

qubit signal, i.e., the SNR, increases with n for the data shown here. For example, the

SNR increases from a value of approximately 2 for n= 1 to a value of 8 for n= 3. However,

the dependence of the SQUID working point on the number of trapped flux quanta is

shown here rather to demonstrate this principle. In fact, the gradiometric qubit design is

advantageous in a sense that the external coil can be used to properly adjust the readout

point of the SQUID without affecting the qubit flux bias. This statement is, however,

only true for a perfectly working gradiometer. The fact that the position of the qubit

step changes from n= 1 to n= 3 is an indication for a finite imbalance of the gradiometer,

which is analyzed in Sec. 5.2.3 after characterizing the qubit properties.

5.2.2 Spectroscopy of gradiometric fixed-gap qubits

Having biased the qubit close to the degeneracy point and the SQUID to an adequate

readout position as just described above, we perform continuous microwave spectroscopy

on two gradiometric fixed-gap qubits. The measurement technique is the one described

in Sec. 4.3 and the same as in the previous section on standard flux qubits with one

main difference. Now, the frustration of the gradiometric qubit is swept by the spatially

inhomogeneous magnetic field, which is generated by the current Iε sent through the ε-flux

line. Two examples of single spectra with qubit excitation of frequency ωs/2π= 8.13 GHz

are already shown in Fig. 5.4a.

Figure 5.5a and Fig. 5.5b show the whole set of spectroscopy data of two gradiometric

fixed-gap flux qubits, that differ by fabrication in the value of α0 = 0.77 and α0 = 0.65,

respectively. The qubit transition frequency ωq/2π is plotted versus the gradiometric

qubit frustration δfq≡ δf12 = f12− (n+ 1
2
) = δΦq/Φ0.

Since we are measuring ωq(δIε) and not ωq(δfq) in the first place, the evaluation of
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ba

Figure 5.5: Spectroscopy data for two gradiometric fixed-gap qubits with a α0 = 0.77 and
b α0 = 0.65, respectively. The transition frequency ωq/2π is plotted versus
δfq = fq− (n+ 1

2) = δΦq/Φ0. Also shown is the result of a numerical simulation
(red line) based on the diagonalization of the full qubit Hamiltonian with the listed
parameters.

this data contains a calibration factor

κ ≡ ∂δfq

∂δIε
, (5.1)

where δIε = Iε− Isym
ε is the deviation of the current Iε sent through the ε-flux line from

the value Isym
ε needed for biasing the qubit at the symmetry point. This is done by

calculating ωq(δfq) by numerical simulations using the pre-characterized values EJ, Ec

and α=Aα/AJ as input parameters – a procedure that is proven to yield trustworthy

results in the previous section on standard fixed-gap qubits. The scaling factor κ is then

obtained by re-scaling the measured ωq(δIε) dependence to obtain optimum agreement

with the simulation result. For the samples in Fig. 5.5, we obtain κ= 0.6 mA−1 and

κ= 0.7 mA−1, respectively, saying that a current of about 1 mA results in δfq = 1. In

general, the agreement between the experimental data and the simulation is found to

be very good. The simulated values for the samples in Fig. 5.5 are ∆/2π= 0.2 GHz and

Ip = 735 nA for α0 = 0.77 in Fig. 5.5a and ∆/2π= 5.1 GHz and Ip = 420 nA for α0 = 0.65 in

Fig. 5.5b. Again, we can make a consistency check by calculating the Ip value according

to Eq. (3.4) as discussed above. We obtain Ip = 768 nA (a) and Ip = 485 nA (b) in good

agreement with the values derived from the simulation.
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a b

Figure 5.6: a Switching current Isw of the readout SQUID of a fixed-gap gradiometric flux
qubit as a function of δf12 = f12−

(
n+ 1

2

)
recorded for a fixed microwave fre-

quency of 19.33 GHz. The peak and dip positions mark those δf12 values where
ωq/2π= 19.33 GHz. b Frustration imbalance δf12 as a function of the frustration
fex generated by a homogeneous applied magnetic field. Also shown is the distance
between the peak and dip positions in the Isw(δf12) curves.

5.2.3 Gradiometer quality

We also use the simple fixed-gap gradiometric qubit to check the quality of the gra-

diometer discussed in Sec. 3.3.3. Figure 5.6a shows the switching current of the readout

SQUID as a function of δf12 = f12−
(
n+ 1

2

)
recorded for a fixed microwave frequency of

19.33 GHz. The peaks and dips in the Isw(δf12) curves mark the δf12 positions where

the qubit transition frequency ωq/2π= 19.33 GHz. On varying the number n of trapped

flux quanta, these positions shift due to the imperfect balance of the gradiometer. From

the measured shift we derive Qgrad,n = 943 ± 19. In Fig. 5.6b, δf12 is plotted versus

fex generated by a homogeneous applied magnetic field. From the measured slope the

quality factor Qgrad,ex = 1076± 16 is determined. The total quality of the gradiometer is

then Q' 500, corresponding to a gradiometer imbalance of only 0.2%. This means, that

the qubit operation point is shifted by about 2 mΦ0 when we apply a homogeneous field

generating one Φ0 in the trapping loop. The measured quality factors are plausible. For

example, the limited precision of the electron beam lithography process causes a finite

precision δA/Atr of the trapping loop area as well as δS/S of the cross-sectional area

and δ`/` of the length of the superconducting lines. The measured quality factor cor-

responds to δA' 0.2 µm2, δS' 50 nm2 or δ`' 60 nm. These values agree well with the

values expected for the precision of the fabrication process.

In Fig. 5.6b, we also plot the distance between the peak and dip positions in the

Isw(δf12) curves. This distance is nearly independent of fex, demonstrating that the

qubit potential is not affected by the homogeneous background field.
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Figure 5.7: a Circuit schematics of the tunable-gap gradiometric flux qubit with readout dc-
SQUID, ε- and α-flux line. The outer loop of the flux qubit (broken olive line)
forms the trapping loop, the inner (gray line) the α-loop. b SEM image of the
implemented circuit.

In total, our results show that the gradiometric flux qubits can be fabricated in a

controlled way and work as expected. The fact that the qubit operation point is not

affected by a homogeneous background field allows us to integrate these qubits into

large scale circuits where several qubits have to be operated and read out simultaneously

without affecting each other.

5.3 The tunable-gap gradiometric flux qubit

In this subsection, we discuss the results obtained with tunable-gap gradiometric flux

qubits as sketched in Fig. 5.7. This layout now combines the gradiometer principle

investigated in the previous section with a tunable α-SQUID. In addition to the ε-line

for frustrating the qubit, we integrate the additional on-chip α-line that is arranged

symmetrically with respect to the gradiometer. Consequently, a dc current Iα through

this α-line does not affect the qubit frustration fq but only changes the frustration of

the α-loop and thus the qubit gap ∆. Possible crosstalk between α-line and the qubit

loop as well as between ε-line and α-loop is found to be negligible in the current ranges

used for the following experiments. Tuning the qubit gap ∆ via the on-chip α-line is

demonstrated in Sec. 5.3.4. Before, we change the value of α with the homogenous

magnetic field generated by the current Icoil fed through an external superconducting coil

in Sec. 5.3.1. Besides this continuous variation of α by an applied magnetic field (external

or on-chip), α can be changed step-wise by freezing different numbers of (odd) flux quanta

in the trapping loop. The analysis of this dependence can be used to directly determine

the inductance ratio β of Eq. (3.14) in Sec. 5.3.2. Moreover, we test the quality of the

gradiometer in Sec. 5.3.3. For the following, the spectroscopy measurement technique is
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a b

Figure 5.8: a Exemplary set of recorded qubit spectra obtained by sweeping the ε-current Iε
for a constant value of α= 0.68. The spectra for different excitation frequencies are
shifted according to the right axis scale of the qubit transition frequency ωq/2π.
Also shown is a two-parameter fit (red curve) to the extracted peak and dip posi-
tions. b Transition frequency ωq/2π plotted versus δIε = Iε− Isym

ε for three different
α values for a tunable-gap gradiometric flux qubit with α0 = 1.10. Also shown is
the result of a two-parameter fit.

the one described in Sec. 4.3 and the same as in the previous section on gradiometric

fixed-gap qubits.

5.3.1 Tuning the gap with an external coil

We first discuss the experiments using a homogeneous magnetic field of a superconduct-

ing coil placed underneath the sample. The homogeneous magnetic field generates the

frustrations ftr,net and fα,net of the trapping and α-loop, respectively, which are given by

Eq. (3.16) and (3.17).

Spectroscopy data of a tunable-gap gradiometric flux qubit is shown in Fig. 5.8. A

typical set of recorded qubit spectra for a constant α= 0.68 is depicted in Fig. 5.8a.

The mean value of the switching current of the readout SQUID in dependence of the

ε-line current Iε reveals the qubit step and peaks and dips due to qubit excitation. The

spectra belonging to different excitation frequencies ωs/2π are shifted along the vertical

axis according to the right axis showing the qubit transition frequency ωq/2π. A two-

parameter fit to the extracted dip and peak positions illustrates the qubit hyperbola.

In Fig. 5.8b, spectroscopy data of the tunable-gap qubit are shown for three different

values of α. The different α values are generated by the homogeneous magnetic field of

the external coil, whereas the flux trapped during cool-down was constant at a single flux
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quantum, i.e., n= 1. It must however be noted, that the α values are not known at the

beginning, but are calculated within the following analysis. We can fit the data of peak

and dip positions (symbols in Fig. 5.8b) by a two-parameter fit yielding ∆ and the slope

∂ωq/∂δIε at large ωq values. Here, δIε = Iε− Isym
ε is the deviation of the current Iε sent

through the ε-flux line from the value Isym
ε needed for biasing the qubit at the symmetry

point. To derive the persistent current Ip = (~/2Φ0)(∂ωq/∂δfq) from this slope, we have

to calibrate the horizontal axis. For this we need the calibration factor κ≡ ∂δfq/∂δIε [cf.

Eq. (5.1)], which is already discussed in the previous section on fixed-gap gradiometric

qubits. We find κ= 0.4 mA−1 similar to the values for the gradiometric fixed-gap qubits.

For the analysis of the ∆(α) dependence, we need a second transfer function, relating

the coil current Icoil sent through the external coil to the frustration fα,net of the α-loop.

With Eq. (3.16) and Eq. (3.17), we obtain

ζ ≡ ∂fα,net

∂Icoil

=
Aα
Atr

1

1 + β

∂fex

∂Icoil

. (5.2)

With this transfer function and the expressions of Eq. (3.4) and Eq. (3.18) for Ip and α,

respectively, we obtain

∂ωq

∂δfq

=
2Φ0Ip

~
=

2Φ0Ic

~

√
1−

[
2α0

∣∣∣∣cos

(
πζIcoil + π

Aα
Atr

β

1 + β
n

)∣∣∣∣]−2

. (5.3)

Using the abbreviations η= 2Φ0Icκ/~ and In = (Aα/Atr)(β/1 + β)(n/ζ) this simplifies to

∂ωq

∂δIε
= η

√
1− [2α0 |cos (πζ[Icoil + In])|]−2 . (5.4)

We can use this expression to fit the measured ∂ωq(Icoil)/∂δIε dependence using η, In

and ζ as fitting parameters.

In Fig. 5.9a, the measured ∂ωq/∂δIε values are plotted versus Icoil together with a

fit using Eq. (5.4). Evidently, the data points are clustered near specific Icoil values.

The reason is that the homogeneous magnetic field produced by Icoil also changes the

frustration of the readout SQUID and that the sensitivity of this SQUID is sufficient only

in a limited range of frustration. Figure 5.9a shows that the expression of Eq. (5.4) fits the

experimental data well, yielding values for ζ and In. With these fitting parameters, we

can calculate α=α0 |cos (πζ[Icoil + In])|. The resulting curve is also shown in Fig. 5.9a.

We note, however, that in this case the fit parameters In and ζ cannot be used to

directly determine β from the expression In = (Aα/Atr)(β/1 + β)(n/ζ), because the value

of In can be distorted by an additional background magnetic field. Therefore, we use

only differences ∆In to determine β in the following subsection. Knowing the α(Icoil)

dependence, we can adjust α to any desired value by adjusting Icoil and then perform
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a b

Figure 5.9: a Measured ∂ωq/∂δIε values plotted versus the coil current Icoil producing the ho-
mogeneous magnetic field for a tunable-gap gradiometric flux qubit. The solid line
is a fit to the data using Eq. (5.4) yielding ζ and In. The broken line shows the cal-
culated α(Icoil) dependence for these fitting parameters. b Minimal qubit transition
frequency ∆/2π plotted versus α. The solid line is obtained by numerical simu-
lations based on the full qubit Hamiltonian using the parameters EJ/h= 200 GHz
and Ec/h= 1.6 GHz.

spectroscopy at these values. Fitting the spectroscopy data (cf. Fig. 5.8b), we can derive

the qubit gap ∆ and plot it versus α. The result is shown in Fig. 5.9b together with

the dependence obtained from numerical simulations based on the qubit Hamiltonian.

The agreement between the experimental data and the numerical simulation is best for

EJ/h= 200 GHz and Ec/h= 1.6 GHz, i.e., EJ/Ec = 125. We note that the EJ value agrees

well with the one estimated independently from the measured junction areas and the jc

value measured for the junctions of the readout SQUID (cf. Sec. 4.1.2). This clearly shows

the consistency of the data analysis and demonstrates the good control on the junction

parameters fabricated on the same chip. Knowing the ∆(α) and α(Icoil) dependencies,

we can adjust the qubit gap in situ by Icoil, while operating the qubit at the symmetry

point with optimal coherence properties. This is a key prerequisite for many applications

of flux qubits.

For the sample of Fig. 5.9, the qubit gap can be varied between values close to zero

and approximately 5 GHz. For a second sample, our aim is to increase the tunability of

the gap. According to Fig. 3.4, this can be achieved by increasing the ratio EJ/Ec of

the qubit junctions. To this end, we reduce the oxidation time for the junction barrier.

From the pre-characterization of the corresponding readout SQUID (cf. Fig. 4.2b), we

confirm a higher current density and an increased Josephson energy EJ/h= 800 GHz.

Besides, the maximum value of α is designed to α0 = 0.7, which makes it easier to tune
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a b

c d

Figure 5.10: a Transition frequency ωq/2π plotted versus δIε = Iε− Isym
ε for a tunable-gap gra-

diometric flux qubit with α0 = 0.7. Also shown is the result of a two-parameter fit.
b Measured ∂ωq/∂δIε values plotted versus the current Icoil through the external
coil producing the homogeneous magnetic field for n= + 3 trapped flux quanta.
The solid line is a fit to the data by Eq. (5.4) yielding ζ and In. The broken line
shows the calculated α(Icoil) dependence for these fitting parameters. c Measured
values as in b for three different values of the number of trapped flux quanta,
n= − 3, + 1, + 3, fitted with consistent parameters. From the horizontal dis-
placement of the different curves we obtain ∆In/∆n= 0.43 mA. d Minimal qubit
transition frequency ∆/2π plotted versus α for three different values of trapped
flux quanta. The solid line is a fit of the data based on the full qubit Hamiltonian
with the fitting parameters EJ/h= 800 GHz and Ec/h= 1.0 GHz.

α into the regime of high qubit gap. Moreover, this sample is characterized for three

different values of trapped flux quanta to yield, in total, a larger consistent set of data.

The overall behavior of this sample as shown in Fig. 5.10 is very similar to the previous

one, but the qubit gap can now be tuned to values above 10 GHz as shown in Fig. 5.10d.

This data can be very well described by the full qubit Hamiltonian with input parameters
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EJ/h= 800 GHz and Ec/h= 1 GHz. The latter is in very good agreement with the specific

junction capacitance cs determined in Sec. 4.1.2.

5.3.2 Determination of inductance ratio

Next, we investigate the tunability of this sample for different amounts of trapped flux

quanta n. In Fig. 5.10c, we plot ∂ωq/∂δIε versus the current Icoil through the external coil

for three different values of the trapped flux ranging from n=−3 to n= +3. Evidently,

the general shape of the three curves is very similar as well as the obtained fitting pa-

rameters ζ and η. The shift along the horizontal axis is expected from Eq. (5.4) and can

now be used to calculate β. Starting with the expression In = (Aα/Atr)(β/1 + β)(n/ζ),

we only use differences ∆In = In,i− In,j. They correspond to differences ∆n=ni−nj
and result in ∆In = (Aα/Atr)(β/1 + β)(∆n/ζ). For our sample, we find a mean value of

∆In/∆n= 0.43 mA, finally yielding

β =

(
∆n

∆Inζ

Aα
Atr

− 1

)−1

= 0.52 . (5.5)

This value is in reasonable agreement with the one derived from the Lg and Lk values

which can be estimated from the qubit geometry, the cross-sectional area of the super-

conducting lines and the dirty limit expression of Lk (cf. Sec. 4.2.1). We note that the

result from Eq. (5.5) can be considered as more precise because it is computed directly

from the sample.

5.3.3 Gradiometer quality

Similar to the fixed-gap gradiometric qubit in Sec. 5.2.3, we investigate the gradiometer

quality also for the tunable-gap qubit. It must be expected that the implementation of

the α-SQUID loop perturbs the symmetry of the gradiometric layout and thus reduces its

gradiometer quality. A finite imbalance of the gradiometric qubit becomes evident during

the spectroscopy measurements. When the qubit gap is varied by applying different

magnetic fields to the α-loop, then the position of the qubit step Isym
ε in the ε-current is

shifted as well as the positions of peak and dip for the same excitation frequency. After

a calibration with the factor κ (κ= 0.5 mA−1 for the qubit with α0 = 0.7 of Fig. 5.10,

for which we now determine the gradiometer quality), the varying qubit step position is

expressed by the gradiometer imbalance δfimb. It is plotted in Fig. 5.11a for three different

amounts of trapped flux as a function of the external frustration fex, which refers to the

whole qubit area (trapping loop area). Obviously, the qubit imbalance changes linearly

with the applied frustration analogously to the case of the fixed-gap gradiometric qubit

(cf. Fig. 5.6b). The inverse slope of linear fits – one for each trapped flux quanta – to
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a b

Figure 5.11: Gradiometer imbalance of the tunable-gap qubit with α0 = 0.7 characterized in
Fig. 5.10. a The change of the qubit working point δfimb is plotted versus the
external frustration fex for different numbers of trapped flux quanta. The slopes
of linear fits to these data yield the quality factor Qgrad,ex = 97. b The shift of the
linear fits in a for different number n of trapped flux quanta is plotted together
with a linear fit, which results in a quality factor Qgrad,n = 1033.

these data give us the quality factor Qgrad,ex = 97 according to Eq. (3.21). The three linear

fits to the different flux quanta data yield approximately the same slope, yet they are

shifted vertically with respect to each other. This imbalance as a function of n trapped

flux quanta can be seen more clearly in Fig. 5.11b. Although the set of data is not very

large, we can also apply a linear fit to determine the quality factor Qgrad,n = 1033.

Compared to the values for the fixed-gap gradiometer, Qgrad,n is very similar, whereas

Qgrad,ex is reduced by a factor ' 10. Consequently, the total quality factor Q' 90 is de-

creased by a factor ' 5.5. Thus, we conclude that the quality Qgrad,ex =
(
δA
A
− δLg + δLk

Lg +Lk

)−1

is reduced due to the deviations of the subloop areas, whereas imperfections in kinetic and

geometric inductance, that solely enter Qgrad,n, do not seem to change for the tunable-gap

qubit.

In summary, the increased imbalance of 1.1% of the tunable-gap gradiometric qubit

needs to be considered. The change of the qubit step position is in the range of 20 mΦ0 for

a complete tuning of the qubit gap from zero to its maximum value. However, this small

imbalance can be easily compensated with the ε-current to ensure the stable operation

of the qubit at its degeneracy point for future experiments.

5.3.4 Tuning the gap with the on-chip α-line

We finally address the tuning of ∆ by the on-chip α-flux line. Since the maximum

current is limited by the critical current of the α-line and by heating effects in contacts,

only small variations of the frustration of the α-loop are possible. Therefore, a constant
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a b

c d

Figure 5.12: a and c Measured ∂ωq/∂δIε values plotted versus the current Iα through the α-
flux line for two tunable-gap gradiometric flux qubits. The solid lines are fits to
the data by Eq. (5.7) yielding the fitting parameter ζ̃. b and d Minimal qubit
transition frequency ∆/2π plotted versus α of the qubits of a and c. The solid
lines are obtained from numerical simulations based on the full qubit Hamiltonian
using the parameters EJ/h and Ec/h as listed in the subfigures. The data in (a,b)
and (c,d) are obtained for the two samples of Fig. 5.9 and Fig. 5.10, respectively,
however with on-chip control of ∆ via the α-flux line.

applied magnetic field or a proper number of trapped flux quanta are used to pre-bias

the qubit at a value αb, where the slope of the ∆(α) dependence is steep. Then, Iα is

used to vary α around this value. In our experiments, a constant applied field is used to

set αb. Since the variation of the frustration of the α-loop is generated by Iα instead of

Icoil, we have to use the modified calibration factor

ζ̃ ≡ ∂fα,net

∂Iα
. (5.6)
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With this factor, we obtain

∂ωq

∂δIε
= η

√
1−

[
2α0

∣∣∣cos
(

arccos(αb) + πζ̃Iα

)∣∣∣]−2

. (5.7)

We can use this expression to fit the measured ∂ωq/∂δIε versus Iα depen-

dence using ζ̃ as fitting parameter. Based on these results, we can calculate

α=α0

∣∣∣cos
(

arccos(αb) +πζ̃Iα

)∣∣∣. Knowing α, we can use the ∆ values obtained from

two-parameter fits of the spectroscopy data to get the ∆(α) dependence. Experimental

data for the two samples of Fig. 5.9 and Fig. 5.10 are shown in Fig. 5.12. In Fig. 5.12b

and Fig. 5.12d, we compare the experimental ∆(α) curves to numerical simulations based

on the full qubit Hamiltonian with the same EJ and Ec values as obtained by tuning α

with the coil current (cf. Fig. 5.9b and Fig. 5.10d). The very good agreement between

measurement data and calculation demonstrates again the consistency of our data anal-

ysis. All in all, our data clearly show that the qubit gap can be varied in a controlled

way over a wide range by varying the frustration of the α-loop of the gradiometric flux

qubits either by an external coil or an on-chip control line.

5.4 Summary

Summing up, we demonstrate a systematic evolution from the standard 3-JJ flux qubit

via a fixed-gap gradiometric version to the tunable-gap gradiometric qubit at the end.

The working principle of gradiometer and trapping loop are successfully demonstrated

and the gradiometer quality is determined to be sufficiently high. The gap of tunable-gap

gradiometric flux qubits can be reliably tuned over a wide range up to more than 10 GHz,

making them attractive for a large number of applications. All in all, our results show

that the measured data agree well with the behavior expected from theory.

However, in contrast to pulsed SQUID readout techniques or circuit QED experiments,

the qubit gap cannot be measured directly. Also, the spectroscopy measurement used

here is relatively time consuming for the characterization of a flux qubit. Although

these measurements constitute a good compromise considering their benefits (easy sample

mounting, well manageable measurement technique and, especially, availability of the

cryostat) the consequent next step is to integrate the tunable-gap qubit into a circuit

QED architecture, paving the way to interesting future experiments.





Chapter 6

The tunable-gap flux qubit in a circuit

QED architecture

The following chapter deals with the integration of a tunable-gap flux qubit into a circuit

QED architecture. Circuit QED is the solid-state analog of cavity QED in quantum

optics, where single atoms interact with the electromagnetic field inside a cavity resonator.

Analogously, the flux qubit as an artificial atom interacts via its magnetic moment with

the magnetic field of a superconducting coplanar waveguide resonator. The much higher

coupling strengths in circuit QED, the large design flexibility and, in our setup, the

in-situ tunability of the flux qubit at optimal coherence allow us to study light-matter

on a fundamental level. To our knowledge, we report on the first implementation of a

tunable-gap flux qubit inside a CPW resonator.

This chapter is arranged as follows: In Sec. 6.1, we discuss the basic coupling between

the gradiometric tunable-gap qubit and a CPW resonator and present the sample layout.

Next, Sec. 6.2 describes the pre-characterization of the resonator and flux calibration

measurements of the qubit. Afterwards, we spectroscopically analyse the coupled qubit-

resonator system in Sec. 6.3. There, we also demonstrate the tuning of the qubit gap, but

rather focus on the determination of basic properties such as coupling strengths. A study

on the tunability of the qubit gap is presented in Sec. 6.4. We determine the gradiometer

quality of this qubit in Sec. 6.5 and summarize our results in Sec. 6.6.

6.1 Sample layout

In order to couple a persistent current flux qubit to a CPW resonator, the qubit is usually

placed at a position of high magnetic field strength of the standing wave profile inside

the CPW resonator. Then, the large magnetic moment of the flux qubit, linked with its

persistent current Ip, interacts with the oscillating magnetic field of the resonator. The

77



78 Chapter 6 The tunable-gap flux qubit in a circuit QED architecture

Ir /2

Ir /2

a b

Ir /2

Ir /2
opposite magnetic

 field directions

resonator

qubit

Figure 6.1: Alternative coupling schemes for the gradiometric tunable-gap flux qubit. a The
resonator current generates an effective coupling to the gradiometric qubit persis-
tent current and no net magnetic field in the α-loop. b The gradiometer prevents
a coupling of the resonator to the qubit persistent current. However, the resonator
current couples to the α-loop.

interaction strength g can be described by

~gn = MIpIr,n , (6.1)

where M is the mutual inductance between qubit and resonator and Ir,n is the (high-

frequency) current of the nth resonator mode. By a galvanic contact between qubit and

the inner conductor of the resonator, the mutual inductance M is strongly increased due

to the contribution of the kinetic inductance Lkin of the shared superconducting line.

Consequently, the coupling strength is enhanced compared to the case of pure inductive

coupling and the strong coupling regime can be reached straightforwardly [75]. For the

case of the gradiometric tunable-gap qubit with its more complex design, one has to take

care of how to properly connect qubit and resonator. In Fig. 6.1, two possible schemes

for galvanic coupling are displayed. To get an intuitive understanding of the coupling

in each case, we consider the magnetic field generated by the resonator current in the

different loops of the qubit. A resonator current (with gigahertz frequency) along the line

containing the qubit JJs is neglected in this consideration due to the large inductance

of the JJs. In the scheme of Fig. 6.1a, the resonator current Ir splits equally to the

upper and lower branch of the gradiometric loop. These currents generate magnetic

fields of opposite sign in the two gradiometer subloops. Therefore, the resonator current

effectively couples to the qubit magnetic energy bias or persistent current, respectively

(σz coupling). Furthermore, the fields in the α-loop cancel each other.

The situation is, however, quite different for the coupling scheme of Fig. 6.1b. The

same magnetic field (amount and direction) in the gradiometric subloops prevents a

coupling to the qubit persistent current. In contrast, there is a net field contribution to

the α-loop. In this way, the resonator is not coupled to the qubit via its magnetic energy

bias but via the qubit gap ∆ (σx coupling [103]). However, the α-loop does not directly

share a line with the resonator in the qubit layout of Fig. 6.1b. Only with a considerable
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Figure 6.2: a Circuit schematics of a microwave resonator galvanically coupled to a gradio-
metric tunable-gap flux qubit with ε-flux line and microwave antenna. b Optical
micrograph of the qubit inside the CPW resonator. One can clearly distinguish
aluminum structures (white), niobium (gray) and the dark (oxidized) silicon sub-
strate. c Photograph of the sample chip mounted inside a gold-plated copper box.
The red rectangle marks the position of the enlarged view in b.

change of the qubit layout, a galvanic coupling between resonator and α-loop can be

reached. Therefore, we restrict ourselves to the case of coupling to the qubit persistent

current with the qubit layout extensively studied in the Chapter 5. Nevertheless, it would

be very interesting to study and compare both types of coupling mechanism in future

experiments.

The schematic layout of our sample is shown in Fig. 6.2a. For this first implementation

of the gradiometric tunable-gap flux qubit inside a CPW resonator, we adopt the principle

to change as little of the relevant qubit layout as possible compared to the layouts studied

in the previous chapter. The dimensions of the qubit and its subloops are unchanged as

well as the shape of the ε-flux bias line close to the qubit. Yet, we omit the α-flux bias

line (cf. Fig. 5.7), as it can obviously not be placed in the same location next to the qubit

when inside a CPW resonator. Also, the on-chip α-line is not essential to demonstrate

the tunability of the qubit gap as long as we can use an external coil to change fα. There

exists, however, a sample layout for a gradiometric tunable-gap qubit inside a CPW with

both an ε- and an α-line, which can be realized in future work [104].

The ε-flux bias line is designed in a way that the ground plane is not cut into two

pieces (see Fig. 6.2b). We accept that only part (approximately half) of the ε-current

will flow nearby the qubit in order to avoid possible negative effects of a split ground

plane on the resonator quality. The ε-feed line ends in a square pad (0.4 mm2) in one
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corner of the (10 x 6) mm2 large chip (cf. Fig. 6.2c). From this pad and from the resonator

ground plane, bond wires connect the ε-line to PCB copper pads next to the chip inside

the sample box. Copper wires soldered onto these copper pads exit the sample box via

small holes as illustrated in Fig. 4.8c of Sec. 4.4. The additional bond pads on the chip

connect to SQUIDs for pre-characterization and testing. In addition to the ε-line, an

on-chip microwave antenna allows qubit excitation. This antenna is connected to one of

the SMA ports of the sample box. The other two SMA connectors are used for input and

output ports of the CPW resonator.

6.2 Sample pre-characterization

6.2.1 Resonator characterization

We first analyze the CPW resonator with respect to its resonant frequencies and quality

factors. We therefore perform a transmission measurement with a VNA as described in

Sec. 4.4.2. Meanwhile, the qubit is far detuned (with magnetic flux), such that it has no

influence on the resonator. Figure 6.3a shows a transmission power spectrum over a wide

range of input frequency ωrf/2π= 2 − 10 GHz. We choose this range to accommodate

for the experimental requirements of our flux qubits and technical limitations due to the

operating frequencies of cryogenic amplifiers and circulators. The transmission power

magnitude is plotted in a logarithmic scale, 10 log(Pin/Pout)dB, where Pin and Pout are the

input and output port power of the VNA, respectively. There are four narrow maxima

in the transmission spectrum, which constitute resonant harmonic modes of the λ/2-

resonator. Accordingly, we refer to the fundamental mode at ω1/2π = 2.504 GHz as

λ/2-mode, whose resonant frequency is determined by design of the length of 25 mm

of the CPW resonator. The higher harmonic modes are λ-mode (ω2/2π= 4.814 GHz),

3λ/2-mode (ω3/2π= 6.959 GHz) and 2λ-mode (ω4/2π= 9.201 GHz).

The different standing wave profiles of the resonator current linked with these modes

are illustrated in Fig. 6.3b. The qubit is located at 1/4 of the length of the resonator. As

this position coincides with a node of the 2λ-mode, the latter does not couple to the qubit,

as Ir = 0 in Eq. (6.1). In contrast, the λ-mode reaches maximum current at the qubit

position and thus couples strongest to it. The two remaining modes are expected to show

similar, significant coupling to the qubit. However, the fundamental frequency of the λ/2-

mode actually lies out of the specified frequency range of the cryogenic amplifier. Here,

the amplification is strongly reduced. Consequently, this mode shows a smaller signal-

to-noise ratio. In the following measurements, it is therefore not used as a readout mode

for two-tone spectroscopy, but it is, nevertheless, used for the transmission spectroscopy

of the qubit.
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Figure 6.3: Characterization of the CPW resonator (qubit far detuned): a Transmitted power
spectrum (dB-scale) as a function of the probe frequency ωrf . Away from the four
narrow resonances (modes) the resonator strongly filters the transmitted signal by
20− 40 dB. b Sketch of the standing wave profile of the resonator current Ir along
the resonator length coordinate x for the four lowest modes. c Enlarged view of the
power transmission at the resonances of the λ-mode (ω2 = 4.814 GHz, top panel)
and the 3λ/2-mode (ω3 = 6.959 GHz, bottom panel). Also shown are Lorentzian fits
(dashed lines), which yield the depicted quality factors. These spectra are recorded
with a low probe power corresponding to only 1.4 poa (photons on average) in
the cavity. d Quality factors for four modes and three different power values are
dominated by internal losses.

The two most important modes are, however, the λ- and 3λ/2-modes, which are shown

in detail in Fig. 6.3c. Note that the absolute number of the transmission magnitude

('−90 dB at the resonances) is not quantitatively relevant, since this value includes

the total input line attenuation and cable losses (cf. Sec. 4.4; in total '−150 dB) and

the total (cryogenic and room temperature) amplification (' 65 dB). Since these value

are only known with an uncertainty of a few dB, and the exact resonator transmission

amplitude is not relevant for the following measurements, a calibration of the transmission

scale is omitted here. More importantly, however, the output power of the VNA for these

measurements is set to a value Pout = 0 dB, corresponding to only 1–2 photons on average

(poa) in the resonant mode (cf. Sec. 6.2.3). Such a small power in the resonator is

necessary for the qubit measurements in the following sections. Since the quality of the
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resonator modes is power dependent, it has to be determined in this low-power regime.

The quality factor Qn =ωn/κn of the nth resonator mode is extracted by fitting the

Lorentzian resonance curve of the transmitted power with a function

P (ω) = A
κn/2

(ω − ωn)2 + (κn/2)2
(6.2)

where A=Pn,0 ·κn/2 is linked with the maximum transmitted power in resonance, Pn,0.

The Lorentzian fits in Fig. 6.3c show very good agreement with the measured data. The

quality factors extracted from these fits are on the order of several thousand and we find

loss rates κ1/2π= 0.49 MHz, κ2/2π= 2.4 MHz and κ3/2π= 1.7 MHz. An overview of the

quality factors of the different modes is given in Fig. 6.3d. Here, the quality factors for

the four first resonator modes are determined for three different values of output power

of the VNA (−15 dBm, 0 dBm, +10 dBm) corresponding to a resonator population of

approximately 0.03 poa, 1.4 poa or 14 poa, respectively.

For each mode, the quality increases with increasing power. This effect is strongest

for the λ/2-mode. However, the fact that a certain increase in power has more effect

on the quality for this mode, might also be influenced by the lower amplification and

lower signal-to-noise ratio for this mode. In contrast, the 2λ-mode shows less influence

of the power on its quality. We find that the quality factors shown here are determined

by the interplay of the resonator modes with the qubit and the additional structures

(antenna, ε-line) surrounding the qubit. Recent studies on the quality of the resonator

at the WMI showed [105], that the resonator is mainly limited by internal losses arising

from the oxide interface layer between niobium and aluminum in the center strip of

the CPW resonator. Both pure niobium resonators with uninterrupted center strip as

well as resonators with aluminum constriction (without qubit) and ion gun treatment

of the niobium resonator before deposition of aluminum, reach quality factors that are

one order of magnitude higher than the ones reported here. Hence, it can be concluded

that the loaded quality QL we determine is approximately equal to the internal quality

QL≈Qint, as the losses caused by the introduction of the qubit structure with JJs and

Nb-Al interface are predominant. This is also supported by the finding that especially

niobium suffers from losses due to TLS at its surface [106, 107]. Also, the improvement of

quality factors with increasing power as displayed in Fig. 2.6d is in agreement with TLS

behavior [108, 109]. Moreover, the comparison to a similar resonator-qubit sample with

antenna but without ε-line [95] shows that the addition of the ε-line has no further strong

impact on the quality factor. Furthermore, this consideration allows us to qualitatively

understand the different quality factors for the different modes.

As the quality is dominated by the internal losses caused by the sum of modifications

to the resonator at the position of the qubit, this detrimental effect is the stronger the
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larger the coupling of the mode is to the qubit – that means the larger the current of the

mode at the qubit position. Accordingly, the λ-mode with strongest coupling to the qubit

(cf. Fig. 6.3b) suffers from the lowest quality factor. Moreover, the λ/2- and 3λ/2-modes

with equal coupling to the qubit show similar quality. Highest quality is reached for the

2λ-mode with no coupling to the qubit. However, a more quantitative discussion would

have to take into account the interplay between internal and external quality and their

dependencies on the mode number n (Qint(n)∼n, Qext(n)∼ 1/n) [62].

Although there may be room for improvement of the internal resonator quality, it

can be summarized that the resonator is working well. Especially the opening of one

side of the ground plane and insertion of the ε-line brought no dramatic deterioration

of the resonator quality. The λ- and 3λ/2-mode are well-suited for the readout of the

gradiometric tunable-gap quibt, as can be seen in the following sections.

6.2.2 Flux calibration

After this pre-characterization of the CPW resonator, we continue with the investigation

of the qubit. Here, we first need to calibrate the magnetic flux in the qubit loop gener-

ated by, both, the external coil and the on-chip ε-line. We use resonator transmission

spectroscopy to monitor the qubit via its effect on the transmitted signal caused by the

resonant and dispersive interactions of circuit QED (cf. Sec. 3.4).

External magnet coil calibration

A calibration of the magnetic flux generated by the external coil is helpful, as this coil

is used later on to frustrate the α-loop and, thus, tune the qubit gap. Furthermore, we

need this calibration in order to calibrate also the ε-line current in the next subsection.

The sample investigated here does not have a direct measure for magnetic flux 1 as the

samples of Chapter 5, where the readout SQUID is used to calibrate the field applied

with the external coil – considering also screening effects. Nevertheless, a calibration of

magnetic flux is also possible here by exploiting the finite imbalance of the gradiometer.

An ideal gradiometric qubit would be completely insensitive to an externally applied

homogenous magnetic field. However, the implementation of an α-loop into the qubit

brings a perturbation to the gradiometric behavior (cf. Sec.5.3.3) and one has to trade

off minimal imbalance (small α-loop) against maximum tunability of α also with on-chip

lines (large α-loop). As it turns out (cf. Sec. 6.5), the gradiometer imbalance for this

sample is unexpectedly large. However, a certain imbalance is indeed very useful, as it

allows us to calibrate the magnetic flux generated by the external coil.

Figure 6.4a shows the measurements for the flux calibration of the external coil. For

1Test SQUID for flux measurement on the sample chip was broken.
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Figure 6.4: Magnet coil calibration: a The power transmission spectra of the λ- and 3λ/2-
modes of the resonator (with input power corresponding to 15 poa) versus the coil
current Icoil reveal periodic signatures of the qubit, that are shown on an enlarged
scale in b. Closeup on four qubit signatures, revealing anticrossings or dispersive
shifts.

each value of the coil current Icoil, transmission spectra of the resonator at its λ- and 3λ/2-

modes are shown. The color-coded power transmission magnitude reveals four regions,

where the frequency with maximum transmission deviates considerably from the bare

resonant frequency. These regions are shown on an enlarged scale in Fig. 6.4b. Obviously,

there appear anticrossings of the 3λ/2-mode at each position. The λ-mode experiences

either a dispersive shift or an anticrossing, as well. The details of this manifestation

of the qubit coupled to the resonator are discussed in detail in the following section.

Here it is sufficient to state, that these are clear signatures of the qubit, that appear

at periodic distances in Icoil. This means, that the homogenous magnetic field of the

external coil frustrates the qubit loop because of a finite gradiometer imbalance. From

the mean distance between two next qubit signatures the coil current can be calibrated

to a magnetic flux quantum, which defines the periodicity of the qubit magnetic energy

bias [cf. Eq. (3.6)]. From seven of these neighboring qubit signatures (not all shown in

Fig. 6.4), we determine a calibration factor

γ ≡ ∂δfq

∂Icoil

= 1.2605 mA−1 . (6.3)
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The calibrated qubit frustration δfq is also shown in Fig. 6.4 (top axis). There, the origin

is set arbitrarily because of an unknown background magnetic field.

It must also be mentioned, that the ability to address the qubit with the external coil

provides another experimental convenience. It is, in this case, not necessary to bias the

qubit near the degeneracy point by flux trapping, as it is demonstrated in Sec. 5.2.1. Flux

trapping requires a rough knowledge on the magnetic field necessary to trap a certain

number of flux quanta. Since this is not the case here due to the lack of a SQUID

magnetometer, the gradiometer imbalance makes locating and characterization of the

qubit much easier. Nevertheless, for future samples of a gradiometric tunable-gap qubit

in a CPW resonator, the experience of this work will allow for the reduction of the

gradiometer imbalance.

Apart from the periodic appearance of the qubit in the coil current sweep, one should

notice the different shape of the qubit signatures in Fig. 6.4b. This change in the trans-

mission spectra already reflects a tunability of the qubit gap ∆, which is expected to

happen when the homogenous magnetic field frustrates the α-loop. A systematic inves-

tigation of this tunability is presented in Sec. 6.4.

ε-flux bias line calibration

The measurements presented in the previous subsection show that the external coil can be

used to sweep the qubit through its degeneracy point by exploiting the finite gradiome-

ter imbalance. However, the homogenous coil field simultaneously changes the α-loop

frustration. Hence, for the proper characterization of the qubit parameters, we tune the

qubit bias with the on-chip ε-line. The latter is also tested to have negligible influence

on fα. A qubit measurement via the ε-line is performed after biasing the qubit close to

the degeneracy point with the external coil.

A direct calibration of the ε-line current by sweeping the qubit magnetic energy bias

over a whole period is impossible due to the high necessary currents (similar to the

samples in Chapter 5). With the preceding calibration of the qubit frustration versus

the current Icoil of the external coil, it is now straightforward to calibrate also the ε-

flux bias line with respect to its frustration of the qubit. To this end, we compare a

qubit spectrum generated by a sweep of the calibrated coil current with a spectrum

generated by an ε-sweep. Of course it must be guaranteed that the qubit parameters are

the same for these two sweeps. In particular, the qubit gap ∆ must be equal, as this

implies the same persistent current Ip and thus the same dependence on magnetic flux

as expressed by Eq. (3.6). Experimentally, this situation is established by the following

procedure: First, a qubit spectrum is monitored by sweeping the coil current. Then, the

coil current is set to the constant bias of the degeneracy point of the qubit (symmetry
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a b

~~

Figure 6.5: Calibration of the ε-line is achieved by comparing the dressed qubit frequency ω̃q

between a sweep with the coil (black, bottom axis) and a sweep with the ε-flux line
(red, top axis). a λ-mode b 3λ/2-mode.

point of the recorded spectrum). Now, the qubit spectrum is reproduced by a sweep of

the ε-current. For checking purposes, the qubit gap is also determined in both cases by

a two-tone experiment at the degeneracy position in coil and ε-current, respectively. In

Fig. 6.5, one example of this calibration measurement is shown. For clarity, only the

frequency ω̃q of maximum transmission is plotted. For each of the λ- (a) and the 3λ/2-

mode (b), the spectrum of a coil sweep is depicted in black colour (bottom horizontal

axis). The spectrum of the ε-sweep (red colour) coincides very well with the coil sweep

spectrum, after the ε-current axis is scaled accordingly. Completing this process for three

different qubit signals (with different qubit gap), we determine a mean calibration factor

[cf. Eq. (5.1)]

κ ≡ ∂δfq

∂δIε
= 0.83 mA−1 . (6.4)

It must finally be stated that this calibration of the ε-current is much more direct

than the procedure used in Chapter 5, where the JJ parameters EJ and Ec enter into

the comparison between simulation and measured data. A flux calibration is a necessary

prerequisite to determine all relevant qubit parameters quantitatively, e.g., the coupling

strengths to the resonator modes that are extracted from transmission spectroscopy in

the following.

6.2.3 Power calibration

In this subsection, the photon number dependent ac-Zeeman shift is used to calibrate the

photon number inside the resonator. To this end, we perform a two-tone measurement

of the qubit at its degeneracy point. The dressed qubit frequency ω̃q of Eq. (3.29) then

contains the ac-Zeeman contribution 2g2
nN/δ. When coupling strength gn and detuning

δ are known, the photon number N can be calibrated from the shift of ω̃q for varying
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Figure 6.6: Resonator power calibration by a two-tone spectroscopy of the ac-Zeeman shift at
the qubit degeneracy point. a For increasing ZVA power Prf , the onset and increase
of the shift can be detected. The right panel shows two cuts of the color-coded plot
marked with the blue (considerable shift) and red (no shift) arrows. b Dressed
qubit frequency ω̃q extracted from a plotted versus the calibrated photon number
N2 in the λ-mode. The arrows mark the same power values as in a.

input power to the resonator mode. Here, we want to point out the interdependencies

of the qubit characterization. For the accurate determination of the coupling strengths

in Sec. 6.3, we have to realize an experimental situation with low resonator population.

However, the coupling strengths have to be known for a quantitative power calibration.

In practice, this requires some iterative measurements.

Figure 6.6 shows the power calibration measurements. The color-coded plot of Fig. 6.6a

displays the change of the transmission at the dressed qubit-resonator frequency ω̃q due to

the excitation with the signal tone ωs (with fixed power Ps =−20 dBm). For low resonator

input power corresponding to low ZVA output power Prf up to approximately 0 dBm, ω̃q

stays constant. For higher power, the photon number dependent ac-Zeeman contribution

leads to a measurable shift of ω̃q. Also, the shape of the two-tone signal changes from a

narrow Lorentzian to a broader Gaussian curve, as expected theoretically [110]. Here we

use the λ-mode of the resonator as readout mode. With the coupling strength g2 of this

mode to the qubit as determined in the following section, we calculate the ac-Zeeman

shift per photon 2g2
2/δ= 9.1 MHz. Comparing this value to the measured shift of ω̃q, we

can calibrate the number N2 of photons in the resonator. In Fig. 6.6b, ω̃q is plotted

versus N2 to illustrate this linear dependence. Most of the following measurements –

especially for the determination of coupling strengths and the qubit gap – are carried out

at a ZVA power Prf =−10 dBm, which corresponds to N2' 0.18 poa in the resonator.
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6.3 Circuit QED with a gradiometric tunable-gap flux

qubit

After this pre-characterization of CPW resonator and flux qubit, we continue with the

investigation of the coupled qubit-resonator system. With resonator transmission spec-

troscopy and two-tone spectroscopy, we determine gap and persistent current of the qubit

as well as the coupling strengths between qubit and the resonator modes.

Determination of the qubit gap

In circuit QED experiments, the qubit gap ∆ can be determined directly by a two-tone

spectroscopy measurement at the qubit degeneracy point (as long as the gap does not lie

too close to a resonator mode). This is a big advantage compared to the SQUID-based

qubit readout in Chapter 5, where ∆ is determined as a fit parameter.

With two-tone spectroscopy as described in Sec. 4.4.2, we get direct access to the

dressed qubit frequency ω̃q of Eq. (3.29) in the dispersive limit. As can be seen from

Eq. (3.29), the measured dressed frequency equals the bare qubit frequency, ω̃q≈ωq,

when two conditions are fulfilled: First, the photon number dependent ac-Zeeman term

becomes negligible. To this end, all two-tone spectra are recorded with a low resonator

input power corresponding to only N ' 0.18 poa (cf. Sec. 6.2.3). Second, the Lamb-shift

(g2/δ at the degeneracy point) is negligible for large enough detuning. As we use the

3λ/2-mode for two-tone readout, we calculate the Lamb-shift to be at most 3 MHz.

In Fig. 6.7a and Fig. 6.7b, we show a two-tone spectrum at the qubit degeneracy point,

δfq = 0, for a constant bias with the external coil of Icoil = 0.10 mA and Icoil = 0.02 mA,

respectively. Besides the signature of the resonator modes at ω2/2π= 4.814 GHz and

ω3/2π= 6.959 GHz, we can clearly identify the qubit signal. Via Lorentzian fits to the

spectra, we determine the qubit gaps ∆/2π= 5.69 GHz and ∆/2π= 3.68 GHz, respec-

tively. Another (broader) dip in the spectra at ωs/2π' 6.35 GHz is found to be flux

independent, so that we exclude a connection to the qubit.

Obviously, the qubit gap is tuned by the bias with the external coil. A systematic study

of the tunable gap is presented in Sec. 6.4. Here, we exemplarily determine the qubit gap

for two bias values, where we also determine the coupling strengths from transmission

spectroscopy.

Determination of coupling strengths

Now, we use the recorded power transmission spectra in order to determine the coupling

strengths between the qubit and different resonator modes. This is established by fitting
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Figure 6.7: a, b Two-tone spectra of the qubit-resonator system at the degeneracy point (ad-
justed via the ε-line) for different bias Icoil = 0.10 mA (a) and Icoil = 0.02 mA (b),
tuning the qubit gap. The signal of the qubit (red arrows) is fitted with a Lorentzian
curve (dashed red line). Other signals in the spectra can be attributed to resonator
modes (blue arrows) and to a flux-independent feature (gray arrow). c, d Trans-
mission spectra of the qubit-resonator system at the same bias positions in Icoil as
in a, b. The three panels show the resonator modes 1 to 3. The depicted cou-
pling strengths gi of each mode to the qubit and the qubit persistent current are
determined by fitting the full Hamiltonian (black line).
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the energy eigenvalues of the full Hamiltonian, Eq. (3.22), to the measured data in a

low-power limit (N ' 0.18 poa, cf. Sec. 6.2.3).

Figure 6.7c shows the power transmission for the three lowest resonator modes in

dependence on magnetic flux. The latter is swept by the ε-line current, while the external

coil provides a constant bias Icoil = 0.10 mA. The transmitted power is shown in a color-

coded plot versus the resonator probe frequency ωrf (vertical axis) and the magnetic

frustration of the qubit. The latter is visible in each of the three resonator modes. In the

spectrum of the 3λ/2-mode, two anticrossings appear. These can be associated with the

resonant interaction between this resonator mode and the qubit according to the theory

presented in Sec. 3.4. At those positions in the ωq(fq) dependency, where the qubit

transition frequency matches the resonator frequency, i.e., ωq(fq)≈ω3, the interaction

induces the formation of superposition states of qubit and resonator mode. The two

other resonator modes exhibit a dip in the resonant frequency. This dip corresponds to

the dispersive shift of the resonator mode due to the interaction with the (far) detuned

qubit according to Eq. (3.27). The fact that the dispersive shift is much smaller for

the ground mode than for the λ-mode reflects – predominantly – the larger detuning

δ1 =ωq−ω1 inversely entering the dispersive shift. As we see in the following, also the

coupling g1 of the ground mode to the qubit is much smaller than g2, further reducing

the dispersive shift. In total, it can be concluded from this first qualitative look at the

transmission spectra, that they show a coupled qubit-resonator system, where the qubit

gap ∆ lies in between the resonator modes ω2 and ω3.

For a quantitative analysis we use the full qubit-resonator Hamiltonian of Eq. (3.22),

which is extended for the three resonator modes to

Ĥ =
1

2
~εσ̂z −

1

2
~∆σ̂x +

∑
n=1,2,3

(
~ωn

(
â†nân +

1

2

)
+ ~gnσ̂z

(
â†n + ân

))
. (6.5)

In this context, it must be stated, that it is sufficient to treat the first three resonator

modes. As can be seen in Fig. 6.3b, the fourth resonator mode has a current node at the

qubit position and, thus, does not couple to the qubit. This is confirmed by no visible

anticrossing of this mode with the qubit in its transmission spectrum (data not shown

here). Any higher resonator mode is not accessible in our experiment due to the limited

bandwidth of cryogenic circulators and amplifiers. Their possible interaction with the

qubit is expected to be negligible due to the large detuning.

Then, the fitting routine is as follows: The resonant frequencies ω1, ω2 and ω3 as well

as the qubit gap ∆, which is determined independently from two-tone spectroscopy, enter

as fixed input parameters. The coupling strengths g1, g2 and g3 and the qubit persis-

tent current Ip are the fit parameters. With these values, the Hamiltonian of Eq. (6.5) is

diagonalized to calculate its eigenenergies. These are compared to the frequencies of maxi-
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mum transmission in the measured spectra. The result of such a fit is shown in Fig. 6.7c.

Obviously, the fit agrees very well with the recorded spectra. The extracted coupling

strengths are g1/2π= 34 MHz, g2/2π= 65 MHz and g3/2π= 65 MHz. Furthermore, the

qubit parameters are determined to ∆/2π= 5.69 GHz (two-tone-data) and Ip = 0.099 µA

(fit).

In addition to this rather nonintuitive determination, the coupling strengths can –

partly – also be extracted directly from the measurement data. For the spectrum of the

λ-mode, the dispersive shift is maximal at the degeneracy point. There, the mixing an-

gle θ= arctan (∆/ε) = π/2 and, thus, the dispersive shift g2
2 sin2 θ/δ2 = g2

2/δ2, neglecting

the photon number dependent part. Inserting the measured shift of ' 4.8 MHz yields

g2' 64 MHz in good agreement with the fitted value.

In Fig. 6.7d, we show a second set of transmission spectroscopy data at Icoil = 0.02 mA.

The smaller gap (cf. Fig. 6.7b) leads to obvious differences in the transmission spectra.

Now, also the λ-mode exhibits an anticrossing with the qubit hyperbola. A fit with

the qubit Hamiltonian also matches the data and yields coupling rates g1/2π= 28 MHz,

g2/2π= 65 MHz, g3/2π= 67 MHz and a persistent current Ip = 0.113 µA.

Comparing the parameters for the two bias positions in Fig. 6.7(a,c) and Fig. 6.7(b,d),

the persistent current increases with decreasing gap as expected qualitatively from the

dependencies Ip(α) and ∆(α) and as observed, e.g., in Fig. 5.9. However, the coupling

strengths do not scale with Ip as expected from Eq. (6.1). Instead, the coupling rates

g1−3 stay approximately constant for the different bias values, which is confirmed by

further data sets (not shown here) with Ip = 0.101 µA and Ip = 0.140 µA, respectively. As

an in situ tunable qubit gap is a prerequisite for studying this relation between coupling

rate and persistent current, we cannot find similar results in the literature. It would be

interesting to study the validity of Eq. (6.1) with a tunable-gap qubit, that is optimized

for a larger tunability of its persistent current (cf. Eq. (3.4) and Fig. 6.11b).

Strong coupling regime

The fitted coupling rates gn are larger than the resonator loss rates κn determined in

Sec. 6.2.1 by at least a factor of 27. The qubit decay rate γ can only be roughly estimated

from the two-tone spectra in Fig. 6.7a and Fig. 6.7b. There, the FWHM of the qubit

signal yields an upper bound γ/2π. 55 MHz, so that the conditions for strong coherent

coupling are not fulfilled unambiguously. Another indication for the strong coupling

regime is the observation of the vacuum Rabi splitting in the resonator transmission

at an anticrossing position [111]. In Fig. 6.8, we plot two selected spectra. In the

low-power limit, there is a weakly visible splitting, which becomes more prominent for

higher input power, which also increases the splitting by the photon number dependent
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Figure 6.8: Resonator transmission magnitude plotted versus the probe frequency ωrf at an
anticrossing position. For higher input power (black line) two clearly separated
states appear. In the low-power spectrum (blue dashed line), the vacuum Rabi
splitting is still visible, indicating strong coherent coupling.

contribution. Yet, reliable results on the qubit decay rate can only be gained by a

time-domain characterization. Realizing the latter was no longer content of this thesis,

but is ongoing work at the WMI. First results show significantly smaller loss rates (cf.

Chapter 7) compared to our estimation above, so that we can in fact conclude to reach

the strong coherent coupling limit with this sample.

6.4 Tuning the qubit gap

In the previous section, it is already observed that the qubit gap changes for different

bias currents in the external coil. In this subsection, we study the tunability of the qubit

gap in more detail.

To this end, the experimental procedure is as follows: At a fixed value of Icoil we first

perform a transmission measurement of the qubit-resonator system by sweeping the qubit

frustration via the ε-current Iε. In contrast to the data shown in Fig. 6.7c and Fig. 6.7d,

this measurement is recorded with higher input power (14 poa) and less resolution, as we

only need to determine the position of the qubit degeneracy point in the ε-current. This

value Isym
ε changes linearly with the coil current Icoil due to the significant gradiometer

imbalance of this qubit. Next, we record a two-tone spectrum – now with low resonator

power corresponding to 0.18 poa – at the qubit degeneracy point. The qubit gap is

extracted from this spectrum by a Lorentzian fit.

In Fig. 6.9, we plot the determined gap values versus Icoil and show one exam-

ple of a two-tone spectrum in the inset. The measured gap values range from

∆/2π= 2.69 GHz ... 5.69 GHz. The data points appear in two groups of similar shape,
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δM (dB)
0 -2

Icoil =0.03mA

Figure 6.9: Tunability of the qubit gap by means of the external coil current frustrating the α-
loop. The black and red dashed lines mark the frequencies of the first two resonator
modes. The inset shows a single two-tone spectrum with Lorentzian fit (green)
corresponding to the data point marked with the green circle.

which we associate with the periodicity of α(Icoil). Near Icoil = 0.2 mA and Icoil = 0.8 mA,

where one might expect the gap to be approximately ∆/2π' 2 GHz, we can still observe

a weak signature of the qubit in the transmission spectra. However, the gap can no longer

be determined due to the limited range of the cryogenic amplifier. In any case, the qubit

is far detuned from the λ-mode of the resonator in this region. On the contrary, we can

adjust the qubit gap very close to the resonant frequency of the λ-mode, maximizing the

qubit-resonator interaction. With this controlled coupling/decoupling of resonator and

qubit at its point of optimal coherence, we achieve the main goal for the realization of a

tunable-gap gradiometric qubit inside a CPW resonator. In the following, we will analyze

the tunability of the qubit gap in more detail.

Quantitative modelling of the tunable gap

Compared to the theoretically expected behavior (cf. Fig. 3.5), the general dependence

∆(Icoil) differs near the maximum observed gap values. There, the exponential increase of

the gap stops. Furthermore, there is no region of abruptly vanishing qubit signal caused

by a vanishing double-well potential. Thus, we conclude that no values α≤ 0.5 are reached

for this sample, meaning that the modulation depth of the α-SQUID is significantly

reduced. In fact, we observe such a behavior for a test SQUID on another sample,

that is fabricated with the same parameters and soon after the sample we investigate

here. As one can see from the Isw(fSQ) curve in Fig. 6.10, the measured data cannot be

approximated sufficiently well with a (vertically shifted) curve according to Eq. (2.28).
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Figure 6.10: The switching current Isw depending on the frustration fSQ of a test SQUID
measured at 500 mK. The data (blue circles) can be better described with a fit
function of the type a1 + a2 cos(2πfSQ) (fit parameters a1, a2, red line) than with
a fit function of the type a1 + a2 |cos(πfSQ)| (black line).

Instead, a fitting function with only a cosine term describes the real SQUID behavior

much more accurately.

Thus, we assume an expression for the value α of the tunable-gap qubit of the form

α(fα,net) = a1 + a2 cos (2πfα,net) . (6.6)

Here, fα,net denotes the net α-loop frustration as defined by Eq. (3.16) and Eq. (3.17),

and a1 and a2 are parameters that determine the extreme values αmax = a1 + a2 and

αmin = a1− a2.

Before we fit the measurement data in Fig. 6.9 by calculating the qubit gap with

the help of the expression in Eq. (6.6), we need to calibrate fα,net versus Icoil. This is

easily achieved by adjusting the frustrations fα,net =±0.5, that involve minimum α and

maximum ∆, to the Icoil values with maximum gap. We thus obtain a calibration factor

ζ ≡ ∂fα,net

∂Icoil

= 1.22 mA−1 . (6.7)

The fact, that this calibration factor is very similar to the calibration factor γ in Eq. (6.3),

is the reason for the slightly changing qubit gap in Fig. 6.4.

The so calibrated measurement data ∆(fα,net) is shown in Fig. 6.11. together with a

well matching fitting curve. For this fit, we first calculate α(fα,net) from Eq. (6.6) and

then numerically determine ∆ from a diagonalization of the qubit Hamiltonian. With

four input parameters a1, a2, EJ and Ec, however, the fit cannot yield unambiguous

results. Therefore, we set EJ/2π= 120 GHz, which is calculated from Eq. (2.19) and

Eq. (3.4) with the measured persistent current Ip. Here, we use the value Ip = 0.099 µA

for maximum gap (minimum α) of Fig. 6.7c and, at first, estimate αmin' 0.55. The

latter is consistent with the obtained fit parameters a1 = 0.79 and a2 = 0.23, yielding
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αmin = 0.56 and αmax = 1.02. The latter is very close to the design value of 1.0. The third

fit parameter Ec/h= 1.1 GHz agrees very well with the value Ec/h' 1 GHz derived from

the Josephson capacitance measurements in Sec. 4.1.2.

a

b

Figure 6.11: a Measured gap values ∆/2π versus the net α-loop frustration. The fit (black
curve) to the data is based on the diagonalization of the qubit Hamiltonian.
b Dependence of α(fα,net) (left blue axis) with reduced modulation depth accord-
ing to Eq. (6.6) determined via the fit in a. Also shown is the persistent current
Ip/Ic(fα,net) (red right axis) calculated with Eq. (3.4). The two red circles mark
the Ip values determined by the full Hamiltonian fits in Sec. 6.3.

6.5 Gradiometer quality

The fact that the qubit frustration can be varied over several periods with the external coil

as shown in Fig. 6.4 creates doubts on the functionality of the gradiometer. Calculating

the quality factor Qgrad,ex (cf. Eq. (3.21)) in the same way as in Sec. 5.2.3 and Sec. 5.3.3

is not possible here, as there is no direct measure (dc-SQUID) for the applied frustration

fex. However, an alternative estimation of Qgrad,ex is realized with the calibration of the

net α-loop frustration fα,net in the previous section.
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Using Eq. (5.2), we calculate

Q−1
grad,ex =

∂δfimb

∂fex

=
∂δfq

∂Icoil

∂Icoil

∂fα,net

∂fα,net

∂fex

=
γ

ζ

Aα
Atr

1

1 + β
. (6.8)

Inserting the determined calibration factors γ (cf. Eq. (6.3)) and ζ [cf. Eq. (6.7)], the area

ratio Aα/Atr = 0.18 and the screening factor β= 0.73 (the value determined in Sec. 5.3.2

adapted to a larger cross-section of the lines for this sample), yields Qgrad,ex = 9.5. This

low value is very surprising, as the design of this qubit is almost unchanged compared to

the one in Sec. 5.3.3 with Qgrad,ex = 97. A possible explanation for this low gradiometer

quality is a difference in the critical currents of the JJs of the α-SQUID, which is supported

by the reduced modulation of the α-SQUID as discussed in the previous section. As the

sample is still measured (cf. Chapter 7) we do not have SEM images of the qubit. Thus

we can also guess, that a submicron-sized defect, e.g., a strong constriction in the line on

one side of the gradiometer loop, might be the reason for this imbalance. Nevertheless,

the determined quality factor means, that flux noise is still reduced by a factor of 9.5.

Also, an operation of the qubit at the degeneracy point is still possible, as the imbalance

of the gradiometer can be compensated by the ε-line for the full range of qubit gap from

0 up to 5.69 GHz.

6.6 Summary

In summary, we show the first successful implementation of a gradiometric tunable-

gap qubit into a CPW resonator. We characterize the resonator to be well-suited for

qubit readout and perform thorough calibrations of applied power and flux. We ana-

lyze the coupled qubit-resonator system and confirm to reach the regime of strong cou-

pling. The qubit can be tuned in a controlled, reproducible way in a measured range of

∆/2π= 2.69 GHz ... 5.69 GHz. We are able, e.g., to tune the qubit very close to the λ-

mode of the resonator. Our calculations show, that also negligible gap values are reached,

which cannot be detected by this measurement setup. Thus, the qubit can be biased to

positions, where a coupling to the (λ-mode of the) resonator is effectively turned off. In

total, this constitutes a valuable progress for the application of flux qubits in circuit QED

experiments.
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Summary and outlook

This thesis deals with the fabrication and experimental characterization of gradiometric

tunable-gap flux qubits and their integration into a circuit QED architecture. The basis

for the realization of these advanced qubit designs is a thorough pre-characterization of

the Josephson junction itself. Via the current-voltage characteristic of dc SQUIDs, we

check the performance of our junctions. In particular, we determine their critical current

density jc = 1.5 ... 3.5 kA/cm2 (dependent on the oxidation process) and specific junction

capacitance cs' 790 fF/µm2. With these parameters we can calculate the relevant energy

scales EJ and Ec, which are important for modelling the tunability of the qubit gap. We

first confirm these values as well as the functionality of the fabrication process by the

characterization of two standard 3-JJ flux qubits. In a next step, we fabricate and

characterize two fixed-gap qubits in a gradiometric layout. These systems are ideal to

demonstrate the flux trapping process and the use of the on-chip ε-flux bias line for qubit

frustration. Furthermore, we determine a high gradiometer quality Q' 500 for these

designs, where we reach the limits set by the accuracy of our fabrication process.

Then, we realize a gradiometric flux qubit with an in situ tunable α-SQUID. We demon-

strate the tunability of the qubit gap by both the field of an external coil and an on-chip

α-flux bias line. We tune the gap of a first sample between values ∆/2π' 0...5 GHz.

A second sample is optimized by fabrication to reach a high tunability of the gap,

∆/2π' 0...12 GHz. From numerical fits we obtain a consistent set of parameters for

the junction energies, the qubit persistent current and the value of α. We also investigate

the gradiometer quality, which is reduced due to the implementation of a large α-SQUID

to a – still sufficiently high – value Q' 90. Moreover, spectroscopy of this qubit for

different numbers of trapped flux quanta allows us to directly determine the inductance

ratio β= 0.52.

Having thoroughly investigated the gradiometric tunable-gap qubit alone, we finally

integrate it into a superconducting transmission line resonator, thereby forming a circuit

QED architecture. Using a galvanic contact between qubit and resonator, we reach the

regime of strong coherent coupling. We tune the qubit gap in a range ∆/2π' 0...5.7 GHz.

97
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In particular, we are thus able to adjust the qubit gap very close to the resonant frequency

of a resonator mode for strong coupling. Also, the qubit gap can be tuned far away from

this mode, effectively switching off the coupling. Although the gradiometer quality is

found to be reduced to Qgrad,ex = 9.5 for this particular sample, the qubit can still be

operated at its degeneracy point via compensation with the ε-line while tuning the qubit

gap. Thus, the coupling/decoupling of qubit and resonator can be performed at optimal

qubit coherence. The investigation of quantitative qubit decoherence and relaxation by

time-domain spectroscopy is ongoing work at the WMI.

Figure 7.1: Driven Rabi oscillations of the gradiometric tunable-gap flux qubit at a temperature
T ' 15 mK. Under the influence of a resonant microwave drive, the probability Pe

to find the qubit in its excited state oscillates in time. These oscillation decay
exponentially on a timescale TRabi. Data courtesy of M. Haeberlein and J. Goetz.

Meanwhile, time-domain measurements have been set up at the WMI 1. In Fig. 7.1,

we plot the result of a driven Rabi experiment [112], where the drive frequency

ωd/2π is resonant with the qubit transition frequency at its degeneracy point,

ωd/2π≈∆/2π' 3.51 GHz. We find that the drive induces coherent oscillations of the

qubit population between ground and excited state. These oscillations decay exponen-

tially with a decay time TRabi' 0.10 µs. By a qubit relaxation measurement (data not

shown), the qubit energy relaxation time T1' 0.30 µs is determined independently. Thus,

we conclude that the qubit decay is still governed by dephasing even at the degeneracy

point, at least at this particular gap frequency. A more detailed analysis via Ramsey

fringes or spin echo measurements is currently in progress, but goes beyond the scope

of this thesis. Nevertheless, these first results confirm the quantum coherence of our

gradiometric tunable-gap flux qubit.

Good quantum coherence in combination with a tunability of the qubit gap throw the

doors open to several interesting new experiments with coupled systems of flux qubits

1The author of this thesis gratefully acknowledges the work of M. Haeberlein and J. Goetz in setting
up and performing these measurements.
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and microwave resonators or transmission lines. For example, driving the gap of a flux

qubit coherently coupled to a CPW resonator can be used to cool down a photon field into

squeezed vacuum [113]. Increasing the coupling strength between tunable-gap flux qubit

and CPW resonator into the ultrastrong coupling regime, e.g. by a longer and thinner

shared line, could be applied to realize an ultrafast qubit gate [114]. Also, tunable-gap

flux qubits can be operated at optimal coherence and still couple to other qubits or

resonators via the qubit gap ∆ instead of via ε. Thus, controllable coupling between

qubits and high-fidelity quantum gates can be pursued [103].

The high degree of design tunability inherent to superconducting qubits – both by

fabrication and in situ – make them ideal systems to realize quantum simulations [7–9].

There, quantum circuits consisting of only a few qubits and resonators are able to mimic

the behavior of diverse physical systems not treatable on a classical computer. Among the

large number of proposals are those suggesting the prediction of the critical temperature

in superconductors, the computation of molecular energy levels [115] or the simulation

of relativistic effects such as Zitterbewegung or Klein paradox [116].





Appendix A

Qubit sample parameters

Table A.1: Fabrication parameters and qubit/SQUID properties for samples with fixed gap.

qubit type standard
fixed-gap

standard
fixed-gap

gradiometric
fixed-gap

gradiometric
fixed-gap

label JG06B32 JG08B09 JG08B20 JGB09B16
α 0.75 0.55 0.77 0.65

area JJ [µm2] 0.031
0.023(α)

0.020
0.012(α)

0.026
0.020(α)

0.027
0.018(α)

width Al-layer
[nm]

506 506 506 506

thickness Al-
layer [nm]

(40+50) (40+50) (40+50) (40+50)

trap-loop area
[µm2]

- - 20 x 15 20 x 15

qubit size [µm2] 9.5 x 8.5 9.5 x 8.5 20 x 7.5 20 x 7.5
SQUID size
[µm2]

12 x 11.8 12 x 11.8 20 x 5 20 x 5

L-product
[105Pa · s]

0.300 0.305 0.305 0.305

ox. time [min] 25:45 25:00 25:00 25:40
jc [kA/cm2] 2.73 3.46 3.91 2.91
Rn [Ω] 175 207 141 183
IAB

c [µA] 0.82 0.69 1.01 0.78
Ej/h [GHz] 407 344 505 389
Ec/h [GHz] 1.3 1.3 1.5 1.4
∆/2π [GHz] 0/(1.39) 10.76 0 5.1
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Table A.2: Fabrication parameters and qubit/SQUID properties for samples with tunable gap.

qubit type gradiometric
tunable-gap

gradiometric
tunable-gap

gradiometric
tunable-gap
+ resonator

label JG09B30 Z01B22 MS13A
α0 1.1 0.7 1.0

area JJ [µm2] 0.028
0.014(α)

0.028 0.01(α) 0.028
0.014(α)

width Al-layer
[nm]

506 506 506

thickness Al-
layer [nm]

(40+50) (40+50) (40+70)

trap-loop area
[µm2]

20 x 15 20 x 15 20 x 15

qubit size [µm2] 20 x 7.5 20 x 7.5 20 x 7.5
SQUID size
[µm2]

20 x 5 20 x 5 -

α-SQUID size
[µm2]

4.5 x 12 4.5 x 12 4.5 x 12

L-product
[105Pa · s]

0.305 0.285 0.36

ox. time [min] 25:40 23:30 30:00
jc [kA/cm2] 3.0 3.5 -
Rn [Ω] 197 86 -
IAB

c [µA] 0.73 1.65 -
Ej/h [GHz] 200 800 120
Ec/h [GHz] 1.6 1.0 1.1
∆/2π [GHz] 0-5 0-12 0-5.69
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