








ABSTRACT

Nanomechanical systems and especially nanomechanical resonators are indispensable for
mechanical sensor applications. They are used to measure e.g. forces, accelerations, masses
or material parameters. For the latter applications, the high mechanical quality factors in-
herent in many nanomechanical resonators is a central feature. This enables high-precision
measurements of the resonance frequency, and thus also the changes in resonance frequency
due to external parameters. If we combine these features with further experimental de-
grees of freedom, we gain added functionality on one side and control over the mechanical
properties via external parameters on the other. These control mechanisms can however
also be used to learn more about the used external parameter and thus enable sensing
applications. In this thesis, the coupling mechanisms of nanomechanical resonators to dif-
ferent experimental degrees of freedom are investigated. We use different coupling schemes
to form hybrid systems. To this end, we couple nanomechanical resonators to mechanical,
magnetic and electric degrees of freedom. To do this, we first introduce the workhorse of the
thesis, a doubly clamped, tensile stressed nanomechanical string. We theoretically explore
the models used to describe this system and then focus onto the different hybrid systems
stemming from the different coupling mechanisms. First, we show a nanomechanical string
network, comprised from three coupled nanomechanical resonators. Here, we investigate
the coupling characteristics of the network and the dynamical excitation transfer within
it. We experimentally reach a regime which cannot be described analytically anymore and
generate a mechanical dark state in the system. We then focus onto a magnetomechani-
cal hybrid system. Here the coupling is facilitated by a CoFe alloy thin film on top of a
nanomechanical string. The CoFe material system has gained attention in the field of spin-
tronics recently, as it was identified as a metallic magnetic system with ultra-low magnetic
damping properties. One of the main questions is, if the magnetoelastic properties are
connected to the magnetization damping properties of the material, as in the case of the
well known material system Permalloy (NiFe). One of the main challenges, lies in the fact
that the exceptional magnetic damping properties of CoFe only emerge in thin films and
within specific layer stacks. This formidable challenge for conventional magnetostriction
sensing methods can be overcome by using a nanomechanical string resonator, and we were
able to extract the magnetostrictive constant for two CoFe alloys. We then gain further
insight into the magnetomotive and magnetostrictive behavior of nanomechanical strings
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by focusing on the effects of electrical currents passing through a string. This is again
of interest for the field of spintronics because by mechanically releasing the conductors,
one of the main sources for damping, the contact to the substrate, can be reduced. For
this, we use a tensile stressed nanomechanical string covered with a cobalt thin film. This
cobalt thin film is electrically connected at the two clamping points of the string. This
enables voltage measurements across the string and sourcing electrical currents through it.
Here, we find surprising new dynamics in the interplay of a nanomechanical string within
an external magnetic field depending on the presence of an electrical current through the
string. In the last part, we consider a system, where a nanomechanical string resonator is
coupled to a superconducting circuit qubit. We discuss the system parameters necessary
to enable ground state cooling and realizing three partite entanglement as well as how they
can be reached in experiment. In this respect, we use finite element simulations to model
the device and compare the results to early experiments.
Within this thesis, we present a network of mechanical strings and investigate the dy-
namical excitation transfer within. Further, we observe a mechanical dark state in one
of the modes of the network, which is of interest in storage applications. We show how
nanomechanical strings can be used to extract the magnetostrictive properties of a mate-
rial where special magnetic properties are only apparent in thin films and within specific
layer stacks, and which is therefore challenging for conventional measurement methods.
We investigate how the presence of electrical current flow affects the mechanical properties
of the nanomechanical string resonator. We also discuss the integration of a nanomechan-
ical string into a circuit qubit, considering the field of circuit quantum dynamics as a
foundation for nanomechanical sensing and storage applications.



ZUSAMMENFASSUNG

Nanomechanische Systeme und speziell nanomechanische Resonatoren sind unverzichtbare
Komponenten für hochsensitive Sensorikanwendungen im Bereich mechanischer Freiheits-
grade. Sie werden dabei sowohl zur Messung von Kräften und Beschleunigungen eingesetzt
als auch für Anwendungen, bei denen z.B. Massen oder Wechselwirkungen mit Mate-
rialparametern untersucht werden. In diesem Zusammenhang sind Systeme mit hohen
mechanischen Güten von Interesse, da sich mit ihnen der Einfluss von externen Parame-
tern auf die Resonanzfrequenz extrem empfindlich nachweisen lässt. Koppelt man diese
mechanischen Resonatoren mit weiteren physikalischen Freiheitsgraden erhält man einer-
seits zusätzliche Funktionaliät, andererseits erlaubt dies auch die Kontrolle mechanischer
Eigenschaften durch externe Kontrollparameter. Im Umkehrschluss lassen sich dadurch
auch diese zugrundeliegenden Freiheitsgrade erforschen. Diese Arbeit beschäftigt sich mit
unterschiedlichen Kopplungsmechanismen, welche sich nutzen lassen um nanomechanische
Resonatoren mit anderen Freiheitsgraden zu verknüpfen. Im Speziellen wird die Wechsel-
wirkung von nanomechanischen Resonatoren mit mechanischen, magnetischen und elek-
trischen Freiheitsgraden untersucht. Dazu ist es zunächst notwendig, das zentrale Element
dieser Arbeit, eine beidseitig aufgehängte, verspannte nanomechanische Saite theoretisch
zu beschreiben und die dafür genutzten Modelle einzuführen. Anschließend wenden wir
uns Hybridsystemen zu, die aus den verschiedenen Kopplungsmechanismen hervorgehen.
Hier diskutieren wir als erstes ein Netzwerk aus drei gekoppelten nanomechanischen Saiten
und untersuchen die aus der Kopplung resultierenden Konsequenzen sowie Fragen zur dy-
namische Anregungsübertragung. Wir erreichen dabei ein experimentelles Regime, das
sich nicht mehr durch eine analytische Lösung beschreiben lässt und erzeugen einen mech-
anischen Dunkelzustand in einer Mode des Netzwerkes. Als zweites gekoppeltes System,
steht ein magnetomechanisches Hybridsystem im Fokus. Die Wechselwirkung ist hier durch
die Magnetostriktion einer auf der Saite befindlichen CoFe Legierung gegeben. Letzteres
Materialsystem wird im Feld der Spinelektronik derzeit sehr aktiv diskutiert, da es als met-
allisches, magnetisches System mit ultra-niedriger Magnetisierungsdämpfung identifiziert
wurde. Eine zentrale Fragestellung in diesem Bereich ist, ob die Magnetisierungseigen-
schaften mit der Magnetoelastizität verknüpft sind, wie es z.B. im bekannten Materialsys-
tem Permalloy (NiFe) der Fall ist. Die Tatsache, dass die niedrige Magnetisierungsdämp-
fung nur in dünnen Filmen beobachtet wird stellt hierbei eine extreme Herausforderung
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an die Messmethodik. Durch Nutzung einer nanomechanischen Saite kann diese Heraus-
forderung bewältigt werden und die Magnetostriktionskonstante von CoFe Legierungen
innerhalb einer Dünnfilmschicht konnte bestimmt werden. Um weitere Einsichten in das
magnetostriktive und magnetomotive Verhalten von nanomechanischen Saiten zu erhalten
untersuchen wir die Effekte des Ladungsträgertransports durch die Nanosaite auf deren
mechanisches Verhalten. Dies ist von Interesse, da für spinelektronische Anwendungen
auch die mechanische Freistellung von Leitern in Betracht gezogen wird, da dies die Dämp-
fungsraten zum Substrat reduziert. Dazu verwenden wir eine mit einem Cobalt Dünnfilm
bedeckte Saite, welche an den beiden Ankerpunkten elektrisch kontaktiert ist. Im Zusam-
menspiel mit der Integration der Saite in einen elektrischen Schaltkreis beobachten wir
eine Modifikation der mechanischen Eigenschaften, insbesondere eine unerwartete nicht-
lineare Antwort des Systems. Im letzten Teil der Arbeit diskutieren wir ein Hybridsystem,
in welchem eine nanomechanische Saite Teil eines supraleitenden Schaltkreisquantenbits
ist. Hierfür diskutieren wir die notwendigen Systemparameter um Grundzustandskühlung
und das Vermitteln einer Verschränkung zwischen den Teilsystemen zu ermöglichen und
verknüpfen dies mit einer realen Probenauslegung. Hierfür nutzen wir finite Element Sim-
ulationen die wir mit frühen Experimenten vergleichen.
Zusammenfassend beschäftigt sich diese Arbeit mit der Kopplung unterschiedlicher Frei-
heitsgrade an die mechanischen Eigenschaften einer Nanosaite. In dieser Arbeit un-
tersuchen wir, durch den Aufbau eines Netzwerks aus Saiten die dynamische Anre-
gungsübertragung zwischen gekoppelten Saiten. Im selben System erzeugen wir einen
mechanischen Dunkelzustand, der z.B. für Speicheranwendungen relevant sein kann. Wir
legen dar wie nanomechanische Saiten genutzt werden können um die Magnetostriktion von
einem Material zu bestimmen, dessen besonderen magnetischen Dämpfungseigenschaften
nur in dünnen Filmen und innerhalb spezifischer Schichtabfolgen zu Tage tritt. Wir un-
tersuchen den Einfluss elektrischer Ströme auf nanomechanische Saiten die z.B. als freis-
tehende Leiter in Spinelektronikanwendungen von Bedeutung sein können. Zuletzt disku-
tieren wir die Integration einer nanomechanischen Saite in ein Schaltkreisquantenbit, dies
ermöglicht den Einsatz von nanomechanischen Saiten für Sensorik und Speicheranwendun-
gen im Bereich der supraleitenden Schaltkreisquantendynamik.
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INTRODUCTION

Macroscopic mechanical resonators are ubiquitous. They are harnessed for mechanical
clocks [1], tuning forces [2] or simple swings [3], but they can also make our life more chal-
lenging, when thinking about undesired resonances of buildings [4] or bridges [5]. Amongst
the most desired applications are high precision time keepers, which have long tradition
in science, as time is essential for the understanding of nearly every dynamic physical
phenomenon, as well as indispensable for navigation application [6]. But also for scientific
endeavors they are of high interest e.g. for the discovery of flux quantization [7], or the
Einstein-de Haas effect [8, 9].
In the last century, miniaturizing mechanical resonators played a huge role in industry
and science and led eventually to the advent of micromechanical resonators [10,11]. These
resonators are typically of sub-millimeter dimensions [12–15], which makes them a com-
pact component for a large variety of applications [13, 16, 17]. Amongst these are force,
mass and acceleration sensing. Micro-electro-mechanical systems (MEMS) started out in
automotive and aerospace applications where they were and are used as simple acceler-
ation and pressure sensors [18, 19], but are nowadays part of many devices used in cars
and airplanes. This begins at passenger security features like airbag release sensors or
tire pressure sensors and ends with passenger amenities such as automated climate con-
trol or smart windows [20–23]. In industrial environments they are frequently used for
monitoring vibrations and motion [24, 25]. In the last two decades, they were introduced
into consumer electronics and are used, among others, as sensors for pressure, acceleration,
magnetic field and yaw rate in most smart devices like smart-phones, tablet computers and
smart-watches [26–29]. There, they mainly function as low-cost sensors with low energy
consumption [29].
In scientific research, the integration of micro and nanomechanical resonators facilitated an
increase in the sensitivity of many analytic tools in e.g. material science or physics. Scan-
ning tunneling microscopy (STM) [30], atomic force microscopy (AFM) [31] and similar
techniques [32–34] are only possible due to micromechanical cantilevers [35]. These tech-
niques enable the investigation of e.g. persistent currents in metal rings [36] or to measure
the Casimir force [37, 38]. Similar resonators are now also utilized to act as detectors for
quantum properties such as spins in color-centers [39, 40] or to read out superconducting
circuits [41]. The success of many of these applications hinges on the force, displacement,
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mass or acceleration sensitivity. By miniaturizing the mechanical resonator to nanoscale
dimensions [42–45], the sensitivity limit of the sensor can be generally improved allowing
for additional applications. In the meanwhile, nanomechanical resonators demonstrated
force sensitivities in the attonewton [46, 47] and sub-attonewton range [48, 49], they can
detect deflections in the range of picometers [50], and detect single masses with a sensitiv-
ity in the yoctogram range [51] corresponding to the mass of a single proton. They also
were shown to enable the manipulation of spins [52] as well as the detection of a single
atomic spin [39]. Another area of applications lies in the use of nanomechanical sensors in
biology and chemistry [53–55], where the abilities to measure forces and masses are used to
e.g. determine the forces in biological or chemical reactions [56–60] or detect the presence
of specific elements or molecules in a compound [61–65].
Apart from these applications, where ultimate sensitivity is the goal, nanomechanical res-
onators, especially nanomechanical string resonators, widen the area of applications or can
be used to reduce the power consumption of sensors. They can be employed for sensing
applications in otherwise challenging areas or reduce the sensor footprint. To this end
coupling several nanomechanical string resonators is an option to connect several sensors
into an array [66–68] or to enable remote sensing applications [69]. This can be achieved
by coupling them mechanically with each other [70–72], by coupling several modes of one
mechanical resonator [73,74], or by coupling several of them via an external entity like an
optical field [75]. Moreover, as the characteristic properties of such resonators are linked
to the material parameters of the host material, these resonators are also ideal candidates
for investigations in the field of material science. Examples in this respect are the Young’s
modulus of a material including the mechanical damping properties, as well as interactions
of the lattice with other degrees of freedom like electric polarization (piezoelectricity) and
magnetic properties (magnetoeleasticity and striction) [34,76–80]. In addition, conductive
mechanical systems also allow to investigate the coupling of charge transport properties
of the material which gives rise to a manifold of magnetomotive interactions in diverse
environments [81–89].

The field of extreme mechanical sensing is intimately connected to the question,
whether it is possible to prepare a mechanical system in a quantum mechanical state to
research true ”quantum mechanics“. For this purpose, the field of optomechanics couples
mechanical systems to optical or quasi-optical resonators, so that their resonance frequency
becomes dependent on the displacement of the mechanical object. The sub-field of nano-
electromechanics developed this concept further by combining superconducting microwave
resonators with nanomechanical systems [90–92]. This opened the pathway for many key
experiments such as reaching the quantum limit of a nanomechanical resonator [93], ground
state cooling [94–96] squeezing [97], electromechanical interference [98,99], optomechanics
with squid devices [100,101], strong coupling [101–103], information transfer [104,105], and
the combination of these circuits with elements of quantum electrodynamics [106,107].
In this thesis, we focus on the different mechanisms that can be utilized to couple a nanome-
chanical string resonator to a system of interest for the purpose of using the mechanical
resonator as sensor for the respective coupling properties. In this context, we investigate
various realizations of coupled systems based on mechanical, magnetostrictive, magne-
tomotive and electromechanical coupling. In detail, the thesis is structured as follows:
In Part 1, we introduce the workhorse of this thesis, a doubly clamped nano-string res-
onator, with large mechanical quality factor. Here, we present models for the mechanical
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properties of strings made from homogeneous as well as multi-layered materials, consider
geometric non-linearities, and present an in-situ frequency tuning mechanism. We fur-
ther introduce the different coupling mechanisms later investigated in this thesis. Part
2, is dedicated to the steady state and dynamic response of a network of three coupled
high-Q nanomechanical string resonators. This system is a classical analog to a three-level
Landau-Zener system. We discuss the model necessary to describe such a system in the
classical framework. In detail, we investigate the inter-string coupling mechanics and the
emergence of mechanical dark states if all resonators are frequency degenerate and examine
the dynamics of the full network focusing on the controlled transfer of excitations within
the network. We compare the experimental results with numerical simulations using only
predetermined system parameters. Part 3 of the thesis examines the magnetostrictive
properties of an ultra-low magnetic damping Co25Fe75 compound [108]. To this end we
show how a nano-string resonator can be used to extract a solid state property, the mag-
netostrictive constant from a magnetic thin film material which is grown in an elaborate
layer stack as a part of a string. In this context, the nano-string form factor is of par-
ticular advantage, as the particular magnetic damping properties only reveal themselves
when the magnetic layer is fabricated in form of a thin film system. Part 4 of the thesis,
considers the magnetomotive interactions of a nanomechanical resonator topped with a
magnetic cobalt layer. Here, we expand the field of magnetomotive excitation and readout
in nanomechanical resonators by using a magnetic material for an electric readout. We find
surprising dynamics in the system when sourcing electrical currents through a nano-string,
both in the presence and absence of external magnetic fields. We investigate the impact of
electrical currents onto the mechanical properties of a nano-string, and discuss the back-
action of the magnetomotive readout technique onto a metalized magnetic nano-string. In
Part 5, we touch upon the integration of a nanomechanical resonator into superconducting
circuits and in particular the combination of a coplanar waveguide resonator at microwave
frequencies, a transmon qubit and a nanomechanical string resonator. We present a concise
overview of the relevant system parameters, how they interact with each other and how
they can be engineered by changing the device layout. Using finite element simulations
of the device layout we engineer the desired device parameters and compare those results
to early experiments. We further discuss the implications of switching the transmon lay-
out to the so called X-mon geometry, and why this benefits the endeavor of combining a
transmon qubit with a nanomechanical string resonator. Finally we give a summary over
this thesis and provide an outlook on possible and ongoing experimental work regarding
the different topics we discussed in this thesis.
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PART 1

INTRODUCTION TO THE BASICS OF
NANO-MECHANICAL STRING

RESONATORS

1.1 Introduction

In this thesis, we explore hybrid systems held together by a common constituent - a nano-
mechanically compliant string resonator, in short nano-string. Thus, the core and main
theme of this thesis is to investigate and understand readout mechanisms to gain access to
the motion of the nano-string and the interplay of mechanical motion for the purpose of
information conversion, storage applications and in particular sensing applications. These
nano-strings will consist of different materials and will be tailored for the specific exper-
iment. However, the description of the displacement of a nano-string can be formulated
in a general manner, with the details taken into account in the form of material param-
eters. As the nano-strings are key to the experiments performed in this thesis, we start
with a review of their general and unifying properties. The introduction presented here is
based on Foundations of nanomechanics [109] by Andrew N. Cleland and Fundamentals
of nanomechanical resonators [110] by Silvan Schmid, Luis G. Villanueva and Michael L.
Roukes. For a more engineering emphasized view onto the subject, we suggest Vibration
problems in engineering [111] by Stephen Timoshenko.
We will start with the definition of a nano-string , followed by the model used to de-
scribe the system. We will present the equations governing the mechanical vibrations of
a nano-string using Euler-Bernoulli beam theory. We will consider how external driving
forces of different strength impact these vibrational modes and lead to geometric nonlin-
earities. We show, how we can use these effects to characterize the nano-strings and, how
to in-situ tune their vibrational resonance frequencies. In the last section of this part we
will shortly discuss the different coupling mechanisms used to create hybrid devices to be
discussed later in this work, followed by a short summary of this part.
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6 1.2 Euler-Bernoulli beam theory

1.2 Euler-Bernoulli beam theory

In this section we discuss the mechanical vibration of a double clamped, suspended pris-
matic bar1. This construct is commonly known as a beam, however since all devices
considered within this thesis will be pre-stressed, we will use the name for a pre-stressed
prismatic bar: a string. We consider the dynamics of such a string in the framework of
the Euler-Bernoulli beam theory and show that the picture of a mechanically oscillating
beam or string can be reduced to the case of an harmonic oscillator with a pointlike center
of mass motion. This will simplify many discussions presented within this thesis consid-
erably. However, we note that we physically always deal with extended three dimensional
string resonators.
Under the label nano-string, we understand a double clamped, suspended mechanical string
resonator, as it can be schematically seen in Fig. 1.1, next to a SEM image showing an
actual device. To describe such a string, we denote its length along the x-axis as l, the
thickness along the z-axis as t and the width along the y-axis as w. Since the two pa-
rameters w and t have dimensions of ≈ 100 nm, we call them nano-strings. The dynamics
of the out of plane vibration of a homogeneous, undamped nano-string can be described
by standard or Euler-Bernoulli beam theory [109, 111]. For this, we need to discuss the
forces acting onto the string. As already stated, we only use tensile stressed nano-beams
or string resonators in this work. Therefore the dominant force acting on a nano-string is
a restoring force Frestoring, pulling the object into an equilibrium position2. The main part
of this restoring force originates from the pre-stress (Fprestress), however due to the three
dimensional nature of the string, also the bending force of the string Fbending needs to be
considered (dFrestoring = dFbending + dFprestress). To get a better insight into these two

2 μm

5 μm

a) b)

x

y

z

l
w

t

Figure 1.1: a) Schematic drawing of a nano-string defining the local coordinate
system. b) Tilted SEM image of a 25 µm long, double clamped Si3N4 nano-string
and zoom in on the left clamping area, clearly showing the release from the Si
substrate.

forces we will discuss how they act on an infinitesimal volume element in a beam. This is
shown in Fig. 1.2 a) & b). This volume element has a length dx and a crossection A = wt

as well as a mass density ρ. The displacement from the equilibrium position a(x) is defined

1All devices considered in this work will have a rectangular crosssection.
2Gravitational forces are negligible and thus omitted.
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0-l/2 l/2

xy

z

a(x)
dx

dφr neutral
axis

r’= t

r’= 0

r’=rn

σB
σB

dx

dx’
Fs Fs+(∂Fs/∂x)dx

M+(∂M/∂x)dxM

a) b)

c) d)

Figure 1.2: a) Schematic drawing of a slightly bent nano-beam. b) Zoom in on
a infinitesimal volume element of the beam. c) Forces and torques acting on the
volume element due to the bending. d) Added stress in the volume element due to
the torque.

to happen only along the z-axis. If the beam is slightly displaced from the equilibrium
position, a restoring force will occur. In the following we will use the standard beam theory
to describe the bending of a beam [111]. This standard beam theory contains the concept
of a neutral layer or axis in a beam or string. If the beam is bent or a part of it displaced,
the neutral axis will retain the same length it had in the equilibrium position, whereas
the areas to either side are either stretched or compressed accordingly. In a homogeneous
beam3, which we consider at this point, this neutral layer is in the geometric center of
the object [111]. If a part of the beam is now displaced e.g. bent, the aforementioned
compressed and stretched layers of the beam want to return to the equilibrium position,
thus a restoring force, countering the force that displaced, or bent the beam occurs. We
now want to elaborate this in a more mathematic fashion. The restoring force acting on
a volume element of the beam can be associated with a shear force FS(x) and a torque
M(x) (acting along the y-direction) as depicted in Fig. 1.2 c). Here the total force acting
on the volume element due to bending in z-direction is given by dFbending = −∂FS

∂x dx. The
total moment acting on the beam ∂M

∂x dx is related to the shear force FS via [111,112]:

∂M

∂x
dx = FS

dx
2 +

(
FS + ∂FS

∂x
dx
) dx

2 ≈ FSdx. (1.1)

We now want to derive, how this bending moment M relates to the bending curvature of
the beam ∂2a

∂x2 and how we can translate it into a stress in the beam. This will allow us to
compare and integrate it with the pre-stress in a string later on. If the beam is bent, the

3This implies a homogeneous mass density distribution ρ 6= f(x)
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neutral layer at r′ = r′n by definition, does not change. However, the other layers of the
string are either elongated or compressed respectively. This change in length is given by

dx′ − dx = dxr
′ − r′n
r

,

with r the bending radius of the string. This results in a bending stress σB in a given layer
of the string (cf. Fig. 1.2 d)) [113]:

σB = E
dx′ − dx

dx = E
r′ − r′n
r

, (1.2)

with which we then can calculate the torque:

dM = σBwdr′(r′ − r′n) = Ewdr′ (r
′ − r′n)2

r
.

We get the total bending moment by integrating over the beam thickness t under the
assumptions of a homogeneous beam, in which case the neutral layer lies in the center
r′n = t/2:

M =
∫ t

r′=0
dM = Ewt3/(12r). (1.3)

With the moment of inertia for this bending in z-direction Iz = wt3/12 and 1/r = ∂2a
∂x2 [111]

we arrive at:
M = EI

∂2a

∂x2 , (1.4)

and can write the bending force using dFbending = −∂FS
∂x dx and Eq. (1.1) as

dFbending = −EI ∂
4a

∂x4 dx. (1.5)

We now want to consider a pre-stress in the material. This will lead us from considering
a beam towards considering a string as this prestress changes the behavior of the object
considerably. We first consider the prestress independently from any bending effects.
Again, we consider an infinitesimal volume element of the string to define the forces.
A prestress in the material leads to axial forces in the string. Since we only consider
displacements of the string in z-direction, only the axial forces in x-direction are of interest
here. Thus the prestress leads to two axial forces (Fax,1) and (Fax,2) in the volume element,
pointing tangential to the neutral axis towards both sides as can be seen in Fig. 1.3. These
forces are given by:

~Fax,1 = σ0A(− cos(ϕ1)~x+ sin(ϕ1)~z),
~Fax,2 = σ0A(cos(ϕ2)~x− sin(ϕ2)~z).

Here σ0 denotes the prestress and ϕ1/2 are the bending angles as indicated in Fig. 1.3.
This results in a net force of:

d~Fprestress = ~Fax,2 + ~Fax,1 = σ0A[(cos(ϕ2)− cos(ϕ1))~x) + (sin(ϕ1)− sin(ϕ2))~z]. (1.6)

If we assume a small string displacement(a� l and ϕ1/2 � 1), we can make the following
approximations: cos(ϕ2)−cos(ϕ1) ≈ 0 and sin(ϕ1)− sin(ϕ2) ≈ ϕ1−ϕ2 ≡ dϕ. This change
in angle can also be described with the curvature radius dϕ ≈ dx/r with [114]

1
r

=
∂2a
∂x2[

1 +
(
∂a
∂x

)2
]3/2 ≈

∂2a

∂x2 .
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Fax,2

dφ
φ2

φ1

Fax,1

xy

z

Figure 1.3: a) Schematic of a infinitesimal volume element of the string (cf.
Fig. 1.2 b)). The prestress leads to axial forces along the interfaces that can
be combined at the neutral axis of the string.

This results in the expression for the prestress induced force

d~Fprestress = σ0Adx∂
2a

∂x2~z. (1.7)

We now combine these two forces into the restoring force of the nano-string dFrestoring =
dFbending + dFprestress and use the Euler-Bernoulli beam theory to obtain the equation of
motion for the transverse vibrational mode of the nano-string [109,111]:

− EI ∂
4a

∂x4 + σ0A
∂2a

∂x2 = ρA
∂2a

∂t2
, (1.8)

with EI being the flexural rigidity of the nano-string. If we assume a harmonic time de-
pendence for the local displacement a(x, t) = a(x) exp(−iΩt) [111] the differential equation
transforms to:

− EIa(4)(x) + σ0Aa
(2)(x) = −ρAΩ2a(x) (1.9)

The general solution for Eq. (1.9) is given by [109,111]

a(x) = c1 exp(αx) + c2 exp(−αx) + c3 sin(βx) + c4 cos(−βx) (1.10)

with

α = √µ+ > 0, and (1.11)
β = −i√µ− > 0. (1.12)

I = wt3

12 , (1.13)

A = wt, (1.14)

µ± =
σ0A±

√
σ2

0A
2 + EIρAΩ2

2EI . (1.15)
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For a doubly clamped string the boundary conditions are given by [109,111]

a(x = ±l/2) = 0 (1.16)
∂a(x = ±l/2)/∂x = 0.

The application of these boundary conditions to the general solution (1.10), results in a
homogeneous system of four linear equations and four variables ci (i = 1, 2, 3, 4). If the
determinant of this system vanishes, this yields the non-trivial solutions for the displace-
ment

e−αl[(α2 − β2)(e2αl − 1) sin(βl) + 4αβeαl − 2αβ(e2αl + 1) cos(βl)] = 0. (1.17)

While the above result is general, its solutions require numerical methods. However,
many suitable approximations for analytical forms can be found. The simplest resonance
frequency for a nano-string used in the literature [109,111,115], is for the so-called highly-
tensile-stressed (HTS) nano-string. Here, the assumption is, that a high enough pre-stress
in the material (σ0 � EIπ2/Al2) dominates the motion of the string. In this case, the
equation of motion (1.8) can be reduced to:

ä(t)−
(
nπ

l

)2 σ0
ρ
a(t) = 0 (1.18)

and the corresponding resonance frequency of the nano-string is given by

Ωn,HTS = nπ

l

√
σ0
ρ
, (1.19)

with n being the mode number. However, as can clearly be seen, this approximation fully
neglects the contribution of the restoring force due to the bending of the nano-string and
assumes it to be fully floppy. While this approximation may be fine for a general description
of the resonance of a nano-string, in this thesis, we want to use the precise measurement
of the nano-string’s resonance frequency to investigate material parameters. Therefore, we
need an alternative approximation of the resonance frequency of a highly tensile stressed
nano-string, which includes those bending effects, at least to first order. For this, we don’t
employ the approximation used for (1.19) [115, 116], but instead use the fact that for all
tensile stressed strings in this thesis the effects due to bending can be seen as a small
disturbance contributing to the prestress dominated motion. The mathematical relation
expressing this, is given by 4EIρAΩ2 � σ2

0A
2.4 This allows to approximate Eq. (1.15) as:

µ± ≈
σ0A

2EI

[
1±

(
1 + 2EIρAΩ2

σ2
0A

2

)]
, (1.20)

by expanding the square root to the first order. If we then combine (1.20) with (1.11) and
(1.15) we obtain

α ≈ α0 :=
√
σ0A

EI
and (1.21)

β ≈
√
ρ

σ0
Ω. (1.22)

4This holds true for all strings mentioned within this work unless specified differently.
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While Eq. (1.22) can be associated with the resonance frequency of a simply supported
perfect string, (1.21) can be identified with the flexural stiffness of the string [109, 110].
Next, we substitute the HTS approximation (Eq. (1.19)) into Eq. (1.22) and obtain

βl =
√
ρ

σ0
Ωn,HTSl ≈ πn. (1.23)

This allows us to approximate the last term of (1.17) as

cos(βl) ≈ (−1)n

and thereby (1.17) simplifies to (
α2

0 − β2
) (
e2α0l − 1

)
sin(βl)

+2α0β
[
eαl
(
2− (−1)neα0l

)
+ (−1)n

]
= 0.

(1.24)

Due to the material parameters of the nano-strings used in this thesis, which will be
discussed in detail in later parts (2 and 3), we find, that α0 > 10β with βl ≈ nπ > 1 holds
for all discussed samples. Thus we can assume eα0l � 2 to be well satisfied within the
scope of this thesis. Under these conditions, Eq. (1.24) reduces to

(α2
0 − β2) sin(βl)− (−1)n2α0β = 0.

Using α0 � β we obtain
α0 sin(βl)− (−1)n2β = 0. (1.25)

Next, we solve for β by using (1.23) and expand sin(βl) around nπ

sin(βl) ≈ (−1)n(βl − nπ). (1.26)

By substituting this into Eq. (1.25), we obtain

β = nα0π

α0l − 2 . (1.27)

As last step we identify α0 and β using Eqs. (1.21) and (1.22) with the geometry parameters
of the resonator and the resonance frequency Ωn/2π. We obtain

Ωn,TS = nσ0π
√
A/ρ

√
σ0Al − 2

√
EI

= Ωn,HTS

√
σ0Al√

σ0Al − 2
√
EI

. (1.28)

This relation represents the resonance frequency of a tensile tressed nano-string with a
first order correction accounting for the bending of the string. Hereby, we also show, that
it is admissible to consider the center of mass motion within the framework of a harmonic
oscillator, with a modal shape defined by a(x) for the system of a nano-string resonator.

1.2.1 Inhomogeneous nano-strings

Up to now, we considered a homogeneous single layer string. However, within this thesis
we will also discuss multi-layer strings, comprised from varying materials. These multiple
layers are used to realize e.g. specific properties in magnetic materials (see Part 3). For
the discussion of the mechanical properties, we consider the structure schematically shown
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in Fig. 1.4 for two layers (Ni = 2). The lower layer i = 1 with a thickness t1 is topped by
the second upper layer i = 2 with a thickness t2. The scale to the right gives the thickness
dependent bending radius r′. The neutral layer rn may shift from the geometric center
compared to a homogeneous string. Further, we consider only the out of plane (oop)
motion, which also is the stacking direction for the multiple layers. We start with the
force consideration. Expanding Eq. (1.8) to the settings of a multi-layer string, requires
to consider the prestress in all layers i ∈ Ni [114]:

d~Fprestress = d~Fprestress,1 + d~Fprestress,2 + . . . d~Fprestress,i =
∑
i

d~Fprestress,i

Condensing the individual prestresses of the layers into an effective prestress σeff , we can

xy

z

r’= t

r’= 0

r’=rn1

2
r’=t1

t1

t2

Figure 1.4: Schematic of a infinitesimal volume element of a two-layer string. The
two layers 1 and 2 have corresponding thicknesses of t1 and t2. Here, the layer
interface is assumed to be clean and immediate. The neutral layer position may
deviate from the geometric center of the string as was shown for a homogeneous
string. The right hand side scale indicates the effective bending radius r′ for dif-
ferent positions along the z-direction in the string.

formulate an equation analog to (1.7):

~Fprestress = σeffAdx∂a
∂z
~z (1.29)

with A = w(t1 + t2 + . . .+ ti) and

σeff := σ0,1t1 + σ0,2t1 + . . .+ σ0,it

t1 + t2 + . . .+ ti
. (1.30)

The overall effective prestress is comprised from a weighted mean of the individual pre-
stresses in the layers according to the respective layer thicknesses [114]. In addition, we
need to consider the bending moment of the multi-layer string. However, this requires
that we account for the force caused by the Young’s modulus E. This material parameter
of the single layers Ei, translates into a parameter which depends on z (r′) for the overall
string E(z). Also the neutral axis position rn may have shifted from the geometric center
of the string at (t/2), as was the case for the homogeneous string. This shift depends on
the material and mass density distribution throughout the string. We next generalize the
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condition, that the total force acting on a infinitesimal volume element is the sum of the
forces due to prestress and bending. Hereby, we can calculate r′n of the multilayer string.
The integral over the stress needs to vanish. Thus, together with Eq. (1.2) we obtain:

∫ t1+t2+...+ti

r′=0
dr′σ(r′) =

∫ t1+t2+...+ti

r′=0
dr′E(r′)r

′ − r′n
r

= 0.

Solving for r′n, we find:

r′n = E2t
2
1 + 2E1t1t2 + E1t

2
2

2(E1t2 + E2t1) ,

assuming a two layer system (Ni = 2). Here, we define the z-direction dependent Young’s
modulus in a piecewise fashion and treat each layer i as a material with Young’s modulus
Ei:

E(z) =


E1 0 < z < t1
E2 t1 < z < t1 + t2
...
Ei

∑
i−1 tj < z <

∑
j ti

 .

The bending moment is then given by:

M =
∫ t

r′=0
dM =

∫ t

r′=0
E(r′)wdr′ (r

′ − r′n)2

r
,

with t = t1 + t2 + . . .+ ti. This gives us, for Ni = 2:

M = w
[
E2

1t
4
2 + 2E1E2t1t2(2t21 + 3t1t2 + 2t22) + E2

2t
4
1
]

12r(E1t2 + E2t1) .

Using the definition of the moment of inertia I = w(t)3/12 [111], for an oop motion (cf.
Eq. (1.13)), we can define the effective Young’s modulus as5

Eeff = E2
1t

4
2 + 4E1E2t

3
1t2 + 6E1E − 2t21t22 + 4E1E2t1t

3
2 + E2

2t
4
1

(t1 + t2)3(E1t2 + E2t1) . (1.31)

Hereby, we can simplify the discussion within the Euler-equations to the effective param-
eters Eeff and σeff . The equation of motion (1.8) then reads:

− EeffI
∂4a

∂x4 + σeffA
∂a

∂x
= ρeffA

∂a

∂t
, (1.32)

where the effective density is simply given by:

ρeff = ρ1t1 + ρ2t2 + . . . ρiti
t

(1.33)

As Eq. (1.32) is designed to be fully equivalent to Eq. (1.8) by introducing effective material
parameters, the resonance frequency of the out-of-plane mode of a multi-layer string can
be deduced from the results describing a homogeneous string given by (1.19) or (1.28).
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z
a) b)

k

x
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Figure 1.5: a) Schematic drawing of a double clamped suspended nano-string. b)
The vibrational motion of the string shown in a) can be described in a harmonic
oscillator model with spring constant k and effective mass meff .

1.3 Nanomechanical string resonators as linear harmonic os-
cillators

As discussed in Sec. 1.2, the motion of a three dimensional nano-string resonator can be
modeled as the motion of a harmonic oscillator, characterized by a center of mass motion,
an effective mass meff , and a spring constant k. Schematically this transition is shown
in Fig. 1.5 from panel a) to panel b). The equation of motion, for a one-dimensional,
dampened, coherently driven, harmonic oscillator is given by [113]

ẍ+ Γm
meff

ẋ+ k

meff
x = F0

meff
exp(−iΩt). (1.34)

Here, the displacement from the equilibrium position is given by x,6 Γm is the damping rate,
k and meff are the effective spring constant and effective mass. In addition, we consider
an oscillating force exciting the system with frequency Ω and amplitude F0. With the
simple ansatz x(t) = x0(t) exp(−iΩt), we obtain the well known steady-state equation of
the motion:

x0 = F0/meff
(Ω2

m − Ω2)− iΓmΩ . (1.35)

The undamped resonance frequency is typically associated with the spring constant and
the effective mass via Ωm =

√
k/meff . In addition, we can relate Ωm with the mechanical

properties of the nano-string i.e. the internal prestress σ0 and the mass density ρeff
assuming the condition of a highly tensile stressed string (cf. Sec. 1.2 and 1.3). Even
in the most general case, as also was shown in Sec. 1.2, the mechanical system can be
represented as simple harmonic oscillator, when considering only the center of mass motion.

1.3.1 Thermal excitations

Up to now, we have discussed the simple classical excitation of an harmonic oscillator with
a coherent driving force F0. However, the mechanisms also has the potential to excite a

5Please note that this expression is once again written down for Ni = 2.
6Note, that from now on we will use ”x“as the displacement when treating a harmonic oscillator, instead

of ”a“, which we used for the displacement of a string in the previous section.
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mechanical motion. Some of these forces can be of a technical nature, e.g. mechanical
vibrations, which we assume to be negligible in this chapter. More importantly, thermal
excitations of motion will also result in a detectable mechanical displacement of the oscilla-
tors. This motion is commonly known as Brownian motion and intimately connected to the
equipartition theorem [117]. This states that each degree of freedom contains the thermal
energy of 1/2kBT if its in a thermal equilibrium with its environment characterized by the
bath temperature T 7. Here kB is the Boltzmann constant. For any harmonic oscillator,
with an effective mass meff and a resonance frequency Ωm/2π, this relates to [110]:

kBT

2 = 1
2meffΩ2

mx
2
th.

The RHS of this equation corresponds to the energy in the displacement of the system.
Here x2

th describes the mean squared displacement of the oscillator, which is related to the
mechanical spectrum via:

x2
th =

∫ ∞
0

Sxx(Ω)/πdΩ. (1.36)

Sxx describes the displacement spectral density of the mechanical resonator. For the simple
frequency response function of high-Q resonators, Sxx takes the form:

Sxx(Ω) =
(
Fth(Ω)/m2

eff
2Ωm

)2 1
(Ω− Ωm)2 + Γ2

m/4
, (1.37)

with F 2
th(Ω) the thermal driving force spectrum, given in units of force2/bandwidth i.e.

[F 2
th] = N2/Hz, and in this case associated with the temperature of the environment. For

elevated temperatures with kBT � ~Ωm, we can approximate the thermal force spectrum
at the mechanical frequency as frequency independent (F 2

th(Ω) ≈ F 2
th(Ωm)). Together with

(1.36) we get an expression for x2
th:

x2
th = F 2

th(Ωm)
2m2

effΓmΩ2
m
.

which together with the equipartition theorem allows us to give an explicit expression of
the thermal driving force:

F 2
th(Ωm) = 2meffΓmkBT.

Taken together, we can write the thermal noise spectral density as:

Sxx(Ω) = kBT

2Ω2
mmeff

Γm
(Ω− Ωm)2 + (Γm/2)2 . (1.38)

In consequence, the measurement of the thermal displacement noise can be utilized to
calibrate a measurement setup and deduce the systems transduction. Thus connecting
the measured observable to the displacement of the oscillator. Comparing this real, tem-
perature dependent displacement of a nano-string in absence of all other driving forces
with the actual measured power spectrum e.g. a voltage signal, allows us to calibrate the
measurement setup for actual deflection of the nano-string. Exemplary this is shown in

7Please note, that this relation is only valid within limits. For temperatures considerably higher
compared to room temperature (T � 300 K) the relation needs to be adapted. The same is true if the
bath temperature is too low and the oscillator is close to its quantum mechanical ground state. We will
however stay within the viable range for the relation in this thesis.
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Figure 1.6: Thermal motion spectrum of the fundamental mode of a Si3N4
nano-string. By fitting the data with a Lorentzian line shape(cf. (1.41)), the cali-
bration factor C, which relates the measured photovoltage to the actual mechanical
displacement of the nano-string’s center of mass motion, can be extracted.

Fig. 1.6, here the Brownian motion of a Si3N4 nano-string is shown. On the left y-axis
the measured signal SUU is plotted in µV/Hz1/2. This measured spectrum is now related
to the actual spectrum via a calibration constant

C =
√
Sxx(Ωm)
SUU

. (1.39)

This allows us to calibrate the setup and sample and label the right y-axis of Fig. 1.6
with the actual nano-string deflection of several pico-meter. As a drawback, this method
is highly sensitive on the setup and sample used. If a different sample is used, or if the
readout setup changes, the calibration is not valid anymore. Due to the measurement
setups, which will be discussed in Secs. 2.4, 3.4 and 4.4, the measured value will not
depend linearly on the displacement of the center of mass motion of a nano-string. The
setups are sensitive to an observable, which depends on the squared magnitude of the
displacement x0, not the displacement itself. Therefore the measurable amplitude e.g. a
photo-voltage spectrum can be described by:

|x0|2 = F 2
0 /m

2
eff

(Ω2
m − Ω2)2 + Γ2

mΩ2 . (1.40)

Note, that (1.40) does not represent a simple Lorentzian response (cf. i.e. Fig. 2.13).
However, for large quality factors Q = Ωm/Γm, Eq. (1.40) can be approximated by:

|x0|2 ≈
(
F0/meff

2Ωm

)2 1
(Ωm − Ω)2 + Γ2

m/4) , (1.41)

which is indeed a Lorentzian lineshape. Therefore, we expect the response spectra of the
resonators to have a Lorentzian lineshape, as long as they stay in the harmonic regime
(cf. 1.3.2).

1.3.2 Nonlinear effects in nano-strings

In the previous section, we treated the nano-string as a damped harmonic oscillator, in
the linear response regime. This adequately describes nano-strings experiencing small
displacements. For high amplitude states however, nonlinear effects can occur [111, 116].



PART 1. INTRODUCTION TO THE BASICS OF NANO-MECHANICAL STRING
RESONATORS 17

Within this section, we present the impact of a restoring force which scales non-linearly
with the displacement of the dynamical motion of the string. In particular, we discuss the
situation of highly-tensile stressed nano-strings, where this restoring force originates from
a geometric nonlinearity.
The geometric nonlinearity originates from higher order effects in the bending force dis-
cussed within Sec. 1.2. In particular, for the derivation of Eq. (1.5), we assumed that the
prestress σ0 is constant and therefore neglected it. For high amplitudes this approxima-
tion is no longer valid, and the prestress changes as a function of the string displacement
a(x) (cf. Fig. 1.2). The finite displacement lengthens the string and hereby induces the
additional prestress

δσ = Eδl,

where δl is the string stretching. Hereby, the bending force dFbending becomes dependent
on the string displacement. We will discuss how this can be taken into account in the
equation of motion in the following. First, we need to calculate the stretching of the
nano-string due to displacement. The length of the displaced string is given by [110]

l′ =
∫ l/2

−l/2

√
1 +

(
∂a(x)
∂x

)2
dx ≈

∫ l/2

−l/2

(
1 +

(
∂a(x)
∂x

)2
/2
)

dx.

The approximation on the right side is obtained by expanding the square root to first
order, for a′(x) � 1. Further using the displacement approximation for a highly tensile
stressed nano-string (cf. Eq. (1.18)) a(x) = a0 cos(nπx/l) we get

l′ = l

(
1 + n2a2

0π
2

4l2

)
. (1.42)

This change in the total length of the string translates into an increase of the prestress σ:

σ = σ0 + E
l′ − l
l

= σ0 + n2a2
0π

2E

4l2 . (1.43)

If we include this into the equation of motion of the tensile stressed nano-string (1.18), we
obtain:

ä(t)−
(
nπ

l

)2 σ0
ρ
a(t)− n2Eπ4

4l2ρ a3(t) = 0. (1.44)

This additional term, proportional to a3, is known as the Duffing nonlinearity with the
Duffing parameter, defined as:

α ≡ n2Eπ4

4l4ρ . (1.45)

Correspondingly, we can introduce the geometric nonlinearity in the one-dimensional equa-
tion of motion of the harmonic oscillator (1.34) and arrive at the Duffing equation [111,118]:

ẍ(t) + Γmẋ(t) + Ω2
mx(t) + αx3(t) = F0

meff
exp(−iΩt).

This equation of motion leads to an amplitude spectrum of a Duffing oscillator [118]:[
Γ2

m + 4
(

Ω− Ωm −
3α

8Ωm
x2

0

)2
]
x2

0 = F 2
0

m2
effΩ2

m
. (1.46)
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In the limit of small displacements x0 → 0 Eq. (1.46) is identical to the linear response
regime (see Eq.(1.35)). For large excitation forces, the displacement increases and the
term 3α/8Ωmx

2
0 causes a modification of the mechanical response spectrum. In detail the

maximum of the amplitude spectrum x0,max does not only get larger, but also shifts the
effective mechanical resonance frequency from Ωm to Ωeff . This response spectrum is dis-
played in Fig. 1.7 a) for various excitation force amplitudes F0. Note, that for displacement
amplitudes exceeding the critical amplitude xcrit, the spectrum becomes bistable i.e. the
amplitude spectrum has more than one solution, of which maximally two are stable. Panel
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Figure 1.7: a) Amplitude of a Duffing oscillator. For amplitudes exceeding the
critical amplitude xcrit, the response spectrum becomes bistable. When sweeping
from left to right, the high amplitude branch can be accessed. In b) this is shown
for the fundamental mode of a Si3N4 nano-string resonator for driving forces from
Upiezo = 7 to 28 mVrms extracted by laser interferometry (cf. Sec. 2.4.1). c) Shows
the maximal mechanical amplitude for the different driving strengths extracted from
the spectra in b) (backbone curve), the line is a linear fit, which allows to determine
the Young’s modulus (cf. (1.45) and (1.47)).

b) shows an actual measurement of a nano-string in this regime. Due to the sweeping di-
rection of the exciting force (from lower to higher frequencies)during the measurement, it is
not possible to reach the metastable amplitude states rising from the bistability, therefore
the nano-string remains in the high amplitude state up to Ωcrit and jumps down to lower
amplitudes once Ωcrit is surpassed. This of course is only the case if the drive frequency
is swept from low to high. Thus the up sweep direction of the frequency allows to mea-
sure the high displacement amplitude response, while the reversing the frequency sweep
direction gives access to the low displacement amplitude branch. The high displacement
amplitude branch allows to determine the maximum displacement amplitude x0,max oc-
curring at frequency Ωeff . Plotting the maximum displacement amplitude as a function
of Ωeff −Ωm results in the so-called backbone curve, which allows to quantify the Duffing
coefficient α (cf. Fig. 1.7c).

x2
0,max = 8Ωm

3α (Ωeff − Ωm). (1.47)

Knowledge of α allows the determination of the Young’s modulus. Note, that this requires
quantitative knowledge about the displacement amplitude, which is obtained by prior
calibration of the system, e.g. via thermal noise spectroscopy. Vice versa, if the Youngs
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modulus and mass density of a string are known, the Duffing backbone curve allows to
calibrate the string displacement, complementary or substituting a thermal calibration
(cf.1.3.1).

1.3.3 In-situ frequency tuning mechanism

We discussed the geometric nonlinearity as source of the Duffing term, which adds to the
otherwise known mechanical response function. Within this section, we highlight how this
feature can be used to tune the resonance frequencies of all modes of the oscillator. By
recognizing, that the Duffing term corresponds to an additional stress in the system, we
can immediately deduce, that the resonance frequency of a highly tensile stressed string
resonator becomes tunable as (1.19):

Ωm = nπ

l

√
σ

ρ
.

Evidently, this mechanism allows to frequency tune all of the harmonics8 of the string.
In this section we want to quantify how the resonance frequency of a mode Ωm(n = 1)
changes if one of the higher harmonics Ωm(n > 1) = Ωm,n is driven into a high amplitude
oscillation.
To discuss this mechanism in more detail, we take the expression for the additional prestress
in a string due to high amplitude oscillation and the resulting string stretching (1.43) and
substitute this into the expression for the resonance frequency of the fundamental mode
Eq. (1.19):

Ω′m = π

l

σ′

ρ
≈ Ωm

(
1 + ∆σ

2σ0

)
(1.48)

Using ∆σ = E∆l/l with ∆l = l′ − l we can give an expression for the relative change in
eigenfrequency of the fundamental mode, depending on the amplitude of a higher order
mode a2

0,n:
∆Ωm
Ωm

= Ω′m − Ωm
Ωm

=
a2

0,nn
2π2E

8σ0l2
. (1.49)

The amplitude spectrum of a0,n is described by the Duffing spectrum (1.46). However, if
we configure the system in a way, that the displacement remains in the upper branch of
the bistable Duffing response, we can control its amplitude not only via the applied driving
force, but also by setting the frequency of the drive Ωaux

a2
0,n,max = 8Ωm,n

α
(Ωaux − Ωm,n). (1.50)

Note, that this amplitude control scheme is independent of the applied exciting force if
Ωaux > Ωm,n and within the limits of the bistability region (a3

0,n � 4F0/(3αmeff) and
a0,n ≤ F0/(Γm,nmeffΩm,n) [71, 118]). Comparing Eqs. (1.50) and (1.47) shows a close
resemblance, indicating that the backbone curve of the Duffing oscillator is actually a full
description of the frequency to amplitude relation for the upper branch of the Duffing
oscillator, within the bistability region. If we now combine the last two equations (1.49)
and (1.50), we obtain an expression connecting the shift in the fundamental mode frequency
to an auxiliary drive on a higher harmonic:

∆Ωm
Ωm

= 2
3

Ωaux − Ωm,n
Ωm,n

. (1.51)

8We exclude the mode which is Duffing driven here, as this is more complicated.
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It is notable, that the prefactor does neither depend on which higher mode is used, nor
on the power of the auxiliary drive signal directly. Indirectly however, the drive power
F0 defines the bistability region and thereby limits the range of accessible frequencies
for Ωaux. This, together with the fact that the auxiliary drive needs to be initialized at
Ωaux ≈ Ωm,n and then increased to the desired value of Ωaux, limits which higher harmonic
can be used for this frequency tuning method, depending on how far the fundamental mode
frequency needs to be shifted. Also technical limitations need to be taken into account (cf.
App. A.1). Experimentally we realize the tuning mechanism for up to the 11th harmonic
of a nano-string [119]. Further it was shown, that the tuning mechanism does not influence
the quality factor of the tuned mode [79, 80, 119]. Figure 1.8 shows three selected higher
harmonics, and how far the fundamental mode can be tuned (∆Ωm = Ωeff − Ωm) using
them. This gives us the possibility to in-situ tune the eigenfrequency of several nano-strings
a technique which will be used to frequency tune multiple strings in a resonator network
(cf. Part 2). For some technical aspects and challenges concerning this tuning mechanism
please see App. A.1.
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Figure 1.8: Fundamental frequency of a 80 µm Si3N4 nano-string measured via laser
interferometry (cf. Sec 2.4.1) while strongly driving higher harmonics. The initial
frequency of the mode is at Ωm = 3.33 MHz. By sweeping the auxiliary drive at
a higher harmonic Ω(n)

aux the fundamental frequency is increased. In a) the second
harmonic was used and shows a possible change in frequency of ∆Ωm ≈ 40 kHz
in b) the 6th (∆Ωm ≈ 15 kHz) and in c) the 8th harmonics were utilized (∆Ωm ≈
3 kHz). For higher harmonics the tuning range reduces due to the size of the
Duffing bistability region. Note, that the undisturbed frequency of the mode is
restored after leaving the bistability region at higher frequencies, this can be seen
in the bottom right corner of each panel.

1.4 Coupling concepts in nanomechanical string resonator
networks

In this thesis we mostly consider systems, where those nano-strings are coupled to other
experimental degrees of freedom. For this, several coupling mechanisms can be conceived.
One way, is to couple to a nano-string externally. This can be done e.g. by changing the
way the nano-string is connected to the substrate, or by exerting a force e.g. loading the
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string with molecules [51, 120, 121]. Technically, this can also be done by engineering the
clamping structures as can be seen in Refs. [122, 123]. Here, the load exerted onto the
string from the clamping points changes. However, in this case it was done statically and
cannot be influenced in-situ during an experiment. Another approach is to do this dynam-
ically, and use the clamping points to couple several nano-strings or their different modes
to each other via a shared clamping structure [66, 70, 71, 74]. This case will be treated
in part 2. There, three nano-strings are coupled by sharing one clamping point. Due to
the mechanical properties of this clamping point, motion of one nano-string influences the
mode shape of all other strings connected to the clamping structure. From a physical point
of view, this can be described as a system of three coupled harmonic oscillators, where the
motion of each string acts as an additional force onto all other strings coupled to the same
shared support. This same coupling mechanism and structure also allow excitations to be
transferred between strings. By in-situ tuning the frequencies of all strings, this transfer
can be controlled.
The second kind of coupling can be achieved by influencing the string by changing a ma-
terial parameter, or at least an effective material parameter. We refer to this as internal
coupling, as a material parameter changes in-situ. This coupling mechanism is used in
parts 3 and 4. There the coupling is facilitated by changing the material properties of
the string or layers of a multi-layer string in-situ, e.g. by changing the overall tensile
stress in the string via magneto-mechanical effects [79, 124]. In particular, in part 3 we
influence the stress in layers of a multi-layer string by changing the magnetization. This
influences the overall strain of the string. Thereby, we couple the oscillatory motion of a
string to its magnetization, and facilitate a magneto-mechanical coupling. In part 4 we
will use this kind of coupling to explore the impact of an electrical current passing through
a nano-string onto the oscillatory motion of the nano-string and its effective material pa-
rameters.
The third way of coupling a nano-string to form a hybrid system, is by doing it via passive
coupling. Here, the idea is that the motion of the nano-string itself influences a system
or device it is a part of [91, 92, 101, 102, 104, 107, 125, 126]. This type of coupling will be
discussed in part 5. There we discuss a nano-string as a part of a superconducting LC res-
onator. The string is integrated as a part of the resonators capacitance. Therefore, if the
capacitor is charged and the string moves, its oscillatory motion leads to a mechanically
compliant capacitance. The overall capacitance of the microwave circuit gains a depen-
dence on the motion of the string. Vice versa, by charging the capacitor in a dynamic
way, this can also influence the mechanical oscillation of the string. In such a system
information transfer between the two resonators, the mechanical string and the microwave
circuit is possible [104].
This short section, should by no means be a complete description of the used coupling
concepts, but should only be seen as a short teaser of what is to be expected and seen in
the following parts of this thesis, where the concepts and their realization will be discussed
in depth.
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1.5 Summary

In this part we introduced the concept of a nano-string as a mechanical harmonic resonator
and discussed the models used to describe it. We considered the different forces acting
on and within the a nanomechanical string resonator. First in a static case to take into
account all forces as well as in the dynamic case, by including the influence of a driving
force. Thereby discussing how an oscillating string can be described. We showed, that
by using an appropriate modal shape, the center of mass motion can be considered as a
harmonic oscillation. We also expanded the model for a case in which the string is no longer
a homogeneous material but a multi-layer structure with different materials stacked in the
oscillation direction. We further discussed how this given model needs to be expanded in
the case of large mechanical amplitudes, which leads to geometric nonlinearities, and brings
the string into the Duffing regime. Using this nonlinearity of the system, we showed how
driving a higher harmonic of a nano-string can be used to in-situ tune the fundamental
frequency of individual strings, while their quality factors remain at a high value. In
the last section, we then gave a concise preview on how nano-strings will be used in the
coming parts of the thesis to form hybrid systems. As parts of networks, to investigate
dynamics, function as sensor platforms or integrated in superconducting circuit quantum
electrodynamic (QED) devices.



PART 2

NANOMECHANICAL RESONATOR
NETWORKS

2.1 Introduction

In this part of this thesis, we will consider strong coupling phenomena in nano-string res-
onator networks. These are comprised of high-Q Si3N4 nano-strings which are strongly
mechanically coupled to each other in different configurations, thereby forming fully me-
chanical multi-level systems [70, 127–129]. These multi-level systems not only represent
an important step towards larger mechanical resonator networks, e.g. for pure mechanical
realizations of information processing [130–132], storage [94, 104, 133], and remote sens-
ing applications [66,69]. They also allow investigating several quantum-classical analogies
in a range of phenomena like population oscillations [73, 127], population exchange e.g.
in the form of Landau-Zener-Stückelberg like dynamics [71, 74, 134]. Almost all of these
aforementioned applications require, by design, strong inter-resonator coupling. This is
a necessary requirement to perform a deliberate transfer of phonons. Furthermore, the
ability to control the resonance frequencies of the individual resonators in a given setup or
system is often necessary. We will demonstrate all three of these key requirements in the
nano-string resonator networks presented in this part.
We first consider the mathematical and theoretical foundations used for the description
of the nanomechanical resonator networks in Chap. 2.2. For this we will pick up on the
models used to describe single nano-string resonators in Part 1 and expand them to arbi-
trarily large, mechanically coupled resonator networks. We then will discuss the transition
dynamics in such a system, first in the framework of a classical analogon to the Landau-
Zener model and then by showing the bottom up classical approach. In Chap. 2.3 we
will present the fabrication processes used to build the Si3N4 resonator networks. Further
we will discuss the design considerations for the two presented network types. Chap. 2.4
will give a short introduction into the measurement setups and concepts used to extract
the experimental data which will be shown and discussed in Chap. 2.5. Here, we will
first show the characterization of the nano-string networks, including the emergence of
dark-modes in the system. We will then discuss the transition dynamics in the system, in
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Landau-Zener inspired experiments in detail. Here, we demonstrate the targeted excita-
tion transfer between modes in a network. Lastly, we will summarize the findings of this
part in Chap. 2.6. The groundwork for these experiments has been published in Ref. [71].
A large part of the findings to be shown here were acquired within the supervision of the
Master’s thesis of Thomas Luschmann [135] and partially published in Ref. [136].

2.2 Theoretical background

In part 1 of this thesis, we already discussed the physics of a single, double clamped, tensile
stressed, suspended nano-string resonator. Here, we want to broaden the subject to first
two and then n coupled resonators. Special care will be taken to discuss a system of three
fully coupled resonators, since this will be the system considered experimentally later. In
the course of this section we will first theoretically look at how multiple energy levels couple
with and to each other in using the framework of the Landau-Zener model [137–141]. Then
we will look into the classical pendant to this system and consider coupling and energy
transfer between classical harmonic oscillators [128].

2.2.1 Landau Zener physics/ transition dynamics

We now want to take a look into the energy transmission dynamics in a system of two
coupled harmonic oscillators. We start with the standard Landau-Zener formula, for energy
transfer between two coupled levels. Then we will expand the description for the full three-
level system, which also will be the main scope of the experimental data later on. We then
will search for parameter ranges, in the three-level system in which we can simplify the
system, and treat parts of it again as a standard two-level Landau-Zener system.
Lev Landau [137] and Clarence Zener [138], investigated the time evolution of a quantum
mechanical system, consisting of two coupled levels. This can be generally described by a
time dependent Schrödinger equation [137,138]:

i~
(

Ψ̇1
Ψ̇2

)
= H2(t)

(
Ψ1
Ψ2

)
, (2.1)

with the time dependent hermitian Hamilton operator:

H2 =
(
ε1 + b1(t) v

v∗ ε2 + b2(t)

)
. (2.2)

Here, the undisturbed energies of the levels Ei = εi + bi(t), have a linear time dependence,
and are coupled to each other with the off-diagonal elements v. For the general case of
b1 6= b2, the undisturbed levels will eventually cross at time tc at E1(tc) = E2(tc) ≡ Ec.
Then, the levels interact (if v 6= 0) and a transfer of excitation (transition) between the
modes becomes possible. By calculating the eigenvalues of the Hamiltonian at t = tc, we
obtain the modified eigenenergies:

λ± = Ec ± v, (2.3)

forming an anticrossing with a level splitting of λ+−λ− = 2v. This process is visualized in
Fig. 2.1b) where the anticrossing or avoided crossing is visible. The Landau-Zener model
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quantifies the transition probability during one passage through such an avoided crossing
as [138]

Pdiab = 1− Padiab = exp
(
−2πv2

ζ

)
. (2.4)

Here, we introduce the time dependent passage rate ζ = b1−b2, which defines within which
time the avoided crossing is passed. Padiab [137] gives the probability, with which a state
transfer between the levels happens, e.g. if a state prepared at the undisturbed energy
|Ψ1|2 = 1(t < tc) ends up at energy of the other level afterwards |Ψ2|2 = 1(t > tc) this
would indicate a probability of Padiab = 1. This is of course with the constraint, that the
energy in the overall system remains constant (|Ψ1|2+|Ψ2|2 ≡ 1). This transfer probability
depends on the coupling strength v between the levels and the transition rate ζ. If the
coupling strength is large and the transition slow, the probability for a state transfer is
high (2.4), this case is called an adiabatic crossing. The other case, if the transition is fast
and the coupling strength small, the probability for an energy transfer between the states
is low, in this case a diabatic crossing happens. Qualitatively speaking, if the coupling
between the states is non-zero, a slow/small ζ results in a small Pdia (or large Padiab) and
therefore in an adiabatic transition. Vice versa, a fast/large ζ will result in a large Pdia and
thus a diabatic transition, the same is the case if the states are not coupled to each other.
These transitions will be discussed in further detail in the next section 2.2.2, where we will
consider a purely classical approach. By doing so, we will show that the effects present
in the quantum mechanical description can, to a certain extend, be transferred into the
classical regime and vice versa, insights gained in the classical regime can be applied for
quantum systems.
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Figure 2.1: Schematic illustration of diabatic and adiabatic transitions: For fast
transition rates (diabatic transition), the system passes the mode crossing diabat-
ically without energy transfer between the modes. Thus an initial state A results
in a final state A’ (and respectively for B and B’). For slow rates (adiabatic) the
system follows the lower branch of the mode splitting and an initial state A will
result in a final state B’ (respectively for B and A’). The dashed lines indicate the
unmodified energies i.e. in the absence of an avoided crossing.
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2.2.1.1 The three-level Landau-Zener model

After discussing the well known and experimentally also well mapped standard two-level
Landau-Zener case, we next take a look into the three-level model. A system of three
interacting levels can, in general, be described using the Hamiltonian [139,141]:

H(3) =

ε1 + b1(t) v12 v13
v21 ε2 + b2(t) v23
v31 v32 ε3 + b3(t)

 , (2.5)

which is an obvious expansion of the two-level Landau-Zener case (2.2). Again the energies
of the uncoupled levels are given by Ei = εi + bi(t). However, this small extension results
in a significant complication of the system. In fact Refs. [139–141] report, that an analytic
description of the eigenvalues, and the transfer probabilities is no longer possible. However,
for special cases, analytic solutions exist. Here we want to give two short examples of which
boundaries need to be present for analytic solvability of an n-level Landau-Zener system,
since we will later consider a physical system, in which we can find parameter ranges where
they are applicable, as well as ranges where neither are applicable. The first case, named
the equal slope case (cf. Fig. 2.2) by Brundobler and Elsner [140], assumes that all but one
of the values of bi are equal and positive (b > 0), as well as all corresponding energies are
ordered εi−1 < εi < εi+1 and in particular not equal. In this case, all coupling constants
vi,j may be non-zero, but all modes but one are initialized far detuned from each other
and can therefore not couple to each other. Only one mode has the ability to change its
energy and thus match with all the others, while they remain on parallel levels. This is
illustrated in Fig. 2.2.

n

1

2

...

t

E i(t
)

Figure 2.2: Sketch of the equal-slope case. All but one level have the same slope bi
and the energies are non-degenerate and ordered. Furthermore they are sufficiently
separated such that the transition probability between parallel levels is negligible.
Only mode 1 has a different slope and thus can match energies with all other levels
respectively and therefore enables transitions (depending on ζ).

The second case, namely the Bowtie Case (cf. Fig. 2.3) [140], describes the situation,
where all levels become energetically degenerate at tc. Here, all bi can be different and all
Ei have the same value at one specific time. However, to allow for analytical solvability,
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the coupling rates vi,j need to be restricted in such a way, that only one degree of freedom
e.g. Ψ1, can couple to all the others, but without them being coupled to each other
(v1j = vj1 6= 0 and vij(i, j 6= 1) ≡ 0). E.g. a system where all modes are coupled to a
central node, but not among each other. This can be seen in Fig. 2.3. These two examples

n

1

2

...

t

E i(t
)

Figure 2.3: Sketch of the Bowtie case. All levels meet at one point with different
slopes, but only one level is coupled to all the others, but they are not coupled to
each other.

illustrate, that the general three-level Landau-Zener model cannot be solved analytically
unless severe cuts into the generality of the model are made. In the following (cf. Sec. 2.2.2
and Sec. 2.2.2.1) we will show, that our system of three coupled nano-string-resonators can
be described as a full three-level Landau-Zener system. We will further show, how it can
be limited to the two analytically solvable cases presented here. Then, we will go beyond
them and experimentally reach the range where no analytic solutions are viable.

2.2.1.1.1 Independent crossing approximation We remember, that for the two-
level case, an analytic solution is possible, where it is not for systems with three or more
levels. If we consider the solutions for the two-level case Eq. (2.3), we can see that sig-
nificant amounts of energy exchange between the two states are only possible at the time
where the levels cross (E1(t) ≈ E2(t)) [140]. This implies, that if all crossings of exactly
two levels are well separated from each other and from all other levels, we can consider
them as independent. We can then treat each of them as a individual crossing, described
by (2.2). This simplification is known in the literature [140] as the independent crossing
approximation (ICA). As a criterion to use this approximation in the thesis, we consider
a crossing as independent, if the detuning between the crossing (x) and all other levels (i)
∆xi = |Ex − Ei| is at least ∆xi ≥ 3 · vxi for all modes in the system not involved in the
crossing1.

1We note, that for the later experimental application the energy detuning and coupling term here will
be substituted by a frequency detuning and the corresponding coupling strength g.
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2.2.2 Multiple coupled mechanical resonators

In Sec. 1.3 we discussed how a nano-string can be described using a harmonic oscillator
model. Next, we discuss how inter-nano-string coupling can be described and how this
coupling is realized in the discussed setting. As the first and simplest approach we assume
two of those harmonic oscillators with effective spring constants kA/B and effective masses
mA/B. The trivial way to formulate a coupling between them, is by a adding a third spring
with constant K into the system. This can be imagined as shown as a sketch in Fig. 2.4,
for two 1D oscillators. If we formulate the equations of motion for such a system, similar

kA kBK

mA mB

xA xB

Figure 2.4: Sketch of a simple system of two coupled harmonic one dimensional
oscillators. Each oscillator consists of a mass mA/B connected to a wall with
a single linear spring with spring constant kA,B. Additionally, the oscillators are
coupled via a third spring K, connecting the two masses directly.

to Eq. (1.34), we arrive at [128]:

−kAxA +K(xB − xA) = mAẍA,

−kBxB +K(xA − xB) = mBẍB.
(2.6)

Here, we did not take any external drives into account, neglected all damping mechanisms
and assumed that the effective springs are not pre-tensioned, for we want to focus on the
eigenfrequencies of the system. If we stay with the sketch model from Fig. 2.4, we can,
without loosing generality, assume that K is positive. This would amount to an attractive
force between the two masses. To solve (2.6), we use an ansatz, analogous to the approach
in Sec. 1.3. Here, the solutions are harmonic and of the form xm(t) = x0

m exp(iΩ±t), with
m = A,B, we get: (

Ω̃2
A − K

mA

− K
mB

Ω̃2
B

)(
x0

A
x0

B

)
= Ω2

±

(
x0

A
x0

B

)
. (2.7)

In this we defined Ω̃i =
√

(ki +K)/mi. We can now solve this equation for the eigenvalues
of Ω2

±, obtaining the two normal modes of the system of two coupled oscillators (see
also [128])

Ω2
± = 1

2

[
Ω̃2

A + Ω̃2
B ±

√
(Ω̃2

A − Ω̃2
B)2 + 8g2Ω̃AΩ̃B

]
, (2.8)

with

g =
√
K/mA

√
K/mB

2
√

Ω̃AΩ̃B

. (2.9)
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For the system we consider here, we further want to assume that the two oscillators are
nearly identical (mA ≈ mB as well as kA ≡ k and kB ≡ k + ∆k with ∆k � k). For
∆k → 0, this allows approximating g to

g2 ≈ K2/4(m(k +K)).

Thereby, relating the coupling strength mainly to the effective spring constants and masses.
We now take a look into the behavior of Ω±, depending on the detuning between the bare
resonator frequencies ∆Ω = Ω̃A − Ω̃B. This mainly depends on ∆k and is plotted for a
small range around ∆k/k in Fig. 2.5. The frequency of oscillator A (Ω̃A) is kept constant,
whereas the frequency of oscillator B (Ω̃B(∆k)) is increased from below Ω̃A to above it by
tuning ∆k from −k/2 to k/2. The dashed lines illustrate the case of K = 0, here the two
curves intersect at ∆k = 0. The solid lines show the case of K 6= 0. Here, the two curves
no longer intersect, instead a characteristic avoided crossing or anticrossing is visible. For
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Figure 2.5: Eigenfrequencies of two coupled oscillators close to the resonance. The
frequency splitting between the lower Ω− and upper branch Ω+ scales linearly with
the coupling strength g(K). The dashed lines show the behavior if K = 0, in this
case the frequencies intersect at ∆k = 0.

the case of ∆Ω = 0, the frequency splitting, visible as the difference between Ω+ and Ω−
is simply given by 2g. This relation is often used in experiments to determine the value of
g, and we will do so in 2.5.1.
We now want, analogous to the Landau-Zener model, investigate what happens if one of
the oscillator parameters changes in time, and the oscillators become degenerate. For this,
we will follow the arguments put forward by L. Novotny [128]. Similar to the Landau-
Zener case described in Sec. 2.2.1, to see the frequency splitting in Fig 2.5, the resonance
frequencies need to change over time. In this approach, we facilitate this by tuning ∆k/k
from −1/2 to 1/2. Therefore, ∆k becomes a function of time ∆k(t). If we initially start
at ∆k/k = −1/2 on the lower branch in Fig. 2.5 (Ω−) and slowly increase ∆k, the system
will follow the same curve and we will end up still in the lower branch at ∆k/k = 1/2.
The same is true if we start on the upper branch Ω+.
This scenario is referred to as an adiabatic transition, which is defined along the lines of
the Landau-Zener model 2.2.1. Thus, by dynamic tuning of the frequencies ΩA or ΩB, it
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is possible to transfer energy from one oscillator to the other by slowly tuning the coupled
system through resonance [128]. As e.g. the lower branch Ω− can be associated with
resonator B far to the left from the avoided crossing, but it is associated with resonator
A on the other far right side of the avoided crossing. For a quantitative description we
refer to the normal mode picture, which requires the introduction of normal coordinates
(x+, x−) [128]:

xA(t) = x+(t) sin(β) + x−(t) cos(β),
xB(t) = x+(t) cos(β)− x−(t) sin(β),

(2.10)

where β is given by tan(β) = (Ω2
B−Ω2

+)/(κ/mB) = −(Ω2
A−Ω2

−)/(κ/mA). If we substitute
(2.10) into (2.6), we obtain:

ẍ+(t) + Ω2
+x+(t) = 0

ẍ−(t) + Ω2
−x−(t) = 0.

(2.11)

Which represent two independent harmonic oscillators. This gives us a set of coordinates
x+, x− in which they oscillate independently with Ω− and Ω+. Now we imagine a slow
transition from ∆k/k = −1/2 to ∆k/k = 1/2. Initially (ΩA−Ω−)� g and thus β ≈ −π/2.
If we put this into Eq. (2.10) and assume that initially only resonator A is excited, the
energy of the system is fully associated with the normal mode x+ (x− = 0). If we now
tune ∆k past resonance, we have (ΩA − Ω−) � g and β ≈ 0 and thereby x+ now fully
coincides with resonator B, thus the energy is transferred from resonator A to resonator B
if the system is slowly tuned through resonance. To look at this analytically, if ∆k changes
in time, then by definition kB, ΩB and Ω± do as well. If we now assume a slowly varying
Ω±(t) in Eqs. 2.11 we find [128]:

x±(t) = x±(ti)Re
{

exp
(
i

∫ t

ti

Ω±(t′)dt′
)}

, (2.12)

with the ansatz x±(t) = x±(ti) exp(iνt) and dν2/dt2 � (dν/dt)2. Thereby Eq. 2.12
describes the adiabatic evolution of the normal modes.
Next we need to discuss what happens if ∆k changes rapidly. For this we take the ansatz
[128]:

xA(t) = x0cA(t) exp(iΩAt)
xB(t) = x0cB(t) exp(iΩBt),

(2.13)

and once again, assume that initially only resonator A is active (cB(t = −∞) = 0). Also,
the amplitude x0 is given as a normalization constant ensuring |cA|2 + |cB|2 = 1, where
cA/B are the time dependent amplitudes of the two oscillators. As in the adiabatic case,
we substitute (2.13) into (2.6) and obtain the coupled differential equations:

c̈A + 2iΩAċA = (K/mA)cB

c̈B + 2iΩBċB +
(
Ω2

B − Ω2
A

)
cB = (K/mB)cA.

(2.14)

Please note the time dependence of ΩB. For weak coupling between the oscillators, the
amplitudes cA/B(t) vary slow in time, compared to the oscillatory term exp(iΩAt) in (2.14).
Therefore, c̈A � iΩAċA as well as c̈B � iΩAċB, which allows us to neglect the second order
derivatives in (2.14) and thus obtain

2iΩAċA = (K/mA)cB, (2.15)

2iΩAċB +
[
ΩB(t)2 − Ω2

A

]
cB = (K/mB)cA. (2.16)
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We can now combine (2.15) and (2.16) and find

c̈A − iċA

[
Ω2

B(t)− Ω2
A

2ΩA

]
+ cA

κ2/(mAmB)
4Ω2

A
= 0. (2.17)

In this, we recognize g2 = κ2/4(mAmBΩ2
A), for the interval of interest close to the anti-

crossing region (ΩA ≈ ΩB). Under the assumption, that the frequency difference between
oscillators A and B changes linearly in time near the anticrossing

ξt = (ΩB(t)− ΩA). (2.18)

As can be seen from Eq. (2.18), the avoided crossing is passed at t ≈ 0. Further, the
frequency difference is negative before this time (t < 0) and positive afterwards. With
this, we can approximate (2.17) into [128]:

c̈A − iċAξt+ cAg
2 = 0.

This equation has no analytical solution [128], however we can find a solution for the
interesting regime long after the passage of the avoided crossing cA(t→∞):

cA(∞) = exp
(
−π
ξ
g2
)
,

which gives us, due to the energy of the oscillator A being EA ∝ |cA|2 the probability
for level a population transfer during a crossing analogous to the quantum Landau-Zener
case(2.4):

Pdiab = exp
(
−2π
ξ
g2
)
. (2.19)

This shows, that the classical system of two coupled harmonic oscillators behaves the same
way as the quantum mechanical pendant described by the Landau-Zener formalism, as we
can identify the coupling strength g and transition rate ξ with the coupling strength v and
transition rate ζ from Eq. (2.4). Therefore, we can now adapt the two-level Landau-Zener
Hamiltonian (2.2) to the frequency picture we used in this section, obtaining:

H2 = ~
(

ΩA(t) gAB
gBA ΩB(t)

)
. (2.20)

2.2.2.1 N coupled resonators

In this last section, we discussed a model of two linearly coupled, harmonic, one-
dimensional oscillators. We will now, very briefly, sketch how this can be extended to
N coupled resonators2. For this we generalize Eq. (2.6) for a harmonic oscillator with an
index i ∈ [1, N ] and corresponding mass mi [142]:

miẍi = Fi = −kiixi +
N∑
i,j

κij(xi − xj). (2.21)

Again, we neglected all external drive and damping terms at this moment. kij is the
coupling between resonator i and j if i 6= j. kii is the effective spring constant or stiffness
of the resonator i. By introducing a generalized stiffness kij as:

kij = ∂Fi
∂xj

, (2.22)

2Please note, that we later perform experiments with N = 3.
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we are able to write the N differential equations, using Eq. (2.21) on a network of N
resonators in a more concise matrix form:

M~̈x = K~x,

for which we defined M as the diagonal matrix, with masses mn on the diagonal, K as the
stiffness matrix with entries kij , and ~x as the displacement vector containing the single
displacements xn.

M =


m1 0 . . . 0
0 m2 . . . 0
... 0 . . . 0
0 . . . 0 mi

 ,K =


k11 k12 . . . k1i
k21 k22 . . . k2i
...

... . . . ...
k1i . . . . . . kii

 , ~x =


x1
x2
...
xi

 .

Here, we assume the inter resonator coupling to be linear, and reciprocal kij = kji.
Therefore K is symmetric. Analogously to the approach in 2.2.2, we take the ansatz
xi(t) = x0

i exp(iΩit) and can therefore derive an eigenvalue equation for Ω2 and the eigen-
vector ~x0 = (x0

1 ... x
0
n)T :

− Ω2M~x0 = K~x0. (2.23)

This Eq. (2.23) presents a generalized eigenvalue problem, it can be solved for N , not
necessarily degenerate, eigenvalues Ωλ. In addition, we expect the existence of up to N ,
linearly independent eigenvectors ~x0,λ. Each of these pairs of eigenvalues and eigenvectors
describes one normal mode of the coupled network. The problem can be simplified using
theorems of linear algebra [143] and the knowledge, that K is real and symmetric and M is
real and positive-definite. We then arrive at a eigenvalue problem with exactly N distinct
normal mode solutions for the network. This system, similar to the two-level case can be
described by a pendant to the three-level Landau-Zener Hamiltonian given by:

H(3) =

ΩA(t) gAB gAC
gBA ΩB(t) gBC
gCA gCB ΩC(t)

 , (2.24)

showing that all statements taken in Sec. 2.2.1.1 concerning the three-level quantum system
can be applied to a network of three coupled classical resonators. As already stated in
Sec. 2.2.1.1, an analytical solution of the full Hamiltonian is not possible. However we will
discuss an example of how the system can be treated numerically.

2.2.2.1.1 Numerical treatment for a three-level system We will now derive the
differential equations for the case of N = 3. These will also be used to model population
transition dynamics of three-resonator networks according to the measurement protocols
used in Sec. 2.5.2. The following is an expansion of the model used in Ref. [71] to three-
level systems.
We start with the equations of motion for N = 3 according to (2.21), with the addition of
linear damping terms Γi as well as an external driving force Fdrive.

mAẍA +mAΓAẋ+ kAAxA = kAB(xB − xA) + kAC(xC − xA) + Fdrive (2.25)
mBẍB +mBΓBẋ+ kBBxB = kAB(xA − xB) + kBC(xC − xB) + Fdrive (2.26)
mCẍC +mCΓCẋ+ kCCxC = kCB(xB − xC) + kAC(xA − xC) + Fdrive (2.27)
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We now assume three almost identical nano-strings, which will be the case for the devices
investigated later, and thus set ΓA = ΓB = ΓC as well as mA = mB = mC. Without losing
generality, we will now assume that string A is excited and controlled in the measurement.
Therefore its eigenfrequency will be time dependent Ω̃A(t). And we will further assume,
that it will be tuned upwards by ∆Ω̃A in time τ . We can define Ω̃A(t) as follows

Ω̃A(t) =


Ω̃0

A t < t0

Ω̃0
A + ζ(t− t0) t0 ≤ t ≤ t0 + τ

Ω̃0
A + ∆Ω̃A t ≥ t0 + τ.

(2.28)

Using ζ = ∆Ω̃A/τ . Similar to the experimental measurements in Sec. 2.5.2, string A is
excited by a short pulse tP with an oscillating force at the frequency Ω̃0

A. As tP < t0, we
can write Fdrive(t) = F0 exp

(
iΩ̃0

At
)
Θ(tP−t), where Θ(t) is the Heaviside step function. We

now use the ansatz xi(t) = x0ci(t) exp
(
iΩ̃A(t)t

)
with (i = A,B,C) and the time dependent

amplitude coefficients ci with |cA|2 + |cB|2 + |cC|2 = 1(cf. Sec. 2.2.2). We also use the
definition of the generalized stiffness (2.22) to introduce Ω̃2

B,C = kBB,CC/m as the resonance
frequencies of resonators B and C. Please note, that we use the time dependent resonance
frequency Ω̃A(t) associated with string A in the harmonic solution for all three equations
of motion. This is possible as long as

∣∣∣Ω̃A(t)− Ω̃B,C
∣∣∣ � Ω̃B,C, which holds in general for

the modeled systems and in particular close to the corresponding avoided crossing where
the population transfer takes place and Ω̃A(t) = Ω̃B,C. With this, we obtain

c̈A +G(t)ċA + (F (t) + Ω̃2
A(t))cA = kAB

m
cB + kAC

m
cC + F0

mx0
Θ(tp − t) (2.29)

c̈B +G(t)ċB + (F (t) + Ω̃2
B)cB = kAB

m
cA + kBC

m
cC + F0

mx0
Θ(tp − t) (2.30)

c̈C +G(t)ċC + (F (t) + Ω̃2
C)cC = kAC

m
cA + kBC

m
cB + F0

mx0
Θ(tp − t), (2.31)

by defining the functions

F (t) = (i ˙̃ΩAt+ iΩ̃A)2 + 2i ˙̃ΩA + Γ(i ˙̃ΩAt+ iΩ̃A)

G(t) = 2i(i ˙̃ΩAt+ Ω̃A) + Γ.

We now approximate these equations, by neglecting the second derivatives c̈i in Eqs. 2.29-
2.31. This is possible, because the coupling rates are much smaller than the stiffness of the
resonators (kij � kii ∀ ((i, j) ∈ (A,B,C)2) ∧ i 6= j). Therefore, we assume the coefficients
ci(t) to vary much slower in time than the oscillatory motion (∝ exp

(
iΩ̃A(t)t

)
cf. Sec. 2.2.2

for the two-level case). We thus arrive at the final form of the equations, which are used
for numerical calculations of the population transfer dynamics shown in Sec. 2.5.2:

G(t)ċA + (F (t) + Ω̃2
A(t))cA = kAB

m
cB + kAC

m
cC + F0

mx0
Θ(tp − t) (2.32)

G(t)ċB + (F (t) + Ω̃2
B)cB = kAB

m
cA + kBC

m
cC + F0

mx0
Θ(tp − t) (2.33)

G(t)ċC + (F (t) + Ω̃2
C)cC = kAC

m
cA + kBC

m
cB + F0

mx0
Θ(tp − t). (2.34)
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2.3 Device design and fabrication

In this section, we discuss the fabrication of the Si3N4 nano-strings used in the experiments,
and the considerations of how to implement a system of multiple coupled nano-strings. The
fabrication of double clamped nano-string resonators used within this thesis is based on the
processes developed by Matthias Pernpeintner during his PhD [144]. The processes were
modified to the demands of networks containing multiple coupled strings and to improve
the yield of fabricated nano-string networks.

2.3.1 Device fabrication

a) b) c) d)

e)Silicon Positive Photoresist

AluminiumSilicon Nitride

Figure 2.6: Schematic of the fabrication of a double clamped Si3N4 nano-string on a
silicon substrate. The process starts with a mono crystalline silicon wafer a) topped
with a 90 nm thick Si3N4 film, by commercial LPVA. In the next step b), the wafer
is coated with a positive resist, and a negative of the pattern is defined by electron
beam lithography. c) A thin aluminum layer is deposited and with a lift-off process
the pattern is now defined in a metal hard mask. d) By first removing the surplus
Si3N4 from the wafer using an anisotropic RIE process and then a following isotropic
RIE process, the string is released from the Si substrate. e) The aluminum mask is
removed by wet chemical etching resulting in the doubly clamped suspended Si3N4
string is finished.

The fabrication of tensile stressed Si3N4 nano-strings starts with a single crystalline Si
wafer, on which 90 nm of Si3N4 have been deposited commercially via low pressure vapor
deposition (LPVD) (see Fig. 2.6 a)). This deposition method results in a high intrinsic
tensile stress in the Si3N4 film in the range of several GPa [11], which will be reduced by
the patterning and etching steps to several hundred MPa. As shown in Fig. 2.6 b) and
c), we use electron beam lithography and a positive resist to define a negative mask. We
then evaporate a 30 nm thick layer of aluminum, by electron beam evaporation, to define
the metal hard-mask, via a lift off process. This mask is then used to transfer the pattern
into the Si3N4 via an anisotropic Ar/SF6 reactive ion etching (RIE) step, where the Si3N4
is removed around the area protected by the metal mask. A subsequent isotropic RIE
step releases the Si3N4 nano-strings from the Si substrate (Fig. 2.6 d/e)). In the last step,
the hard mask is removed with a wet chemical etching process and the sample is cleaned
and dried. For samples, where a high yield of nano-strings is required, a critical point
drying (CPD) process is used. This reduces the effect of strings being torn or bent to the
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substrate by the capillary forces caused by evaporating solvents, an effect that is more
prevalent for longer and thinner strings, and also depends on the overall tensile stress in
the material3.

2.3.2 Device design

We next discuss device configurations of three coupled nano-strings. It has been shown,
that coupling two strings using a shared support structure is possible and feasible [69,79].
We will later use the geometric nonlinearity tuning mechanism discussed in Sec. 1.3.3, to
frequency tune the strings within a network. While this concept was developed in [71],
we now need to adapt the tuning to a three-level system. This leads to an increase in the
number of auxiliary drive tones needed to control the whole system. Further frequency
crowding becomes more of an issue. Here, we discuss several different sample designs
and relate them to the resulting coupling matrix K. Since the in-situ tunability of the

D E F

A
B

C

b)a)

Figure 2.7: The two used sample designs. a) A fully coupled network of three strings
coupled via a central shared support structure. In both cases the single strings are
designed to be identical. The large rectangular clamping pads on the outside can be
assumed as fix, whereas the small circular support structures mediate the coupling
between the connected strings. b) A linear chain of three resonators, using the
same clamping and coupling approach as in a).

resonance frequencies is possible, we found a highly symmetric approach to be the most
promising. One in which all inter-resonator couplings are present and where the physical
difference between the single strings is as small as technically achievable. Therefore, the
system resembles a star shape of equally spaced Si3N4, identical strings surrounding a
central, shared support structure, mediating the coupling. The design idea is displayed
in Fig. 2.7 a) and will be referred to later as the star shaped design. The shape and di-
mension of the coupling element allows to modify the inter-string coupling strength [135]
and yielded, that a circular support with a diameter of 2 µm has the optimal coupling
properties. We attribute this to the under etching of the support, as this dictates how
strong the support structure is connected to the substrate and thus how rigid it is. If
the support structure is too rigid, it will not allow any coupling between the connected
strings, whereas if its not rigid enough, there will be no separation between the strings.
For the experiments we use the resonator network design depicted in Fig. 2.8. Here, three
30 µm long and 300 nm wide Si3N4 strings are coupled to a coupling element with an outer

3Please note, that this is mostly the case for pure metal nano-strings which will only be considered
briefly in 5.
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diameter of 2 µm and a support column of ≈ 1 µm. The strings are angled by 120° with
respect to each other. By using this design, we achieve an inter-string coupling between
all strings of the network with k12 ≈ k23 ≈ k31 for the star shaped case. In panel a) of
Fig. 2.8 the whole network consisting of three coupled strings is visible in a tilted view.
In the tilted zoom-in of the central coupling pad Fig. 2.8 b), the high acceleration voltage

2 µm

10 µm
120°

a)

b)

A
B

C

Figure 2.8: SEM image of a star shaped Si3N4 nano-string network, fabricated as
described in Sec. 2.3.1. a) Three nano-strings are placed around a central clamping
pad in an equiangular manner. b) Zoom-in featuring the central clamping pad,
showcasing the partial under-etch of the pad.

used in the SEM, allows to see the partial under-etching of the circular pad. However, a
quantification of the under-etched volume proves challenging. Furthermore a sharp ridge
beneath the strings is clearly visible. This is a residue of the RIE process and a clear
indication of the full suspension of a nano-string.
For comparison, we study a three resonator network in a linear arrangement (see
Fig. 2.7b)). Here, we prepare a situation, where k12 ≈ k23 and k13 = 0, which is vastly
different to the previous case. We will discuss the differences in detail in the following (see
Sec. 2.5). In the course of this part we will refer to it as the in-line design.

2.4 Measurement setups

In this chapter, we present the experimental setups used for investigating the eigenfre-
quencies of the string networks and the dynamics of the population transfer. All experi-
ments presented in this part a based on optical interferometry of the displacement of the
individual nano-strings. In addition, we discuss the different data acquisition techniques
employed to probe the sample properties and the means of how to interact with the sample
and control the string frequencies.
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2.4.1 Optical interferometry

To investigate the mechanical displacement of the Si3N4 nano-strings, we employed a free
space optical interferometer. Here we only present a simplified depiction of the operating
principle of the interferometer (cf. Fig. 2.9). The full details are presented in App. B.1.
The interferometer uses a single-mode diode laser with a wavelength of 633 nm. After
conditioning of the laser beam, it passes a beam splitter and is focused on the sample string
using a commercial optical microscope objective. The interference of the light transmitted
through the Si3N4 nano-string, which is partly reflected by the silicone substrate and the
part which is directly reflected by the nano-string results in an intensity modulation on the
photo detector This intensity modulation encodes the displacement of the nano-string [145],
which is later analyzed using spectral analysis, vector analysis or time domain recording
schemes. The chip containing the nano-string is mounted on a xyz-piezo stage to allow
precise positioning of the selected nano-string in the focal point of the laser. In addition,
a piezo-shaker underneath the chip allows to apply coherent forces or superpositions of
coherent oscillating forces to drive the dynamics of the nano-string. The whole sample
stage is held in a vacuum chamber (p < 0.01 Pa), to prevent the negative influence of air-
damping on the nano-strings [115]. Optical access is possible by using a 635 nm Koehler
illumination, combined with a camera.

vacuum chamber
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Figure 2.9: Schematic of the measurement setup. The optical interferometer is used
to focus the laser spot onto the sample. The sample position is controlled with a
piezo xyz-positioner inside a vacuum chamber. External drive tones from the RF
sources used for in-situ frequency tuning as well as the signals necessary for the
data acquisition setup are sent to a piezo actuator onto which the sample is glued.
The reflected laser light, which is modulated by the nano-string displacement, leads
to an intensity modulation at the photo detector This encoded information on the
displacement is later analyzed by various means.

2.4.2 Frequency domain setup

To characterize the system with all the resonance frequencies and Q-factors, the coupling
strengths between the strings as well as to show the full in-situ control over the string
network, we use a frequency domain (FD) setup. On one side, we use the thermal force
of the environment to excite the strings motion, and a spectrum analyzer(SA) to measure
the pure thermal motion spectra (cf. Fig. 2.10). On the other side, we use a vector
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network analyzer (VNA) to send a weak oscillating force as a drive signal to the sample
via the piezo actuator and compare this to the measured driven mechanical response of
the string. In both cases the signal from the photo detector is amplified before processing
to optimize the signal-to-noise performance for the chosen configuration (VNA or SA).
For the full setup schematic please see B.1. The data obtained from both VNA and SA
measurements looks very similar, as they both resemble the mechanical susceptibility for
a string. However, the physical concepts, as well as the technical realization behind the
two measurement techniques differs vastly. In the SA measurements the thermal noise
spectrum is recorded and we obtain the spectral noise density of the observed string. For
this the string is only excited by the thermal energy of the environment, commonly known
as Brownian motion. On the other side the VNA measurements detect the displacement
amplitude of a string. For this, the susceptibility of the string to a globally applied driving
force is of importance. To characterize the nano-strings and the nano-string-network as a
whole, we use both techniques jointly. We use a VNA measurement to roughly detect the
string’s eigenfrequency. By applying a large driving force, the displacement of the string
increases and so does the modulation of the laser light and in turn the observable feature
in the data. This allows us to detect the string frequency in a large frequency range.
Note, that a large driving force leads to nonlinear behavior in the system (cf. Sec. 1.3.2),
therefore it is not feasible to use this method to obtain the intrinsic frequency Ω0/2π and
linewidth Γ/2π of a nano-string. To extract those values and to link the intensity at the
photo detector with an actual displacement of the string, we use SA measurements to
conduct a thermal calibration of the system (cf. Sec. 1.3.1). We use SA measurements
to characterize the string and string network parameters (such as inter-string coupling),
since the VNA measurements always directly drive at the mode frequency of the string
under observation, whereas coupled strings are not influenced in this way. Therefore, even
if we can detect all modes at the same time in a VNA measurement, the extracted values
for the single modes are only partially comparable. In a more general view, there is one
drawback to the SA measurements. This is the signal-to-noise ratio, which among other,
depends on the number of excitations in a string. Considering a fixed measurement setup,
this is limited by the environmental temperature. In a VNA measurement on the other
side, it is possible to counteract a low signal-to-noise ratio by increasing the measurement
power and thus the driving force on the string. However, nonlinear effects in the system
need to be accounted for4. In both cases, and in the following time domain setup, the
frequencies of the three strings in the network were partially or fully in-situ controlled by
three additional RF sources using the tuning mechanism introduced in Sec. 1.3.3. This
relies on strongly driving and tuning the a higher harmonic of the strings to increase the
fundamental eigenfrequencies. Please note, that these auxiliary drives may not intersect in
frequency and that the tuning range differs for different harmonics (see Sec. 1.3.3). Please
note further, that this mechanism can only be used to tune the eigenfrequency above the
intrinsic value. Technically the auxiliary drive forces are supplied by individual RF sources.
The single signals are combined together with an optional measurement signal (for VNA
measurements) using a power combiner. The sum signal is then sent to the piezo actuator
onto which the sample chip is mounted. The two setups are shown as a sketch in Fig. 2.10

4Note, that the signal-to-noise ratio of the sample and setup can be to small for a SA measurement to
be feasible, in this case the VNA measurements still allow collecting data.
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Figure 2.10: Sketch of the frequency measurement setup. The optically read out
signal is converted and analyzed using either a vector network analyzer (VNA) or
a spectrum analyzer (SA) . Three individual frequency sources are used to in-situ
tune the mode frequencies of the measured resonators.

2.4.3 Time domain setup

To investigate the dynamics of the nano-string network, we employ a time domain (TD)
measurement setup. This setup is schematically shown in Fig. 2.11. Here, we still use the
three RF sources for in-situ tuning however, we use an arbitrary wave generator (AWG),
capable of emitting complex auxiliary drive sequences and a pulsed RF source to send
excitation pulses to the system. A digitizer card with up to 200× 106 samples/s is used to
acquire the photo-detector’s voltage signal. In these measurements, the AWG is used to
instigate both, the excitation pulse sent to the sample, and the start of the data acquisition
by the digitizer card. Thereby, we are able to measure the mechanical excitation of a
selected single string in the network over time. By changing the read out string, we can
probe the dynamics of the whole network part by part.

2.5 Measurement results

Here, we will present, discuss, and interpret measurement data collected from the resonator
network. First, we will show and discuss characterization measurements of the system in
the frequency domain, extracting the single string parameters as well as the inter-string
coupling strengths in the network respectively. Here, the differences between the two
sample layouts will be pointed out. In the following section, we will explore the case,
in which all three resonators are tuned into resonance with each other and discuss the
emergence of a mechanical dark state. In the last section, we will consider time domain
measurements to explore the dynamics of the population transfer in the star shaped system.
There, we treat two main cases, one covered by analytic solutions of the Landau-Zener
three-level model 2.2.1, and one beyond its scope.

2.5.1 Characterization measurements

In this first section, we discuss the basic characterization measurements of the star shaped
system. This is necessary to extract the system parameters. These parameters are used
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Figure 2.11: Full data acquisition setup used for the time domain measurements
investigating the dynamics of resonator networks. Three individual frequency (RF)
sources are used to in-situ tune the network at any time. A fourth source, paired
with an arbitrary waveform generator (AWG) can be used to send shaped pulses to
the piezo actuator and thus the sample. The photo detector voltage is processed
using a digitizer card with up to 200 · 106 samples/s.

later as inputs for the numerical simulations, which we will use to corroborate the exper-
iments addressing the dynamic response of the system. For the basic characterization of
the system, we focus primarily on the spectroscopy of the modes, their controllability and
their interactions. First pairwise, then all together. Figure 2.12 a) shows the displacement
response of nano-string A in the star shaped layout, using a controlled stimulus and vector
network analysis. We observe the dominant response of the mode α, which is originally
spatially situated on the optically probed nano-string A. In addition to the mode of the
probed string, we detect signatures of the β and γ mode, which are initially spatially asso-
ciated with nano-strings B and C respectively. Their signatures are visible in the spectrum
of string A due to the finite intermodal coupling. This happens even, if the mode frequen-
cies are not on resonance with each other. Figure 2.12 a) shows the situation of the large
natural detuning (∆ij � gij), and thus allows to determine the resonance frequencies of
the nano-strings A, B and C (Ω0

A,B,C/2π cf. 2.1) with one measurement. Please note,
that these frequencies, as well as their respective linewidths, may differ from their intrinsic
values. This is due to the finite coupling between the strings and the disparity between the
probed string A and the rest of the network (B & C). Although the strings were designed
to be identical (cf. 2.3.2), the extracted resonance frequencies differ by several kHz. We
note, that according to Eq. (1.19) and assuming a constant mass density ρ within the
Si3N4, the difference in frequency corresponds to a difference in length of about 60 nm.
Effects of irregularities in the strings crossection are neglected here, which is reasonable
given the large aspect ratio of the strings and the fabrication process. Complementary
thermal displacement noise measurements of all three resonators are used to extract the
intrinsic resonance frequencies as well as linewidths of approx. 80(10) Hz. This corresponds
to a Q-factor of about 150.000. Explicitly Fig. 2.13 shows the thermal displacement mea-
surement for string B. Fitting this data with a Lorentzian lineshape (Eq. 1.19) allows us to
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determine the intrinsic frequency ΩB/2π = 9.2463 MHz as well as its intrinsic linewidth to
ΓB/2π = 86(1) Hz. Following this procedure for all strings in the network, we summarize
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Figure 2.12: a) Mode distribution in the uncoupled case, read out via resonator
A. The frequencies of modes α, β and γ are distinguishable. b) Schema of the
used sample layout, the red dot indicates the laser spot position in the network.
c) Tuning sequence showcasing the in-situ control over the system. d) Normalized
mechanical response of the string network during the frequency tuning sequence
shown in panel c). The presented data is read our via nano-string A. At points of
frequency matching between two modes, avoided crossings are visible, e.g. crossing
between β and γ indicated by blue rectangle.

the intrinsic resonance frequencies and linewidths in Table 2.1. Next, we turn to determine
the intermodal coupling strengths. For this, we control the resonance frequencies using
the frequency tuning scheme based on the geometric nonlinearity (see Sec. 1.3.3). For this
experiment we use three RF sources, providing the drive signals to excite the higher order
modes of the respective strings. In detail, we tune the frequencies of the three modes ac-
cording to the configuration sequence shown in Fig. 2.12 b). The frequency tuning scheme
is designed to realize a scenario where only individual modes dominantly intersect, and
hence we can apply the ICA (cf.2.2.1). In this situation, we can directly determine the in-
dividual inter-modal couplings gij (cf. Sec. 2.2.2). Note, that Fig. 2.12 c) and d) label the
configured situation of the frequency by the index nseq, as several frequencies are tuned at
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A B C
Ω0/2π 9.2382 MHz 9.2463 MHz 9.2538 MHz
Γ/2π 80(10) Hz 80(10) Hz 80(10) Hz

Table 2.1: Eigenfrequencies of the undisturbed modes of the string resonators
(A/B/C) and their linewidth (FWHM), for the star shaped sample layout.
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Figure 2.13: Thermal noise spectrum of a single nano-string (B) in the network. By
fitting a Lorentzian line-shape (Eq. 1.19) to the data, we can extract the intrinsic
resonance frequency Ω0

B and FWHM ΓB. The values for all three strings are given
in Tab. 2.1.

the same time. Hence, for the range shown, we use nseq ≤ 10 to configure the three modes
α, β and γ with approximately equidistant resonance frequencies. Fig. 2.12 d) shows the
driven mechanical response acquired by optically selecting nano-string A and conducting
a VNA measurement. Hereby, we observe all modes in the network, even at large detuning
between the modes. The intermodal coupling strengths can be directly extracted from
the evolution of mode dispersion during the sequence: For example, at nseq = 47, where
mode α is nominally resonant with mode γ, we find the signature of an avoided crossing,
while mode β is still far detuned. Equivalent scenarios are found at nseq = 28 and at
nseq = 59, where avoided crossings are visible between α and γ, as well as α and β respec-
tively. However, the coupling rates extracted using the driven approach have to be taken
with care, as we use a relatively strong excitation force. As stated, this has the benefit,
that we can follow all of the modes within one spectrum, even if they are far detuned.
But, we cannot exclude that we drive the mechanical response into the non-linear regime.
Hence, we employ thermal displacement noise spectroscopy to quantify the coupling rates.
Fig. 2.14 shows the marked inset in Fig. 2.12 c), where we determine the coupling rate as
gαγ/2π = 1307 Hz. In this particular case, we tuned the modes α and γ into resonance with
each other, such that they hybridize. Here, we can identify the dressed state frequencies
Ωα,γ

+ and Ωα,γ
− as the respective upper and lower branches of the crossing (cf. 2.2.1). The

mode β is detuned from these degenerate modes by 15 kHz and therefore does not impact
the measurement, and the ICA can be applied. At the point of optimal mode mixing,
we can extract the mode spacing as 2gαγ/2π = 1307 Hz (cf. Eq. (2.8)). The panels b)
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and c) of Fig. 2.14 show the extracted resonance frequencies and effective linewidths, ex-
tracted by fitting the single slices of a). We compare this to the mode frequency splitting
between α and γ in Fig. 2.12 c). There (Ωαγ

+ (nseq = 47)− Ωαγ
− (nseq = 47))/2π = 1050 Hz

indicates a coupling strength of 2g̃αγ/2π = 1050 Hz. This shows a significant difference
between the two measurement techniques. Comparing the extracted coupling with the
effective linewidth in the measurement shown in Fig. 2.14 Γα,γ ≈ 80 Hz we find, that the
system is well in the strong coupling regime (gαγ � Γα,γ). Similarly, all individual inter-
modal couplings were determined and are summarized in Tab. 2.2. Using the approach

αβ βγ αγ

gij/2π 640.5 Hz 615 Hz 653.5 Hz

Table 2.2: Inter mode coupling strengths for the full symmetric, star shaped, three
resonator network, extracted from individual avoided crossing measurements.

employing displacement noise spectroscopy, we determine all the parameters to quantify
the Hamiltonian describing the system

H(3) = ~

Ωα(t) gαβ gαγ
gαβ Ωβ(t) gβγ
gαγ gβγ Ωγ(t)

 .
For comparison, we show an equivalent measurement for the in-line layout in Fig. 2.15.

Here, the modes are δ , ε and φ which in the far detuned case can be associated with the
resonators D, E and F. The tuning sequence for the measurement is shown in panel a). The
VNA measurement is done by reading out the central string E and subsequently tuning
first modes δ and φ to the same frequency (nseq = 12) then modes δ and ε at nseq = 35 and
finally the modes ε and φ (nseq = 57). The first mode intersection, between the modes of
the two end strings (D and F) shows no noticeable coupling effects whatsoever. This can
be seen in Fig. 2.15 d), where the resonance frequencies for the region within the dashed
orange rectangle in Fig. 2.15 b) are shown. Here, a clear crossing of the two modes is
visible, indicating no noticeable coupling. When looking at the other two intersections,
clear avoided crossings are visible. This is exemplary shown in Fig. 2.15 c). Here, the
crossing of δ and ε in the region indicated by the red rectangle in Fig. 2.15 b)is evaluated.
From the data we extract a mode frequency splitting of 2gδε/2π = 260 Hz. For this case
the three-level Hamiltonian (2.5) can be written as:

H(3) = ~

Ωδ(t) gδε 0
gδε Ωε(t) gεφ
0 gεφ Ωφ(t)

 .
The full parameter set for the in-line layout is summarized in App. B.2.

2.5.1.1 Emergence of mechanical dark modes

Now, that the characterization of the single resonators, as well as the characterization of
individual mode pairs is concluded, one interesting situation accessible within the frequency
regime is still missing. This is, where all three modes are tuned to the same frequency and
thus are degenerate with each other. This case is of particular interest in the star shaped
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Figure 2.14: a) Measurement of the avoided crossing between the resonantly coupled
modes β and γ, read out via resonator B. b) Extracted resonance frequencies from
the measurement shown in a) at the point of optimal mode mixing, the coupling
strength between the modes gβ,γ/2π = 1230 Hz can be extracted. c) Extracted
linewidth (FWHM) of both modes during the avoided crossing, the linewidth is not
influenced by the tuning mechanism, however the mode residing on the read out
resonator shows a slightly higher quality factor.

layout, therefore we will focus on this case. At this point of mode degeneracy, the network
can fully interact. This is of uttermost interest, since it represents an exemption of the
analytically solvable range of the three-level Landau-Zener model (2.5). Figure 2.16 a)
shows the corresponding thermal displacement spectrum for this case, where Ωα ≈ Ωβ ≈
Ωγ . We realize the fully degenerate state by only tuning one mode during the experimental
data shown. For ∆Ωα = 0, the resonance frequencies are set to configure the modes
β and γ in a hybridized state with the mixed frequencies Ωβγ

+ and Ωβγ
− as defined in

Eq. (2.8). We then increase the frequency of mode α through Ωβγ
+ and Ωβγ

− and investigate
the characteristic spectrum by optically probing the displacement of nano-string B. At
∆Ωα = 0, the assumptions of the ICA remain valid and an analytical description of the
spectrum is still possible. We can describe the hybridized modes Ωβγ

+ and Ωβγ
− using the

coupled mode picture (2.2). However, this changes as soon as mode α starts to interact
with the hybridized modes (Ωα+∆Ωα / Ωβγ

− ). This becomes apparent from the formation
of an avoided crossing between Ωα and the lower branch of the hybridized modes Ωβγ

− and
the shift of the uppermost branch Ωβγ

+ to higher frequencies. Notably, the mode spacing
between Ωα and Ωβγ

− shows a reduced effective mode splitting of 2geff/2π = 497(1) Hz
at ∆Ωα = 1.8 kHz compared to the undisturbed mode splitting 2gαβ/2π = 1281 Hz (cf.
2.2). At a detuning of ∆Ωα/2π = [2.5 kHz − 3.5 kHz], another interesting feature of the
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Figure 2.15: Normalized mechanical response of the in-line layout sample. In a) the
tuning sequence for the measurement is depicted. b) shows a VNA measurement
of string E during a tuning scheme (cf. inset) bringing all three resonators into res-
onance with each other sequentially. Avoided crossings are visible for the coupled
strings (D/E and E/F) whereas and a simple crossing can be seen for the uncoupled
strings (D/F). The modes associated with the respective strings (D/E/F) are la-
beled as δ/ε/φ. c) Extracted frequencies for the avoided crossing indicated by the
red rectangle in b) allowing the determination of the inter string coupling strength
gδε/2π = 260 Hz. d) Extracted frequencies of the crossing of the outer strings D
and F, indicated by the dashed orange rectangle in b) showing that there is no
discernible coupling between them.

system emerges. We find a suppression of the thermal displacement of one of the modes,
i.e. a dark state. Here, the uncoupled frequencies of mode α, β, and γ become degenerate
and the central of the three hybridized modes quenches. Fig. 2.16 b) shows the extracted
resonance frequencies, over the course of the experimental data. The extracted amplitude
is encoded in the area of the data points. The values were extracted by fitting three
individual Lorentzian lineshapes to the spectra in panel a). Note, that for the region,
where the middle mode quenches, no resonance frequency could be extracted, since there
are no discernible features or peaks visible in the background noise of the data. While, as
stated before, analytic models cannot grasp the full richness of the spectrum, numerical
simulations can be used to predict the frequency and amplitude evolution as shown in
Fig. 2.16 c). Here, we show a full numeric simulation of the experimental data shown
in a) by solving Eqs. (2.32)to(2.34) as shown in Sec. 2.2.2.1.1. We do this using the
parameters determined beforehand for the coupling strengths and frequencies. Please note,
that the model uses no free fit parameters, however it contains a linear correction term to
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take heating effects on the sample into account (cf. 1.3.3). The calculated displacement
amplitude is encoded in the area of the plot symbols of Fig. 2.16 c). In the region of
the dark mode, no amplitude is present for the calculated frequencies, therefore we add
a small bias to all amplitude values to visualize the frequency of the dark mode. This
allows to better discern the frequency of the dark mode. As one can clearly see, the
numerical simulations match the experimental data to a high degree regarding the mode
frequencies. However, they cannot reproduce the amplitude, especially for the top branch
of the measurement. This is mainly due to the fact, that the numerical solution does not
take the transduction over the read out resonator into account, which influences the data
extracted in the experiment.
The emergence of dark states has been extensively studied in optomechanics in recent
years [146–148]. There the effect that those modes cannot absorb or emit excitations has
been used to facilitate mediated quasi loss-less energy transfer between e.g. an optical as
well as a microwave mode coupled to a mechanical dark mode [147]. Even more recently,
mechanical dark-modes were observed in a strongly coupled three-mode ∧-type system
[149]. Here, we observe a dark state in a, to our understanding, more general three-level
system. All inter-modal coupling rates are present, comparable, and the system is well in
the strong coupling regime. This is even true when taking the effective coupling strength
into account (geff > Γ).
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Figure 2.16: a) Tuning sequence which tunes all three modes in resonance with each
other. The lower mode of the coupled system ((β, γ)−) goes dark for a specific
de-tuning combination. This would allow addressing only specific modes of a oth-
erwise resonantly coupled system. b) Resonance frequencies for the single modes,
extracted from a) using Lorentzian fits on each slice. The extracted amplitude is
encoded in the point area. c) Numerical simulation of the resonance frequencies
shown in the measurement a). The area of the data-points shows the amplitude
of the mode at a given point in the spectrum. A bias is added to the amplitudes
in c), hereby we aim to visualize the frequency, as the calculated amplitude in the
range of the dark-mode is otherwise indiscernible.
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2.5.1.1.1 Finite element simulation To corroborate the measurement results re-
garding the dark mode, and gain insight into the mode shapes present in the sample
designs presented in 2.3, we employ finite element simulations5 for this specific case. For
this purpose, we used the design values for the resonator networks, as well as known ma-
terial parameters (e.g. mass density and pre-stress). This results, naturally, in the same
setup as was in-situ fine tuned in the measurement shown in Fig. 2.16 (ΩA = ΩB = ΩC).
By setting the finite element simulation up this way, the inter-string coupling strengths
are assumed to be equal gAB = gAC = gBC, which is in good agreement with the actual
sample parameters (cf. tab. 2.2). A visual representation of the simulated displacement
field a is shown for a possible eigenfrequency solution in Fig. 2.17. The perfect rotational
symmetry assumed in the simulation, exhibits three solutions for this fundamental mode,
differing only in a 120° rotation in the xy-plane of the sample. In Fig. 2.17 suppression of
the displacement amplitude of one string (in our case string B) compared to the remaining
strings is visible in this frequency match setup. This effectively forms a dark-mode as was
found experimentally.

1 0|a|2  (norm.)

A B

x

y C

Figure 2.17: Results of a finite element simulation of the displacement field ~a of the
star shaped resonator network. Assuming identical nano-strings (Ωα = Ωβ = Ωγ),
we observe a strongly suppressed displacement of nano-string B, corroborating the
physical interpretation of a dark-state being possible in the network.

2.5.2 Excitation transfer dynamics

Next, we turn to investigate the dynamics of the star shaped multi-mode system using
experiments inspired by Landau-Zener type state transfers [70, 71, 74, 134, 150]. For this,
we first set the frequencies of the β and γ mode in a static fashion. The dynamics are
then probed by tuning the α mode. Initially, we tune α to be off-resonant with the β

5Using COMSOL Multiphysics®.
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and γ mode. At this point we prepare the amplitude state of the α mode with a sharp
excitation pulse with a duration of tp = 400 µs. After a short waiting period of t0 = 1 ms,
the mode frequency of α is then chirped with the rate ζ through the frequency range. The
frequency of mode α is at any point in time given by Ωα(t) = Ω0

α + ζt. In the following,
we will discuss how these dynamics are influenced by the initial setup for the modes β and
γ where we will distinguish two principal cases, and how the chirp rate ζ allows switching
between an adiabatic and a diabatic transition (cf. 2.2.1).
To quantify the dynamics of the excitation transfer, we record the response of the displace-
ments of nano-string A, B, and C sequentially in the time-domain for various chirp-rates
((ζ/2π)−1 = 5−150 µs/kHz). We distinguish between two principal system states for set-
ting up modes β and γ. One (i) corresponds to the equal slope case discussed in 2.2.1.1,
where all inter-mode coupling rates are present, but the frequencies of modes β and γ are
never allowed to meet ∆Ωγ−Ωβ � gβγ , and are ordered Ωβ < Ωγ , for the whole measure-
ment. In this case, we can also treat all single avoided crossings with the ICA introduced
in 2.2.1.1.1. In the second case (ii) we go beyond these analytically describable cases and
initialize the modes β and γ in a hybridized state Ωβ,Ωγ → Ω+,Ω− with a mode splitting
of (Ω+−Ω−)/2π ≈ 3 kHz. The dynamics for the in-line layout sample correspond to a high
degree to the first case (i) with the difference of negligible inter-mode coupling between
the modes of the outlying strings, δ and φ (gδφ = 0). The data for this setup can be found
in App. B.2 for the interested reader.
Refocussing on the star-shaped layout, we will now first discuss the differences between

the two cases and the impact of the chirp-rate ζ. Then we will take a closer look into
the second case, since it holds richer features. In Fig. 2.18 the two cases are compared
to each other, the columns show the different initial settings, the rows show experimental
data, read out for each string respectively. The data is plotted over the inverse chirp rate.
Thus, from fast chirp rates to slow chirp rates in each panel. The dashed lines are a guide
to the eye, and give the times at which mode α is on resonance with the upper and lower
modes respectively. The single columns are normalized to the initial excitation pulse re-
spectively, allowing a quantitative comparison of the mechanical excitation on each string.
In panels a) and d) we see the excitation on string A, here we can also see the damping
of the system, as the decay of excitation is visible, especially for slow chirp rates. For
small times t, the excitation remains on the string A, where is has been initially prepared,
and experiences the expected exponential relaxation. Consequently, we observe no visible
initial excitations on strings B and C. Note, that the dependence of the adiabadicity of the
crossing is dependent on the chirp rate, as can be seen in all panels. The fastest chirp rates
((ζ/2π)−1 ≤ 7 µs/kHz), represent the diabatic limit of the system. The excitation fully
remains on nano-string A (or mode α), where it decays, even after passing through the
other modes, regardless of which case. In contrast, slow chirp rates (ζ/2π)−1 ≥ 7 µs/kHz
result in a partially adiabatic transfer to the other modes, where a significant difference be-
tween the two cases emerges. Case (i) results in the two expected sequential Landau-Zener
type state transfers, depending on the chirp rate and thus the adiabaticity of the process.
Here, excitation is first transferred to one mode (panel b)), and then, independently to
the second mode (panel c)). The main difference being the initial excitation present on
string A before the avoided crossing with the respective modes. This leads to different
excitation amplitudes on string B and C. However, as panels b,c) show, the crossing with
the respectively other mode has no impact on the mechanical amplitude of the measured
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Figure 2.18: Excitation of the single strings over the time of a Landau-Zener ex-
periment. The string network is in the off-resonant configuration (Ωβ 6= Ωγ) for
panels (a-c), and in the resonant configuration (Ωβ ≈ Ωγ) for panels (d-f). In
both cases an initial pulse is used to excite mode α. The resonance frequency of
mode α is then chirped, upwards through the resonance frequencies of the other
modes with varying chirp rates (fast to slow). The dashed lines are a guide to
the eye to mark the times at which the mode frequency of α matches the mode
frequencies of β (lower) and γ (upper) respectively. The measurements are shown
for all read-out resonators (A,B,C) respectively. A high mechanical response of the
measured string is depicted by dark color. Each column of the graph is normalized
to the initial excitation pulse.

string. In case (ii), where all resonators can become resonant simultaneously, the situation
is more involved. The experimental data of these scenarios shows already more structure
in Figure 2.18, where a fast beating in panels e) and f) is visible. To further analyze this,
Fig. 2.19a-c) shows the same data, constricted to a smaller range of times and ζ showing
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Figure 2.19: Excitation of the single strings over the time of a Landau-Zener ex-
periment. Measurement data of the string network in the resonant configuration
Ωβ ≈ Ωγ (a-c), and corresponding numerical simulation results (d-f). In both
cases an initial pulse is used to excite mode α. The resonance frequency of α is
then chirped, upwards through the resonance frequencies of the other modes with
varying chirp rates (fast to slow). The dashed red lines are a guide to the eye to
mark the times at which the mode frequency of α matches the mode frequencies of
βγ− (lower) and βγ+ (upper) respectively. The measurement and model are shown
for all read-out resonators (A,B,C) respectively. A high mechanical response of the
measured string is depicted by dark color. Each column of the graph is normalized
to the initial excitation pulse.

greater detail. Panels d-f) of Fig. 2.19 show the full numeric simulation for comparison
to the data in a-c). Here, already for times between the passage of α through the small
range between Ωβγ

− and Ωβγ
+ , we observe a slow beating in the excitation of nanostring A

and B (see panels a/d and b/e). We associate this temporal evolution with the complex
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interplay of the various coupling rates (cf. Fig. 2.16). There, we found a reduced effective
mode splitting between mode α and Ωβγ

− of 2geff/2π ≈ 500 Hz. If we compare this to the
frequency of the slow beating f ≈ 350(150) Hz we find them to be in the same order of
magnitude and thus a general agreement. However, the measured data does not allow a
deeper analysis, since the beating frequency only shows one clear maximum and a second
very unclear one. If we compare this to the off-resonant case 2.18 a/b) we do not find any
structure in the excitation there. For times after the transit of both, the Ωβγ

− and Ωβγ
+

mode, we find that, depending on ζ most of the excitation in resonator A is absent, similar
to case (i). However, we record a fast beating of the excitation between resonators B and
C. The latter can be understood as the pure modes of resonator B and C being hybridized
and hence the excitation starts to oscillate between the physical nano-strings. This un-
derlines the hybrid character of the modes, being distributed over parts of the network.
We determine this oscillation frequency in Fig. 2.20. Here we show an exemplary cut from
panels b-e) and c-f) in Fig. 2.19 at a chirp rate of (ζ/2π)−1 = 25 µs/kHz. The extracted
mechanical excitation for both resonators, experimental data as well as numerical simula-
tion, is shown in the first column of Fig. 2.20. Here we see the sharp rise in excitation as
the mode is coupled to mode α, modulated onto the exponential decay however, is the fast
beating mentioned before. To analyze this beating, we Fourier transform the left column
of Fig. 2.20 and show the results in the right column. The fast beating is now extracted
by fitting a Lorentzian line shape to the first and only peak at non-zero frequency. This
allows us to extract the beating frequency as ΩR/2π ≈ 3270(320) Hz which corresponds
to the mode frequency splitting between the modes Ωβγ

− and Ωβγ
+ set in the experiment.

This supports that this feature is indeed a classical pendant to to a Rabi oscillation [71].
This further indicates, that we are clearly beyond all analytic solutions for the three-level
Landau-Zener model.
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Figure 2.20: Method used to extract the beating frequency in Fig.2.19b-f). Single
slices at (ζ/2π)−1 = 25 µs/kHz are shown for both resonators (B/C) from the
experimental data as well as numerical simulation in the left column (a,c,e,g). The
right column (b,d,f,h) shows the Fourier transformation of the neighboring data,
the red line is a Lorentzian fit to the data, to extract the fast beating frequencies.

2.6 Discussion and Outlook

We experimentally investigated and characterized a nano-string network comprised of
three nano-mechanical string resonators with independently tunable resonance frequen-
cies, and comparable strong inter-resonator coupling. For this, we designed the device
structure and adapted previously established fabrication processes to reliably fabricate
the designed structures from thin Si3N4 films on Si substrate. Using an optical interfero-
metry setup, combined with a frequency domain measurement setup, we characterized the
individual nano-strings and the inter-string coupling strengths For the specific setting,
where all strings are resonant, we explored the emergence of a dark state in the system.
We corroborate the emergence of this dark state using numerical calculations as this model
goes beyond an analytic description. The relevance of dark states can be seen in the context
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of information storage [151–153]. Other uses are for example in the field of topological en-
ergy transfer [154–156]. Using the same optical interferometer, but employing time domain
measurement techniques, we investigated the dynamical evolution of the three nano-string
network. Here, we explored the feature of having all mechanical elements interact with
each other, as well as use the possibility of in-situ controlling all frequencies at the same
time. In this context, we investigated the excitation transfer inspired by Landau-Zener
physics. We did this in the range still describable by analytic solutions and beyond it.
This demonstrates control over the transfer dynamics in a nano-string resonator network.
We show, that these networks can still be expanded and are not yet at their limit. As the
three nano-string network represents a building block for phononic networks, we expect
our finding to be relevant for the controlled phonon or excitation propagation in mechan-
ical networks. With the current setup of highly symmetric strings, frequency crowding in
the auxiliary drive tones becomes an issue with the rising number of strings. Here two,
independent paths promise solutions to this issue: By carefully designing the geometry
of the single strings, they can be engineered to support different modes, which can then
be addressed without interference. Alternatively, clever network design could be done, to
limit the number of strings, which need to be controlled at the same time, even if the
used network is much larger. In this regard, also multiplexing of auxiliary drives within a
network may be a possibility. A more prominent issue is presented by the heating effects
on the sample, due to the high power auxiliary drives. This was not optimized or even
technically addressed here. For rising numbers of auxiliary drives, either the temperature
impact of the piezo, or a temperature control of the sample must be engineered in the mid
to long term. To look even further ahead, this work represents a classical simulation of
equations of motions and we are confident that this system, or systems like this have the
potential to be employed as classical simulators of quantum state transfer processes.
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PART 3

MAGNETOSTRICTIVE INTERACTION
IN NANOMECHANICAL

RESONATORS

3.1 Introduction

Mechanical systems are used as sensing devices throughout daily live, most of them in
the form of Micro Electro Mechanical Systems (MEMS) [10, 16, 17, 157, 158]. However,
the next generation of sensing devices in the form of Nano Electro Mechanical Systems
(NEMS) is in development [44, 45, 159–161]. Nanomechanical string resonators are an
interesting platform for sensing applications, due to their typically very high quality fac-
tors. This combined with precise readout methods, allows determining minuscule changes
in the nano-string’s environment or its own material properties and geometric param-
eters [162–164]. Thus, by coupling a nano-string to an external degree of freedom or
making the string itself dependent on external parameters, it is possible to investigate
them. Due to the physical size of a nano-string, it provides the possibility to measure
small sample sizes and enables integrability with most semiconductor materials, devices
and fabrication techniques.
Here, we want to learn about the magnetoelastic properties of the ultra-low magnetic
damping material Co25Fe75, and how these can influence other sample parameters. Specif-
ically, we want to investigate the interaction between the internal strain of a multilayer
nano-string and the strain in the single constituent layers. The strain of the string material
is, as mentioned already in part 1, one of the main contributors to the resonance frequency
of a nano-string. Thus, a change in the strain can be detected easily and precisely, as we
can detect the resonance frequency of strings with high Q-factors fast and precise using e.g.
laser interferometry (cf. part 2). Magnetic alloys are an extremely well studied material
group due to their importance for applications in magnetic information storage. While
properties such as the saturation magnetization and magnetic anisotropy play key roles
for the static configuration and stability of the magnetization state, material parameters
related to magnetization control (beyond such enacted by static magnetic fields) are also
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of huge interest.
Apart from current-induced magnetization switching [165–169], techniques based on mag-
netostriction constitute a complementary way to control the magnetization direction. Here,
the elastic deformation of the material generates a strain-induced anisotropy term, which
can be used to reorient the magnetization. Static control [77,170–172] as well as the exci-
tation of magnetization dynamics [173–176] already have been demonstrated. The recip-
rocal effect is used in sensing applications based on magnetoelastics [177]. The nano-string
platform allows extracting the magnetostrictive properties of the material under the chal-
lenging circumstances. In this case due to the fact, that the material of interest is a
thin-film layer in an elaborate layer stack. The advantage of the NEMS based approach
is, that it enables to investigate complex materials on the nano-scale, e.g. in the field
of thin films which is the realistic configuration for later device concepts, compared to
previous studies [178–190], which focused on bulk samples. In particular, cobalt iron al-
loys recently regained interest as an electrically conducting ferromagnetic material, with
ultra-low magnetic damping [108, 191, 192]. We note, that these damping properties are
intimately linked with the layer stack in which the compound is embedded. Here, damping
in thin film Co25Fe75 was found to be as low as in thin film yttrium iron garnet [193].
Since applications in spin electronics are usually based on thin films, quantification of the
magnetoelastic properties of thin film Co25Fe75 is in this context of high interest. The
investigated films were grown using the same recipe as the ultra-low damping material of
Ref. 108, by the group of Justin Shaw at NIST1. The findings shown here, were partially
published in the article entitled Magnetoelasticity of Co25Fe75 thin films by D. Schwien-
bacher et al. and appeared in Journal of Applied Physics [80]
In the first Chapter 3.2, we discuss how the strain in the material is changed by magne-
tostrictive effects, and how this influences the resonance frequency of a nano-string depend-
ing on the material and magnetization. Next, we turn to the sample layout, composition
and fabrication, followed by the introduction of the experimental setup. In Sec. 3.5, the
acquired data is presented, analyzed and brought in context with the magnetostrictive
response of the material. We then summarize this part and give a brief outlook. One of
the main questions is, if the magnetoelastic properties are connected to the magnetization
properties of the material, as in the case of the well known material system Permalloy
(NiFe) [194].

3.2 Theoretical background

In this chapter, we introduce the model used to describe the magneto-mechanical interac-
tion in a multi-layer nano-string, where at least one of the constituent layers is magnetic.
For this we consider the magnetization of the magnetically active layer, which will later
be controlled by an external magnetic field, and how this changes the strain/stress exerted
by this layer onto the overall string. This will allow connecting the magnetostriction and
magnetization of the material to the resonance frequency of the nano-string.
Magnetostriction and magnetoelasticity link the mechanical properties of a solid with the
magnetic texture. These effects are part of the so-called multiferroic triangle [77] depicted
in Fig. 3.1. Direct interactions are used to control e.g. the magnetization, the electric

1NIST, Colorado Boulder,USA
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polarization and the strain of a body using magnetic fields, electric fields, and stress.
However, also indirect interactions occur, where one for them is magnetostriction. This
effect was first identified by James Joule in 1842 [195,196], and connects the magnetization
of a material to changes in the strain. The inverse effect, which describes the change in the
magnetization of a material when exposed to stress or mechanical deformation is known
as magnetoelasticity [197]. We will discuss the impact of these effects onto the system of

Eel

Hσ

ε M

Pel

magnetostrictionmagnetoela
sticity

m
agnetoelectricitypi

ez
oe
le
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ric
ity

Figure 3.1: Phase control in (ferroic) magnetic materials. The magnetic field H,
electric field Eel and stress σ can control the magnetization M , polarization Pel
and strain ε in the sample respectively. The magnetoelastic interaction connects
the magnetic field H with the strain in the sample ε and vice versa the stress σ
with the magnetization M . Picture adapted from Ref. [77].

a (partially) magnetic nano-string in the following. For this, we will first consider mag-
netostriction in a magnetic thin film. Next we will discuss the changes in the behaviour
if the thin film is constrained in its geometry and lastly the impact it has as a part of a
multi-layer nano-string.

3.2.1 Magnetostriction in a free FM thin film

To discuss the impact of magnetostriction onto the resonance frequency of a nano-string, we
need to consider how the magnetostriction comes to bear in a magnetic thin film. We start
with a free standing thin film, only constricted in its thickness t which points along the z-
direction and assume it to be infinite in the xy-plane for this step. For simplicity, we further
assume that this thin film is in a monodomain state. Magnetostriction, which couples the
magnetization to the lattice degree of freedom, will then lead to a mechanical deformation
[197], depending on the magnetostriction vector ~M/MS and the saturation magnetization
of the material MS . The same effect will further lead to an inverse deformation along
both orthogonal directions in the film, conserving its volume. In addition, the mechanical
properties of the solid also play a role, and for simple scenarios this relative deformation,
given by the elastic response, can be expressed in terms of the poisson ratio. A sketch
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showing this effect can be seen in Fig. 3.2, where the initial film shape is contracted
after fully magnetizing it. The contraction/elongation ε‖(ε⊥) for the directions along
(perpendicular) to the magnetization orientation is given by the magnetostrictive consants
λ‖ and λ⊥ respectively [197]:

ε‖ = ∆L
L

= λ‖

ε⊥ = ∆W
W

= λ⊥.

(3.1)

Please note, that due to volume conservation the two magetostriction constants need to
be of opposite sign (λ‖ < 0 < λ⊥ ∨ λ⊥ < 0 < λ‖). We now want to consider the strain
tensor, associated with the relative elongation and contraction. We define the x’-y’-z’
system as shown in Fig. 3.2 to be the natural system for the magnetostriction, where
the magnetization direction defines the x’-axis. At this point, we also define the angle
between the magnetization direction and the sample coordinate system as Θ, whereas Φ is
the angle between the x-axis and the external magnetic field direction. The latter is used
to control the direction of the magnetization. In the framework of the x’-y’-z’ coordinates,
the magnetostrictive strain tensor is given by:

ε′mag =

λ‖ 0 0
0 λ⊥ 0
0 0 λ⊥

 . (3.2)

For our experimets however, we naturaly use a coordinate system which reflects the reality
of the lab. To combine both, we need to use the appropriate rotation tensor R, which
connects the x-y-z coordinates and the x’-y’-z’ coordinates:

R =

cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 1

 .
Thereby, we obtain the magnetostrictive strain tensor in the x-y-z lab coordinate system
as:

εmag = Rᵀε′magR =

λ‖ cos2(Θ) + λ⊥ sin2(Θ) (λ⊥ − λ‖) cos(Θ) sin(Θ) 0
(λ⊥ − λ‖) cos(Θ) sin(Θ) λ⊥ cos2(Θ) + λ‖ sin2(Θ) 0

0 0 λ⊥

 . (3.3)

Note that this expression contains the magnetization direction Θ. However, we experimen-
tally control the external magnetic field direction, characterized by the angle Φ in Fig. 3.2.
If the external magnetic field H is sufficiently large, that it supresses all anisotropies in
the system, the magnetization direction directly coincides with the magnetic field direction
(Θ = Φ). If the external magnetic field is not large enough to overcome all anisotropies,
the relation gets more involved. Therefore, we need to consider the impact of an anisotropy
in the system onto the relation between Θ and Φ. We will now make this consideration
for an uni-axial anisotropy along the x-axis. This corresponds e.g. to a shape anisotropy,
if the magnetic material is constrained in a rectanglular shape with a high aspect ratio,
as it will be as a part of a nano-string. This anisotropy leads to a magnetic hard axis as
well as a perpendicular magnetic soft axis in the material. Magnetizing the material along
the soft axis is easier then magnetizing it along the hard axis, thus the magnetization
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Figure 3.2: Coordinate system of the metallic magnetic film. The sample and lab
coordinate system is spanned by x-y-z the natural system of the magnetiostriction
spanned by x’-y’-z’ points its x’-direction along the magnetization direction M. The
rotation between the two coordinate systems is defined by Θ. The external magnetic
field, points along the angle Φ in the x-y -plane. The dashed circle represents the
film’s equilibrium shape without any magnetization. The external magnetic field H
magnetizes the film and it deforms (solid shape) along the magnetization direction.

direction will follow the external magnetic field direction directly along certain directions,
whereas it will deviate along the perpendicular direction. We calculate the exact relation
between the magnetization direction Θ and the magnetic field direction Φ for an uniaxial
anisotropy along x with anisotropy constant Kau [113] by minimizing the free magnetic
energy in the system [197]. This results in a Θ(Φ) given by:

Θ(Φ) = Φ− Kau sin(2Φ)
−MSµ0H + 2Kau cos(2Φ) . (3.4)

3.2.2 Magnetostriction in a thin film on a substrate

In order to compare the experimental data with the magnetostrictive calculation of the
stress in the string, we also need to consider the boundary conditions imposed by the ge-
ometry. In particular, the case where the film has been deposited on top of a substrate is
of interest. The shared interface with a substrate layer imposes geometric boundary condi-
tions on the magnetic material in the xy-plane. In an intuitive picture, the magnetostric-
tion changes the equilibrium dimensions of the string, depending on the magnetization
direction. For a material with e.g. λ‖ < 0 the equilibrium length of the string is reduced,
whereas its width is increased. However, the boundary conditions ensure a constant length
of the string, which results in a tensile stress in the magnetic layer along the strings x-
direction, and respectively a compressive stress along the y-direction. Since the boundaries
are only in the xy-plane, the film is free to expand or contract in the z-direction. We can
mathematically describe these effects by introducing an additional strain εr countering the
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magnetostrictive strain εmag in such a way, that the effective strain along the x and y-axis
vanishes. We define

εnet = εmag + εr,

with
εnet,x = εnet,y = 0.

This additional strain εr, can be seen as applied by the boundary conditions. It leads to
an additional stress in the string, depending on the magnetostriction in the magnetic film:

σmag = Cεr. (3.5)

Here, C denotes the elasticity tensor [113]. The strain thus can be written using the Voigt
notation [113] as:

− εr =



εr,xx
εr,yy
εr,zz

2εr,yz
2εr,xz
2εr,xy


=



λ‖ cos2(Θ) + λ⊥ sin2(Θ)
λ⊥ cos2(Θ) + λ‖ sin2(Θ)

εr,zz
0
0

2(λ⊥ − λ‖) cos(Θ) sin(Θ)


. (3.6)

Please note, that we are still assuming that the magnetic film is in a monodomain state.
Furthermore we assume the magnetic film to be polycristalline. The elasticity tensor C
for a policrystalline material, is given by [113]:

C =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


, (3.7)

with the material’s shear modulus µ, Lamé constant λ = (2µ2 − Eµ)/(E − 3µ) and the
Young’s modulus E [113]. Now, we can define the free expansion of the material in z-
direction, for which we use the fact that λ‖ = −νλ⊥ with the Poisson ratio ν, as well as
µ = E/2(1 + ν) [113] to write:

εr,zz = λ‖

(
1− E

2µ

)
. (3.8)

Here, we neglected the volume magnetostriction in the first order [197]. By combining
Eqs. (3.5)-(3.8) we obtain for the magnetostrictive induced stress σmag

2:

σmag =

σmag,xx
σmag,yy
σmag,zz

 = −

Eλ‖ cos2(Θ)
Eλ‖ sin2(Θ)

0

 . (3.9)

2Please note, that we use ”magnetetoalastically induced stress“and ”magnetically induced stress“ equiv-
alently from here on.



PART 3. MAGNETOSTRICTIVE INTERACTION IN NANOMECHANICAL
RESONATORS 61

3.2.3 Magnetostriction in a multi layer string

As stated in the introduction, we want to use a sensing concept employing the measurement
of the mechanical resonance frequency, to investigate different materials with specific mate-
rial properties. For this, we deposit the materials on top of a Si3N4 nano-string. Therefore,
we now need to discuss the impact of a magnetostrictive layer in a multi-layer metal, Si3N4
nano-string. For this, we need to take into account both the intrinsic tensile stress in the
Si3N4 (σSiN), as well as the stress in the magnetic thin film (σtot

film). For a double-layer
system of a thin metal film on top of a Si3N4 string, the effective stress along the string
direction is given by [198,199]

σeff =
σSiNtSiN + σtot

film,xtfilm

tSiN + tfilm
, (3.10)

as discussed in Sec. 1.2.1. Notably, the total stress in the magnetic layer contains con-
tributions from both intrinsic pre-stress in the material as well as the magnetostrictive
stress discussed in the last section σtot

film = σ0
film + σmag. If we now use this effective stress

and introduce it into the expression for the resonance frequency of a tensile stressed string
(1.28), we obtain:

ΩTS = σeffπ
√
A/ρeff√

σeffAl − 2
√
EeffI

. (3.11)

Here, l denotes the string’s length, A its crossection, I its moment of inertia along the
oscillation direction and ρeff the effective mass density. Eeff denotes the effective Young’s
modulus of the whole string as defined in Eq. (1.31). Since the effective stress partially
depends on external parameters, namely the magnetization direction, it is convenient to
split the total stress into a static and an angle dependent part:

σeff = σ0 + σ1 cos2(Θ)

σ0 = σSiNtSiN + σ0
filmtfilm

tSiN + tfilm
(3.12)

σ1 =
Etfilmλ‖
tSiN + tfilm

This allows us to rewrite (3.11) into

Ωmag =
n(σ0 + σ1 cos(Θ)2)π

√
ρ−1

eff√
(σ0 + σ1 cos(Θ)2)L− 2

√
Eefft2/12

. (3.13)

This equation describes the resonance frequency of a double-layer nano-string consisting
of a Si3N4 string with a thickness tSiN and a magnetic layer with tfilm on top, as a function
of the magnetization orientation in the thin film material. Please note, that we assume
that the magnetization is predominantly the xy-plane of the magnetic material and the
magnetic material is in a monodomain state. Eq. (3.13) will be used later, to extract the
values for the magnetostrictive constant λ‖ from measurements of the resonance frequency
by varying the magnetization direction.3 In this context we will also encounter the mag-
netoelastic constant b [173, 197] which is correlated with the magnetostrictive constant
via

b = B

Ms
= −

3λ‖µ
Ms

. (3.14)
3Please note, that we will use the descriptions ”magnetization direction dependence“and ”angular

dependence“ equivalently during this part 3 of the thesis.
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3.3 Device design and fabrication

As the fabrication of double clamped Si3N4 nano-strings is already discussed in Sec. 2.3.1,
here, we present only a brief description of the additional fabrication processes needed
to add a CoFe stack to the top of the string. The project involving these CoFe samples
was performed in collaboration with the National Institute for Standards and Technologies
(NIST) in Boulder, Colorado, USA.
For the fabrication of CoxFe1−x layers on top of the freely suspended silicon nitride string
resonators, we start with a single crystalline silicon wafer, which is commercially coated
with a tSiN = 90 nm thick, highly tensile-stressed (LPCVD) grown Si3N4 film. We define
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Figure 3.3: Schematic of the multi-layer nano-string. The Si3N4 string is topped
with a complex layerstack necessary for the high quality CoFe sandwiched in the
center.

20 μm

Figure 3.4: SEM picture showing an array of typically used Si3N4 strings before
depositing metal layers on top. The strings are 80 µm long and from top to bottom
300 nm, 200 nm and 150 nm wide.

the geometry of the strings by defining a metal etch mask using electron beam lithography,
electron beam evaporation of aluminium, and a lift-off process, same as already discussed
in Sec. 2.3.1. A SEM picture of a part of a typical nano-string array can be seen in
Fig. 3.4. The resulting unloaded SiN strings show typical Q-factors of about 150 000 for
the ip and oop fundamental modes (cf.1.3). As the last fabrication step, the metal layer
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on top was sputtered. For the CoFe samples a Ta/Cu/CoFe/Cu/Ta layer stack (as shown
in Fig. 3.3) was deposited on top of the strings by magnetron sputtering4. This layer
stack is composed from a seed layer of 3 nm of Tantalum, followed by a 3 nm thick layer of
copper. Onto this the CoFe alloy was sputtered from a stoichiometric target. The CoFe
alloy was then capped by two 3 nm thick layers of Copper and Tantalum. Thus, the CoFe
stack covers the strings as well as the surrounding substrate. We ensured that there is no
contact between the top- or string layer and the substrate level. With this process, two
sets of samples with different CoFe alloys were fabricated: Co25Fe75, for which there was
reported ultra-low magnetic damping properties [108] with a layer thickness of 10 nm, and
Co10Fe90 as an alloy with larger damping for comparison with a layer thickness of 20 nm.

3.4 Measurement setup

To invesitgate Si3N4 nano-string covered with metal multilayers we employ an optical
detection scheme, similar to the one used in part 2. More details about the initial config-
uration of the setup can be found in the Bachelor thesis of Peter Jörg [200]. During this
thesis, this setup required multiple upgrades and adaptations.

3.4.1 Optical interferometer

The optical measurement technique uses a free space optical interferometer, in its basic
concept very similar to the optical interferometer discussed in 2.4.1. However, this setup
has no secondary interferometer arm and was build with a strong focus on the compatibility
with electro-magnets. As can be seen in Fig. 3.5, the optical interferometer is split into two
spatially separated parts, one operating in vacuum, to prevent the negative influence of air-
damping on the nanostrings [115], and one situated in ambient environment. The vacuum
vessel is shaped in a cylindric form to fit between the pole-shoes of several electromagnets at
the WMI. Care was taken to use non-magnetic materials for this vacuum enclosure, as well
as the components within. This supresses motion or deflection of the interferometer parts
due to magnetic fields. Here, we only present a simplified depiction of the interferometer.
A full description can be found in App. C.3. The beam of a 633 nm laser is fed into the
interferometer by a single mode fiber from a spatially separated source. Besides removing
the necessity of mounting a relatively bulky and heavy laser directly on the head of the
setup, it allows a flexible switching of laser sources. The beam then passes the optical
head unit and is guided into the vacuum tube and focused onto the sample. The reflected
laser light is modulated by the string on the sample in the same way as in Sec. 2.4.1.
The reflected light re-enters the head unit and is guided to the photo detector. A LED
source as well as a camera in the head unit allow optical access to the sample. The chip
containing the nano-string is mounted on a xyz-piezo stage to allow precise positioning
of the selected nano-string in the focal point of the laser. The laser beam is focused on
center of the string (x = l/2) and interferometry is used to measure the displacement of
the nano-string’s oop motion. To excite this oop mode at its resonance frequency, the
entire sample is glued on an extended piezo-actuator using a novolak polymer (Fig. 3.6,
red layer). This actuator allows to exert a coherent oscillating force onto the entire chip,

4The samples were fabricated in cooperation with the group of Justin M. Shaw, special thanks go to
Eric R.J. Edwards, who fabricated the CoFe stacks.
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Figure 3.5: Sketch of the optical interferometer. The laser beam from a spatially
separated laser is guided to the interferometer head by a single mode fiber. The
head unit guides the laser into the vacuum tube. The reflected light is again passed
through the head unit onto a photo-detector. A red LED source and a camera
for optical access to the sample are integrated into the interferometer head. A
full schematic can be found in App. C.3. The interference occurs similar to the
interferometer in Sec. 2.4.1 between the light reflected by the nano-string and the
light reflected by the substrate beneath the string.

which is glued on-top and hence allows to excite the motion of the nano-string. Technically,
we detect the frequency dependent displacement response of the nano-string to such a
stimulus using a vector network analyzer (VNA). To remain in the linear response regime
of the nano-string, we choose an appropriately small excitation amplitude (cf. 1.3.2). To
control the direction of magnetization, the sample is positioned between the pole pieces
of an electromagnet. In detail, this allows to control the amplitude and direction of the
applied magnetic field, rotatable in the xy-plane. The applied field direction is varied by
rotating the electromagnet, whereas the sample position and orientation remain fixed.

3.5 Magnetostriction of ultra-low damping CoFe films

In this section, we discuss experiments investigating the magnetostriction of ultra-low
damping CoFe thin films. This work was carried out in collaboration with the group of
Justin M. Shaw at the NIST, Boulder. The main part of the data shown here were pub-
lished in Ref. [80].
Figure 3.7 a) shows a color-encoded plot of the driven mechanical response function as
a function of actuation frequency and applied magnetic field direction. Red highlights
large out-of-plane(oop) mechanical displacement, while blue indicates no visible motion.
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Figure 3.6: Schema of the measurement setup for the optical interferometry. A
laser beam (λ = 633 nm) is focused onto the center of a nano-string , the reflected
light intensity is detected with a photo-diode. The sample is glued onto a piezo-
actuator (red layer), which is used to globally drive the nano-strings on the sample.
A vector network analyzer (VNA) is used to send the driving tone to the piezo and
compare relate this to the signal detected by the photo-diode. The sample stage is
positioned between the pole-shoes of an electromagnet, this allows the application
of an external magnetic field.

This raw data is measured for a constant actuation amplitude and a fixed magnitude of
the magnetic field µ0H = 950 mT. The resonance frequency of the string is 180° periodic
with respect to the external magnetic field direction. An exemplary cut of this dataset
at Φ = 153° is displayed in the inset of Fig. 3.7 b), showing the mechanical response as
function of the drive frequency. As the sample position is not actively stabilized, we at-
tribute variations in the detected amplitude to drifts in the optical alignment originating
from the rotation of the magnetic field direction. We estimate typical displacement ampli-
tudes present in our experiment to be in the nanometer range5. To extract the resonance
frequency, we fit a Lorentzian line shape (1.41) to the data for each measured angle Φ.
From this fit we find a linewidth (full-width at half-maximum) of 900 Hz corresponding to
a Q-factor of the string of about 8000. This Q-factor is significantly reduced compared to
that of a pure SiN string and can mainly be attributed to the added metal layer stack.
The stack increases the overall mass of the string, and thereby its effective density, which
lowers the resonance frequency (see Eq. (3.13)). Moreover, adding a metal component is
known to change the mechanical damping of nano-strings [198, 201]. Figure 3.7b) shows
the evolution of the resonance frequency as a function of Φ.
To investigate the impact of the shape of the nano-string on the frequency response, we

have measured a set of strings with different lengths and widths. To analyze our data,
we use a global fit routine employing Eqs. (3.4) and (3.13). The fit uses the data of all
strings for each CoFe (Co25Fe75/ Co10Fe90) composition as input parameter. In addition,
we use the thickness t =112 nm and 122 nm of the nano-strings and their effective densities
ρeff =4350 kg/m3 and 4336 kg/m3 of each string as fixed parameters, as both are known

5An active calibration of the mechanical amplitude was not possible with this sample. The mechanical
amplitude was estimated using geometrically similar samples made from pre-stressed SiN and pre-stressed
Al.
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Figure 3.7: Mechanical response of the fundamental mode of a 25 µm long nano-
string as a function of external field direction Φ at µ0H = 950 mT. a) Shows the
frequency dependent photo-voltage as a function of external magnetic field direction
and drive frequency. This is a direct measure for the mechanical amplitude of the
string. b) Shows the extracted resonance frequencies at specific field directions.
The inset in b) shows a slice from a) at Φ = 153° and the fit to a Lorentzian line
shape (red line) used to extract the resonance frequency. Error bars are fit errors.

values. The thickness of the metal stack was determined by calibrating the deposition
rates using x-ray reflectometry. The density was calculated by using the weighted aver-
age of the single material bulk densities [202]. Figure 3.8 a) shows the fit of Ω0 for the
Co25Fe75 compound for strings of different lengths. Here, the pre-stress σ0, the magnet-
ically induced stress σ1, and the Young’s modulus E of the sample were set as global fit
parameters. For the fit, we used fixed values for the length l of the strings with 25 µm and
35 µm. The string lengths of the two nominally 50 µm long strings are free fit parameters.
This allows to account for small variations in the frequencies of the two nominally identical
strings, which otherwise should have the exactly the same frequency. The fitted lengths
are 51.2 µm and 50.8 µm and are in good agreement with the design value of 50 µm. The
uniaxial anisotropy constant Kau is a free fit parameter for each string as it might differ
from string to string. Figure 3.9 a) shows the same for three nano-strings topped with the
Co10Fe90alloy, although in this case all three lengths (25 µm, 35 µm and 50 µm) were fixed
parameters. As shown in Fig. 3.8 a) and Fig. 3.9 a), we find good agreement between the
global fit and the data using σ1 = −386(5) kPa, σ0 = 458.7(1) MPa and E = 857.7(2) GPa
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Figure 3.8: Global fit to the magnetization direction dependent resonance fre-
quencies of strings with different lengths covered with the Co25Fe75 stack.
The resonance frequencies of the strings with a length of 25 µm (diamonds),
35 µm (triangles), 50.8 µm (hexagons) and 51.2 µm (circles) length were globally
fit using Eqs. (3.4) and (3.13) (red lines). Fit errors are within the size of the data
symbols. In b) the deviation ∆Ωm = Ω0 − Ωfit is plotted versus Φ. The residuals
are non zero for all the strings, however no clear systematics are apparent.

for the Co25Fe75 alloy and σ1 = −334(5) kPa, σ0 = 175.0(1) MPa and E = 247.5(2) GPa
for the Co10Fe90 alloy. The difference in pre-stress and Young’s modulus between the mea-
surements can be attributed to the different alloys and their difference in layer thickness.
The extracted pre-stress is reduced compared to the pre-stress in a SiN string without any
metal on top. This can be attributed to a compressive stress in the layer stack, exem-
plary for the Co25Fe75 alloy of ∆σ0 ≈ 270 MPa. The sputtering process may change the
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pre-stress of the composite string. Even though the sputtering process is carried out at
room temperature, the temperature of the nano-string is expected to increase significantly
due to the poor thermal coupling of the string to the substrate. Thus, the metal stack
is deposited at a temperature well above room temperature. Cooling down the string
coated by the metal stack after deposition then results in a partial compensation of the
pre-stress due to different thermal expansion coefficients of SiN and the metal stack. A
temperature increase of about 300 K could explain the observed change of pre-stress. For
the thicker Co10Fe90 alloy sample a higher compressive stress and thus a larger devia-
tion in pre-stress can be assumed. Also, the extracted Young’s modulus is larger then
expected from the Young’s moduli of the individual materials [202]. Using (3.12) and
(3.14) in combination with the known sample parameters and the Co-Fe Young’s modulus
we obtain a λ‖(Co25Fe75) = (−20.68 ± 0.25) × 10−6 and b(Co25Fe75) = 2.62(5) T. We
obtain these values when considering tCoFe = 10 nm, t = 112 nm, ECoFe = 208.9 GPa [202],
MS = 1.904 MA m−1 ( [191]) as well as the shear modulus G = 81.7 GPa [202]. Here
the Young’s modulus and shear modulus for Co25Fe75were calculated from the litera-
ture values of the single materials. The same was done in the case of Co10Fe90, here
with a tCoFe = 20 nm, t = 122 nm, ECoFe = 208.4 GPa [202],G = 81.6 GPa [202] and
MS = 1.825 MA m−1 [191]. Thus resulting in: λ‖(Co10Fe90) = (−9.80± 0.12)× 10−6 and
b(Co10Fe90) = 1.30(2) T.
In addition, the measured data allow to access magnetic anisotropy parameters. For the
Co25Fe75 sample we find an anisotropy 2Kau/Ms ≈ 300 mT with an easy axis pointing
along the y-direction of the string. Note that because we have access only to in-plane
measurements, we can calculate only projections of an anisotropy to the xy-plane of the
sample. Combined with the calculated shape anisotropy Bshape ≈ 100 mT [113], with an
easy axis along the x-direction of the string, the total anisotropy field in the sample adds
up to Baniso ≈ 400 mT. The compressive stress in the metal ∆σ0 leads to a magnetoelastic
anisotropy of Bmagel ≈ 4 mT [197]. For the Co10Fe90 sample the anisotropies are similar.
Unfortunately, we cannot identify the origin of the anisotropy. However, we speculate that
the overhanging material at the edges of the string might result in a preferential orienta-
tion of the magnetization direction perpendicular to the string. This may be a result of
moving (rotation) the sample during the sputtering process, which is however necessary
to avoid other, even stronger stress induced anisotropies e.g. [203–205]. The deviation
∆Ωm = Ω0 − Ωfit shown in Fig. 3.8 b) shows that there is some disagreement between
the model and the data, however, without any systematics. For the Co25Fe75 deviations
are lower for the two strings where the string length is a fit parameter, compared to the
other strings where the string length was fixed for the fit. In addition, we note that the
assumption of a single uniaxial anisotropy in the system may lead to increased systematic
uncertainties. The same general observation holds true for the Co10Fe90 sample, as can be
seen in Fig. 3.9 b). To set these results in context, we plot the extracted values of λ‖ and b
for the two measured thin film CoFe alloys (Co25Fe75 and Co10Fe90) as well as the values
for thin-film Co [79] and bulk Fe [202] in Fig. 3.10. The ultra-low damping material inves-
tigated here seems to follow the simple trend of an interpolating magnetostrictive constant
connecting the bulk values. Since the values for the saturation magnetization and shear
modulus are similar for Co and Fe, b is approximately linearly proportional to λ. Neverthe-
less, Fig. 3.10 also shows the data from Hunter et al. [179] (star with dot) obtained using
a cantilever displacement method on various 500 nm thick CoxFe1−x films. Their data
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Figure 3.9: Global fit to the magnetization direction dependent resonance frequen-
cies of strings with different lengths covered with the Co10Fe90 stack. The reso-
nance frequencies of the strings with a length of 25 µm (circles), 35 µm (triangles)
and 50 µm (hexagons) length were globally fit using Eqs. (3.4) and (3.13) (red
lines). Fit errors are within the size of the data symbols. In b) the deviation
∆Ωm = Ω0−Ωfit is plotted versus Φ. The residuals are non zero for all the strings,
however no clear systematics are apparent.

show an entirely different behavior, most importantly an opposing sign of λS ≈ 50× 10−6.
Even earlier experiments by Hall [178] (stars) extrapolated an in-plane magnetostrictive
constant of λ100 ≈ 75 × 10−6 for Co25Fe75 and of λ100 ≈ 48 × 10−6 for Co10Fe90 for bulk
crystal discs. We note, however, that the seed layer material, interface effects between
seed layer and CoFe layer, and the sputtering conditions are crucial for the realization of
ultra-low damping material [206]. Thus, we rationalize that the magnetostrictive prop-
erties can be significantly altered due to interface effects. Low damping Co25Fe75 was
realized on SiOx [206] and Si [191] using the same seed layers used in this work. To ensure
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Figure 3.10: Magnetostrictive and magnetoelastic constants for the two Co1−xFex
alloys and pure metals (Co [79],Fe [202]) for reference. Circles show the magne-
tostrictive constant (λ‖) on the left scale, while diamonds (red) depict the cor-
responding magnetoelastic constant (b) on the right scale. The star shaped data
points correspond to literature values from Refs. 178, 179. Uncertainties in the al-
loy composition (±2%) are represented by the symbol size for the Co25Fe75 and
Co10Fe90 compounds, uncertainties in the values of λ‖ and b are given in the text.

that the low-damping behavior of the Co-Fe is still present when changing the substrate
from Si [108] to SiN used here, we performed ferromagnetic resonance (FMR) experiments
on unpatterned CoFe-stacks on SiN samples (c.f. Appendix C.2) and find an oop Gilbert
damping of α = (2.1± 0.1)× 10−3 for a 10 nm thick Co10Fe90 film which is in agreement
with the values from Schoen et al. [108].
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3.6 Discussion and Outlook

In this part, we considered a hybrid system, consisting of a nanomechanical string res-
onator coupled to a magnetic degree of freedom. This was established by using a multi-
layer nano-string where one of the layers was a ferromagnetic metal. How this additional
magnetic material changes the mechanical response of the nano-string and how it is influ-
enced by the magnetization of the system, was first discussed theoretically.
We then investigated the magnetostrictive constants of two low magnetic damping Co-Fe
alloys grown within a layer stack [108]. To get a quantitative value for the magnetostriction
we used a magnetization direction dependent optical resonance frequency measurement of
a nano-string, which is covered with the magnetostrictive layer stack. This readout method
was first established in [79] and adapted for a many-layer film here. The layer stack for
this sample was grown by the group of Justin Shaw at NIST. This method allows the
investigation of the magnetostrictive and elastic properties of thin film magnetic layers,
even with small sample volumes and high aspect ratios, which both are requisites for future
technical applications of spintronic devices, including sensing applications. We extracted
a magnetostrictive constant of λ‖ = (−20.72± 0.33)× 10−6 which corresponds to a mag-
netoelastic constant of b = 2.62(5) T for the ultra low damping Co25Fe75 alloy, as well
as λ‖ = (−9.8 ± 0.12) × 10−6 and b = 1.30(2) T for Co10Fe90. With this, we show that
the magnetostrictive properties of the two investigated alloys have the same order of mag-
nitude as the constituent materials but differ significantly between the low-damping and
normal damping case. CoFe and in particular the ultra-low damping compound Co25Fe75
shows a size-able magnetoelastic constant and hereby makes an ideal candidate for sensing
and magnetization dynamic applications which rely on low damping materials. This is also
where the material system differs significantly from the well known low damping material
Permalloy. There the low magnetic damping was connected to near-zero magnetostric-
tion [194], whereas for the CoFe alloys it is connected to the particular seed and capping
layers [108] but as we found not a near-zero magnetostriction.
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PART 4

IMPACT OF ELECTRICAL CURRENTS
ONTO MAGNETOSTRICTIVE

INTERACTIONS IN
NANOMECHANICAL RESONATORS

4.1 Introduction

In this part, we investigate an alternative read out concept to optical interferometry as
a tool to determine the mechanical response of a nano-string resonator. While a tech-
nical advantage for switching from optical to an electrical readout concept resides in the
integrability of future devices, it is also of interest from a research perspective. For op-
tical readout concepts it is well established that the light field can result in an optical
tweezer like effect which can change the displacement of the nano-string and hereby the
mechanical resonance properties. Moreover, even more profane effects such as heating can
play a role. In this chapter, we want to explore an electrical readout of the mechanical
response spectrum of the nano-string which is known as magnetomotive readout [81–89].
Its advantages are that the technique is environment independent [86–88], supports a wide
frequency range [85, 86], and provides the possibility of reading out entire resonator ar-
rays [89] with minimal experimental overhead. However, little is known how this technique
combines with magnetic and magnetostrictive materials.
We will first discuss the theoretical idea of the measurement concept and consider the
different effects that need to be taken into consideration. This is followed by a brief de-
scription of the used sample as well as the experimental setup. We experimentally observe
an unexpected dynamic response in the form of an magnetic field orientation dependent
Duffing nonlinearity and discuss possible mechanisms leading to this behavior. In the
course of these experiments, we also investigate the heating impact of AC and DC cur-
rents onto a nano-string. We then summarize the findings of this part and give a short
outlook.

73
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4.2 Electrical readout strategies

The general idea of a magnetomotive readout method is quite simple. A conductive or
partly conductive string is exposed to a static magnetic field. This generates an electro-
motive force, if the string is in motion. This force depends on the string’s orientation with
respect to the magnetic field as well as the string’s maximum amplitude and leads to an
induced voltage in the string. This voltage is proportional to the magnetic field penetrat-
ing the area which the string covers while oscillating. This area depends on the string’s
motional amplitude as sketched in Fig. 4.1 b). The induced voltage oscillates with the
frequency of the mechanical excitation and its amplitude reflects the mechanical suscepti-
bility [76,207] (cf. Sec. 4.2.3). Besides driving the mechanical motion with a piezoactuator
as discussed in Sec. 3.4.1 an alternating current can also be used as excitation stimulus.
In particular the oscillating current exerts a Lorentz force onto the string. However, this
leads to the complication, that the readout and driving mechanisms are convoluted. As
we have an optical readout scheme with piezo-actuation in place (see Sec.3.4.1), we are
in the unique position that we can investigate the mechanical response with an without
the electrical current at play and thus can identify additional contributions impacting the
mechanical response due to its presence.

B
B

xy

z V

a) b)

AB

Figure 4.1: a) Sketch showing the sample setup, a metalized Si3N4 nano-string is
contacted on both sides to enable a voltage measurement. The string is oscillating,
in z-direction and an external magnetic field ~B is applied in the in-plane y -direction,
perpendicular to the string. b) Schema showing the imaginary loop created by the
moving nano-string penetrated by the external magnetic field. The light blue area
indicates the area swept by the moving string during oscillation.

4.2.1 Lorentz force considerations

We will now first consider the effects of the Lorentz force on a nano-string system, fol-
lowed by the theoretical description of the magnetomotive readout technique. We then
consider the heating effects in a nano-string when adding additional currents through the
string itself and briefly discuss the emergence of the anisotropic magneto resistance in a
magnetic nano-string. The most obvious contribution provided by the electrical current is
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the presence of an induced voltage which can back-act onto the mechanical motion. Due
to Faraday’s law of induction, the voltage along the string is

Uind = −Φ̇ = −Bλmlż(t), (4.1)

if we consider the string, or at least the metallic layer, to be homogeneous. Here l is the
length of the string, the factor λm accounts for the mode shape of the displacement, B
is the magnetic field applied perpendicular to the long side of the string, and z is the
string displacement (see Fig. 4.1). The mode shape depends on the details of the clamping
[123, 164, 208]. As Uind oscillates with the frequency of the displacement and reflects the
mechanical susceptibility, it can also be used to determine the resonance frequency and
the mechanical susceptibility of the system. However, due to the finite resistance of the
string and the connected circuit R = Rcircuit + Rstring the voltage also causes an induced
current along the string. This induced current is given by

Iind = Uind
R

= −Bylλm
R

ż(t). (4.2)

As z(t) oscillates, so does the current, which leads to the Lorentz force:

FLorentz = q(~v × ~B), (4.3)

with the current direction ~v. This force is then applied over the length of the string and
thus we arrive at:

FL =
∫
l
FLorentzds = lIindBy = −B

2λml
2

R
ż(t). (4.4)

In addition, we can also consider a bias current Ibias which is sourced by the external circuit
through the string. Taking these additional contributions into account, the equation of
motion of the nano-string reads ( see also (1.34):

z̈meff + Γmmeff ż + kz − Fdrive − FL + IbiaslB = 0,

z̈meff + Γmmeff ż + kz − Fdrive − l(−Ibias + Bλml

R
ż(t))B = 0, (4.5)

z̈meff + (Γmmeff + B2λml
2

R
)ż + kz − Fdrive − lIbiasB = 0.

Using (4.5), we can identify an effective damping Γeff

Γeff = Γm + B2λml
2

Rmeff
. (4.6)

This shows, that indeed the mechanical response spectrum of a electrically connected
nano-string can be influenced by a static magnetic field. The typically measured linewidth
Γm for these strings is in the order of 100 Hz for room temperature experiments. If we
assume the characteristic values for the parameters l = 60 µm and R ≈ 2 kΩ and use for
the estimation λm = 1, Γeff/2π ≈ 600 Hz and should therefore lead to an increase in the
observable linewidth.
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4.2.2 Control of the characteristic mechanical parameters by a quasi
static bias current

For the understanding of the experiment, we need to consider the impact of a DC or low-
frequency AC current sourced through the string. Where we assume that its frequency is
much lower than the mechanical resonance frequency Ωm

1. Figure 4.2 depicts the sketch
of the current. A DC current through the string is always linked with a voltage difference

B

xy

z
V

I

Figure 4.2: Sketch of the sample setup, additionally to the voltage readout a current
source enables driving an additional AC or DC current through the string.

along the string. We note that various concepts exist utilizing a tuning scheme of the
properties of the resonance based on electric fields [70,73,149,198,209,210]. However, this
tuning mechanism is ineffective in our experiments, as this concept relies on a dedicated
bias electrode next to the string and we use sufficiently low voltages throughout the mea-
surements. The impact of a bias current onto the mechanical resonance frequency via the
Lorentz force needs to be considered, for the given parameter set this amounts to a force of
≈ 2.5 pN. This effect is thus negligible [209] compared to the shifts in resonance frequency
due to magnetostrictive and heating effects and can further be seen as constant over the
experiment.
In addition any AC or DC current can also result in a heating of the string. Since the
metal layer in or on the nano-string has a resistance R, a current I flowing through the
string will heat the string via Joule heating

P = RI2. (4.7)

The dissipated electrical power deposits heat and thereby causes a change of the tem-
perature of the string. Due to the geometry of the structure the heat flow is restricted
resulting in a spatially inhomogeneous thermal profile. The string has a higher tempera-
ture compared to the clamps and substrate. This thermal profile can in turn also source
heat currents:

Q̇ = λTA
∆T
dS

. (4.8)

Here, A is the strings cross section, dS is the distance the thermal flow has to cover
(dS,max = l) and λT is the thermal conductivity of the material. For this we assume that

1Please note, that we will use the label external current for this to distinguish it from the previously
treated induced current.
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the total dissipated power P is converted into heat Q̇. Similar to what was discussed
in Sec. 3.2.2, the change in temperature, leads to a change in the effective length [113]
of each of the layers. In particular, due to thermal expansion and the differences in the
thermal expansion rate the length of the covering layer changes to l′ = lαm∆T , whereas
the length of the Si3N4 string becomes l′′ = lαSiN∆T Here, αm and αSiN are the respective
thermal expansion coefficients. The difference between these two lengths ∆l = l

′ − l′′ =
l(αm − αSiN)∆T can be viewed as an additional stress in the system, because the shared
interface suppresses an actual length difference between the layers [211]:

∆σ = Estring
∆l
l

= Estring(αm − αSiN). (4.9)

Here Estring is the effective Young’s modulus of the bi-layer string as defined in Eq. (1.31).
Note, that we omit the temperature dependence of the Young’s modulus in (4.9), as this
effect is negligible compared to the relative expansion coefficient [202]. For the materials
and geometries chosen in the experiments presented later, this effect leads to a decrease of
the overall tensile stress for increasing temperatures. Thereby, it also leads to a decrease
of the strings resonance frequency(1.19):

Ω′m = π

l

√
σ0 −∆σ

ρ
. (4.10)

While naively, this effect could be interpreted as a static response, we point out, that there
is a temporal component to this effect. For a DC current, the dissipated electrical power
(Joule heating) results in an increase of the temperature of the string, which is determined
by a steady state equilibrium between the heat dissipation in the string and the thermal
coupling to the environment (mostly via the clamps). Therefore, driving an AC current
through the string can result in a more complex behavior In particular, the two cases to be
distinguished are (i) a oscillating frequency slower than the thermal relaxation time of the
system and (ii) is a fast AC stimulus, with a frequency exceeding the thermal relaxation
time of the system. In the first case, the thermal currents remove the dissipated heat
quickly and hence the mechanical frequency oscillates with double the frequency of the
charge current. The latter results in an average temperature increase corresponding to a
constant mechanical frequency shift.

4.2.3 Anisotropic magneto-resistance

As the metallic layer is magnetic, we also need to consider the impact of magnetoresistive
effects, more precisely the anisotropic magneto-resistance (AMR), onto the mechanical
properties of the string. This effect, first reported by William Thomson (Lord Kelvin)
[212], is based on anisotropic scattering in ferromagnetic materials. A more fundamental
explanation of the effect and its microscopic origin can be found in [213, 214]. The AMR
is typically described in the form

ρAMR = ρ⊥ − (ρ‖ − ρ⊥) cos2(ΘAMR). (4.11)

Here, ∆ρmax is defined as ∆ρmax = ρ‖ − ρ⊥, with ρ‖ the resistivity measured along the
current direction and ρ⊥ the resistivity perpendicular to it. The angle ΘAMR is spanned
by the current density vector and the magnetization direction M. For our geometry, we
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assume a homogeneous magnetic texture and hence use R = ρAMRl/A as resistance of the
string. In this sense, we assume that the current is exclusively directed along (x-direction)
the string. The magnetization direction is assumed to be restricted in the xy-plane. These
restrictions need to be taken into account when considering AMR effects in a (cobalt
covered) nano-string environment [76,78,207].

4.3 Sample fabrication

The fabrication process for the sample discussed here, is in general the same as was al-
ready discussed for the CoFe samples in Sec. 3.3. Therefore, we only discuss the differences
between the two samples. The main difference between the samples is the layer stack. For
the Co sample, the nano-strings were covered in a 20 nm thick cobalt layer via mag-
netron sputtering (Fig. 4.3). Furthermore, the geometry of the string’s clamping pads was

3 nm

3 nm

3 nm

3 nm

90 nm

90 nm Si3N4

20 nm Co

xy
Θ

M
Φ

µ0H
z

Figure 4.3: Schematic of the bi-layer nano-string. The Si3N4 string is covered with
a 20 nm thick layer of Co by sputtering. The sample is equipped with bonding pads
connected to the string (cf. Fig. 4.4).

changed, and the clamping pads enlarged. This allows us to easier connect the strings
electrically via aluminum wire bonds. The layout of the string’s on the Co sample can be
seen in Fig. 4.4 b) compared to the simple layout used for the CoFe samples (panel a)).
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a)

b)

Figure 4.4: Schematic of the nano-string design used: a) Simple double clamped
string b) Double clamped string with enlarged, asymmetric pads for wire-bonding
to the cobalt layer.

4.4 Measurement setup

In this section, we discuss the measurement setups used to investigate the magneto-motion
of a magnetic metalized nano-string, and the impact of external electrical currents onto the
behavior of a nano-string. For the optical measurements, we use the optical interferometer
used in Part 3 and described in Sec. 3.4.1. Additionally to this, we use the electrical readout
setup discussed in the following. For a more detailed description of the measurement setups
and their integration, please see App. C.3.

4.4.1 Electrical readout

To integrate the electrical readout technique discussed in Sec. 4.2, the nano-string is
electrically connected to room temperature electronics. As depicted in the electrical circuit
diagram shown in Fig. 4.5, we can perform voltage measurements and have the ability to
source AC and DC currents through the string. Note, that this allows to simultaneously
measure the electrical and the optical response, which we will later use in our experiments
(see Sec. 4.5). We use a Zurich instruments lockin with two simultaneous recorded inputs.
This allows us to measure the resistance of the sample (using an Iac = 50−400 nA stimulus
at 23 Hz) and also the large frequency response at MHz frequencies originating from the
motion of the string due to Faraday’s law of induction. A more detailed description of the
electrical connection scheme, including wire bond connections can be found in App. C.3.
The second input (and output) is used to excite the mechanical motion and measure the
corresponding displacement via optical interferometry, this part of the measurement is
comparable to the VNA measurements used in Sec. 3.4.1. For the electrical measurements
discussed later, we distinguish two cases for the electrical readout setup. In case i) the
electrical circuit including the nano-string is closed. We use this configuration to feed
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a) b)

Figure 4.5: Schema of measurement setup for the simultaneous optical interfero-
metry and electrical readout. The optical part is the same as described and showed
in Fig. 3.6. a) Connection schema of the lockin amplifier. One channel of the
Lock-in is used to detect the voltage across the string (I1) and to send an external
current through the string via O1. The signal of the photo-detector is recorded
by input (I2 of the LI. b) Circuit diagram equivalent of the readout setup of the
nano-string. The voltage across the string, as well as the photo-voltage are mea-
sured. At the same time it is possible to send a DC current an AC current or both
through the string. The sample stage is positioned between the pole-shoes of an
electromagnet and a piezo actuator can be used to shake the entire sample by using
a voltage supplied by O2.

a current through the string. This is the situation shown in Fig. 4.5 b). In the second
case ii) this electrical circuit is open. In both cases the measurement lines for the voltage
measurement are connected. To point out which circuit setup was used for the respective
measurement, we introduce two icons representing the respective configurations in Fig. 4.6.
Here panel a) corresponds to the closed circuit of case i) and panel b) to the open circuit
of case ii).
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V
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a) b)

Figure 4.6: Icons representing the different configurations of the electrical readout
setup shown in Fig. 4.5. In a) the electrical circuit is closed and a current can flow
through the string or be sourced through it. In b) the circuit is open. In both cases
the voltage across the string can be measured.

4.5 Magneto-electromotive interactions in an electrically
connected nano-string

In this section, we discuss experiments focusing on the comparison of electrical and opti-
cal readout concepts for the magnetization orientation and the mechanical displacement.
For these measurements we use a Si3N4 string covered with tfilm = 20 nm of cobalt (see
Sec. 4.3). In detail, we use the sample layout shown in Fig. 4.4 b) and employ a combined
electrical and optical readout setup (see Sec. 4.4.1 and App. C.3).

4.5.1 Simultaneous probing of the mechanical motion using optical and
electrical readout

We start the investigation of the sample response by performing a simultaneous measure-
ment of the optical and electrical signatures as a function of the external magnetic field
direction Φ. Here, an external magnetic field of B = 473 mT was applied. Then Φ was
changed stepwise by rotating the electromagnet around the sample in the xy-plane. This
follows the same measurement procedure as was already used in 3.5. At each angle step,
three measurements are recorded simultaneously. This is shown in Fig. 4.7. In panel a)
we show data gathered by optical interferometry, comparable to the measurements carried
out in Sec. 3.5. Simultaneously, we measure the induced voltage detected at the stimulus
frequency of the piezo actuator (panel b) recorded for a drive amplitude of Vpiezo = 20 mV.
Using this technique, we are sensitive to the string’s mechanical amplitude. However, as
discussed in Sec. 3.5, we expect a distinct amplitude response as the induced voltage origi-
nates from Faraday’s law of induction. In particular, we expect a suppression of the signal
for Φ = 0° and 180° and a maximum in the detected voltage at Φ = 90°. We indeed observe
this in Fig. 4.7. In addition, we observe a pronounced Φ dependent shift in the mechanical
resonance frequency, this is due to the magnetostriction in the cobalt. Note, that the
background in panel b) shows an increase if the external magnetic field is perpendicular
to the string. This effect is not apparent in the optical measurement shown in panel a).
We attribute this to the change in the strings resistance R and a following change in the
detected voltage. Panel c) shows a static measurement of the string’s resistance by ap-
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plying a slow AC current with IAC = 100 nA and νAC = 23 Hz and measuring the voltage
across the string’s length (cf. Sec. 4.2.3). As stated by (4.11) the resistance has the largest
values for R(M ‖ x) ≈ 1370 Ω and declines sinusoidally towards R(M ⊥ x) ≈ 1350 Ω,
this corresponds to a ρ‖ ≈ 9.13× 10−8 Ω m with a ratio of (ρ‖ − ρ⊥)/ρ‖ = 1.4% which
is comparable to previous measurements by Nynke Vlietstra (ρ‖ ≈ 1.4× 10−7 Ω m) and
values from the literature ρ‖ ≈ 1.7× 10−7 Ω m [207]. This shows, that the AMR changes
with Φ but is independent of the piezo drive. The oscillations visible along the frequency
axis of panel c) can be attributed to a slight crosstalk in the read out electronics. Figure
4.7 demonstrates, that the electrical and optical readout concepts give comparable results,
where there is the difference that the amplitude of the electrical readout signature also
reflects the symmetry of the Faraday effect. Moreover, as expected these electrical readout
schemes can also be used with magnetic materials. Please note, that due to the change
in the resistivity for each Φ, the electric readout of the mechanical resonance frequency is
biased slightly differently for each Φ as well, thus a direct amplitude comparison between
two slices of panel b) needs to be taken with care.
Next, we want to take a further look into the mechanical response spectrum and specif-

ically the dependence on the external field direction and thus, also the magnetization
direction. As shown in Fig. 4.7a) and b), the lineshape of the mechanical response spec-
trum changes during the measurement. For the parallel case ~M ‖ x (Φ = nπ ;nεN0),
the linewidth is smaller (Γ/2π ≈ 230 Hz) and the lineshape is pure Lorentzian, as pre-
dicted by the model introduced in Sec. 1.3 and as can be seen in panel d). When the
orientation of the external magnetic field changes towards the perpendicular case ~M ⊥ x

(Φ = (n + 1/2)π ;nεN0), this changes. First, at small deviations from the parallel orien-
tation, the linewidth begins to broaden. This can be seen in panel e). Here the fit to
a Lorentzian lineshape is still possible, however the linewidth is larger compared to the
initial value Γ/2π ≈ 310 Hz This effect can be explained by an increased effective damp-
ing rate Γeff/2π due to the Lorentz force as discussed in Sec. 4.2.1. However, when the
orientation approaches the perpendicular case ~M ⊥ x, the lineshape of the mechanical
response changes more drastically and starts to resemble a shark-fin. This can be seen in
Fig. 4.7 f) This non-linear behavior is usually seen as an effect of Duffing-like behavior of a
nano-string. It indicates, that non-linear restoring forces become relevant for the equation
of motion (see Eq. 4.5). This effect is unexpected and rather surprising, and cannot be
explained by simple Lorentz force considerations as we made in Sec. 4.2.1. The data shown
this far, was extracted with the electrical circuit around the sample closed (cf. Fig. 4.6)
and thus allowing induced and external currents to pass through the string.
To complement the findings in Fig. 4.7 (and later 4.9), we measure the mechanical re-
sponse for the field orientations Φ = 0° and Φ = 90° (see Fig. 4.8). With this we want
to ensure, that the mechanical response does not change depending on external magnetic
field strength. Panels a) and c) show, optical and electrical readout measurements, and
showcase that the characteristic shark-fin lineshape observed for Φ = 90°, becomes visi-
ble from B ≥ 250 mT and increases towards higher magnetic fields. In the parallel case
Φ = 0°, the spectrum remains unchanged. For the parallel case we chose to observe the
mechanical response spectrum for even higher magnetic fields up to 630 mT, and observe
no changes in the linewidth up to this field. We note, that the field of 630 mT is larger
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Figure 4.7: Raw data set of the combined electrical and optical readout methods.
Φ denotes the angle between the strings long axis and the external magnetic field.
The y -axis shows the piezo drive frequency. a) optical readout at drive frequency.
b) AC electrical readout at drive frequency. Both a) and b) show the mechanical
response spectrum, with dark color denoting high mechanical amplitudes. Note the
typical cos2(Φ) dependence of the resonance frequency due to magnetostriction in
the material. Also note the highly increased linewidth for Φ ≈ 90°. c) Static
AMR measured with a ν = 23 Hz AC current (IAC = 100 nA), the data shows a
reduction in resistance for H ⊥ x. The external magnetic field strength was set
to 473 mT. The piezo actuator was driven with Vpiezo = 20 mV. The panels d-f)
show cuts along different set angles (0°, 30° and 90°) from panel a) and showcase
the change in lineshape. The lineshape starts as a Lorentzian (0°), widens up (30°)
and shows nonlinear behavior at 90°.

than any anisotropy fields known for the sample material Co and the geometry 2. The
2The saturation magnetization for cobalt is given as 1167 kA m−1, and thus the shape anisotropy can

be approximated as µ0Haniso ≈ 22 mT [79,144].
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inversion of the magnetic field leads to the same observation. The same is true for all the
measurements shown in this section and hence we note that the effects are symmetric in
B.
We next discuss the presence of the electric circuit on the observed non-linear signature.
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Figure 4.8: Magnetic field sweeps for the two extreme angles Φ = 0° ‖ x and
Φ = 90° ⊥ x separated in columns, the rows show the respective optical and
electrical readout. For Φ = 0° the linewidth and frequency of the string does not
change with increasing external field(b),c)). In the perpendicular case Φ = 90° the
frequency and linewidth change visibly. This can be attributed to magnetostrictive
effects. To check for effects in the parallel case, the magnetic field strength is set
to the technical limit of 630 mT.

While the non-linear response is evident for the configuration of a closed circuit (Fig. 4.7),
the mechanical response remains in the linear regime if the circuit is set to ”open “and
no additional bias current is applied (see Fig. 4.9). In this case no AMR measurement
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can be performed. The magnetomotive readout is much closer to the noise limit, but can
clearly be observed. The linewidth and lineshape stay relatively constant for all external
field directions, as the effective linewidth remains at Γeff/2π ≈ 300 Hz independent of the
magnetic field orientation. We note that Fig. 4.7 and 4.9 use the same external magnetic
field (B = 473 mT) and the same piezo drive voltage(Vpiezo = 20 mV). The slight shift
in the initial resonance frequency can be attributed to a shift in the string temperature
due to current heating (cf. Sec. 4.5.2). Further analysis shows, that the linewidth in both
measurements at Φ = 0° is comparable, Γ0◦,AC ≈ Γ0◦,noAC ≈ 300 Hz. For the second
measurement, this broadens slightly for Φ = 90°, and the amplitude also is reduced here.
From this we can learn, that the impact of only having an external magnetic field per-
pendicular to the string, shifts the resonance frequency according to the magnetostrictive
effect (∆Ωm(I = 0) ≈ 1500 Hz) and, a slight linewidth broadening paired with a slight
decrease in mechanical amplitude can be observed. However, the Lorentz force consider-
ation made in Sec. 4.2.1 is not applicable in this case. For the case with an added AC
current through the string, this magnetostrictive shift can not be easily determined since
the bare resonance frequency is not straightforwardly identifiable. Estimations of the shift
via the low frequency offset of the mechanical feature yields ∆Ωm(I 6= 0) / 1800 Hz. This
puts it in the same range as the value in the experiment without electrical currents. Thus
the magnetostrictive effect seems not to be affected the observed change in the mechanical
response. This motivates us to expand the equation of motion presented in Sec. 4.2 by

V

Figure 4.9: Raw data set of the combined electrical and optical readout methods.
Φ denotes the angle between the strings long axis and the external magnetic field.
The y -axis shows the piezo drive frequency. a) Electrical readout at drive frequency
and b) optical readout at drive frequency. Both a) and b) show the mechanical
response spectrum, with dark color denoting high mechanical amplitudes. Due to no
external current in the string, the signal to noise ratio for the electrical readout in a)
is significantly smaller compared to the measurements shown in Fig. 4.7. Note the
typical cos2(Φ) dependence of the resonance frequency due to magnetostriction in
the material. The piezo-actuator was driven with Vpiezo = 20 mV and the external
magnetic field strength was set to 473 mT.



86 4.5 Magneto-electromotive interactions in an electrically connected nano-string

including a Duffing term (cf. Sec. 1.3.2) in Eq. 4.5:

z̈meff + (Γmmeff + B2λml
2

R
)ż + kz + αmeffz

3 − Fdrive − lIbiasB = 0. (4.12)

We now want to consider, how the effect visible in Fig. 4.7 can be explained. During
the sweep of the external magnetic field direction, the response spectrum of the string
changes from a linear to a non-linear behavior. This behavior could be explained by
several means. One possibility is an increase in the string’s amplitude. This was shown
in 1.3.2 as a possibility to drive a resonator into the nonlinear regime. However, the
driving force exerted by the piezo does not change during the measurement, excluding this
reason. A second possibility is a decrease of the damping Γeff of the system. This would
allow for larger mechanical amplitudes and could be a reason for the Duffing like non-linear
response in the region of interest (Φ = 90°). However, the Lorentz-force induced additional
damping contradicts this model. Alternatively, a change in the Duffing parameter α would
also explain the effect. This would make α(Φ). and magnetic field dependent. the Duffing
parameter was defined in 1.3.2 as

α ≡ n2Eπ4

4l4ρ , (4.13)

containing material and geometric parameters. None of which are expected to show a
dependence on the magnetic field or magnetization direction. In addition we need to
account for the observation that α is only altered when a current flows through the string.
As discussed in Sec. 4.2.2 and mentioned above, the additional AC current leads to a
temperature increase in the string itself. The Young’s modulus of Co and Si3N4 is known
to be temperature dependent as is true for many materials [215–219], however typically
an increase in temperature leads to a decreasing Young’s modulus, which does not explain
the observed data. Furthermore, we will show in Sec. 4.5.2, how the mechanical response
changes due to heating, introduced by an additional current, in more detail. There we
will also see, that the temperature change does not explain the change in the mechanical
response spectrum. We will now, rather safely, assume that the following parameters
remain unchanged during the measurement: i) the gas pressure (p < 0.01 Pa), as the
sample is operated in a controlled environment. ii) the current flowing through the string
is well controlled. However, we note that the effect depends on the chosen configuration
and the current level.
In this respect, we can discuss the AMR as the potential origin of the observation. The
overall resistance of the string changes depending on the magnetization direction, and
hence the resistance R of the string in Eq. 4.12 has an angle dependent part:

R = R0 +RAMR cos2(Φ). (4.14)

This in itself would not lead to a large change in Γeff , as the AMR resistance is typically
in the order of ≈ 1 % of R0. However, the dynamic of the system and its oscillation
in z could lead to a more intrinsic dependence of R to a z2 term. This is sketched in
Fig. 4.10. The oscillation of the string leads to a ż(t) dependence. The magnetization
depends on the external field direction and also gets an oscillatory term, which in turn
makes the resistance of the string z2 dependent. This could in consequence lead to a
z2(t)ż(t) term in the equation of motion, which can lead to similar non-linear effects
as a z3(t) term [118]. This conjecture could allow to explain the emergence of the
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Figure 4.10: Sketch illustrating the interplay of the oscillating string in an external
magnetic field when a current is passing through the string. The current as well
as the magnetization gain dependences on the amplitude and frequency of the
oscillating string.

non-linear behavior observed in Fig. 4.7 and its absence in Fig. 4.9. However, further
experiments with non-magnetic materials are required to pinpoint the origin to the AMR.
By repeating the measurements with a sample where the Co layer is switched for a non-
magnetic metal e.g. Au, the effect should not appear if it indeed originates from the AMR.

4.5.2 Temperature shifts due to current

After discussing the mechanical response spectrum and its dependence on the external
magnetic field as well as the direct effects of an additional current sent through the string,
we now want to elaborate on a secondary effect. As all electric devices, the nano-string
shown in the measurements in this section, has a resistance R. This resistance was shown
to be around R ≈ 2000 Ω in Fig. 4.7. This resistance will lead to power dissipation if a
current flows through the string, and this power dissipation will lead to an increase in
the string’s temperature. From a theoretical standpoint this was discussed in 4.2.2, now
we will take a look into the experimental consequences. This is showcased in Fig. 4.11.
For this consideration, no magnetic field was used. Here we show a piezo drive voltage
sweep for different conditions. Panel a) shows a measurement without any added current
through the string, and in the absence of an external magnetic field. Here we see the
initially Lorentzian shaped mechanical response, which becomes Duffing like for larger
excitation powers. In this panel we also define the bare mechanical frequency Ω0

m as
the center frequency at the lowest excitation power. In panel b) we show the same
measurement, but with an added DC current of IDC = 400 nA sent across the string
during the measurement. As we can see, the general mechanical response spectrum does
not change. It is however shifted to a lower frequency by about 1 kHz, due to the change
in the string’s temperature. The fact that the Duffing spectrum for higher excitation
powers looks unchanged, also is an indication for no change in temperature during this
time. This suggests, that the current increases the temperature of the string, but reaches
a new thermal equilibrium faster then the data acquisition can occur. This changes in
panel c), here the additional current is applied in the form of a slow sinusoidal AC current
with IAC = 400 nA and a frequency of 23 Hz. In this case the change in the mechanical
response spectrum is more distinct. For low piezo excitation powers, we see not only one
undisturbed Lorentzian peak, but a double peak structure. The peak lower in frequency
is close to the frequency value visible in panel b), whereas the higher frequency peak is
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Figure 4.11: Mechanical response spectrum during a piezo drive-power sweep. For
a) no AC or DC current was sent through the string, in b) a DC current of IDC =
400 nA was applied and for c) an AC current with IAC = 400 nA and a frequency
ν = 23 Hz was sent through the string. The static current results in a straight
resonance frequency shift. For the alternating current, the resonance frequency has
a static shift, but two frequencies are discernible for low drive powers, here the
alternating current leads to an oscillation in the resonance frequency. By carefully
setting the measurement parameters both are visible as a broadened double peak
structure.

significantly higher in frequency, but not reaching the undisturbed frequency value shown
in panel a). This suggests, that the oscillation of the current is slow enough for the
string to thermalize partially within one current cycle and thus two distinct resonance
frequencies can be measured. Also the oscillating current leads to a lower dissipated
power over time compared to the direct current, which explains the difference in the
reached minimum frequency. Towards higher piezo drive powers, the mechanical response
spectrum broadens and no distinction between two separate peaks can be made anymore.
The data indicates a broadening towards a Duffing-like peak shape for the lower frequency
peak, but it allows no certain statement for the upper frequency peak before they merge.
However, neither does reach the pure Duffing shape which can be seen in panel b), which
is in agreement with the attribution of the effect to the AMR.
We now can compare the model for heating discussed in 4.2.2 with the actual resonance
change between panels a) and b). Using the extracted resonance frequencies from the
lowest piezo drive powers, and the thermal expansion coefficients of Co and Si3N4 [202], we
can evaluate Eqs. (4.9) and (4.10), and get a temperature difference of ∆Texp = 0.293 K.
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If we now take the known values for the string from fabrication and measurement, we
can also evaluate Eqs. (4.7) and (4.8). We thereby calculate a temperature difference of
∆Tcalc = 0.184 K, using the known values for I = 400 nA, R = 1938 Ω and the strings
geometry. For the thermal conductivity, we assumed a weighted mean of the conductivities
of Co and Si3N4 [202]. The difference between the value determined from the experimental
values and the one calculated from the model shows, that the approximations taken in
the model are not entirely justified, even if they are in the same order of magnitude. We
attribute this to a different thermal conductivity of the string, most likely in the area
of the clamping pads. This depends not only on material but also the specific geometry
and may lower the overall thermal conductivity and can be imagined as a bottleneck.
This assumption is also supported by the fact, that a thermal equilibrium seems to be
achieved fast, if at a slightly higher temperature then expected, as can be seen in in
Fig. 4.11. Apart from showing the influence of heating on the resonance frequency of a
nano-string the comparison of panels a) and b) also indicates that the Duffing behavior
does not seem to change depending on the string temperature alone. Furthermore the
fast thermalization visible in panel c) gives insight in the thermal flow in a nano-string
structure.

4.6 Discussion and Outlook

In this section, we discuss an alternative scheme for the readout of the motion of nano-string
resonators covered with a ferromagnetic material. For this, we used a bi-layer nano-string
where the bottom layer consists from Si3N4 whereas the top layer is made from Co. This
cobalt layer is electrically connected via the clamping pads. We compare this magnetomo-
tive readout method to a simultaneous readout using optical interferometry to compare
them. in particular, we observe that the electrical connection of the string to an external
circuit drastically alters its mechanical response spectrum. To be specific, we find a dras-
tic increase in the effective Duffing parameter. Moreover, applied electrical currents also
affect the temperature of the string via Joule heating. Again, this impacts the resonance
frequency of the metalized string. The full impact of electric currents onto the mechanical
and magnetic properties of nano-string resonators still holds several questions, in particu-
lar if the observed non-linear behavior is restricted to magnetic materials and specifically
if this effect originates from the AMR. They go however, beyond the scope of this thesis.
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PART 5

SUPERCONDUCTING
NANO-MECHANICAL CIRCUIT

DEVICES

5.1 Introduction

In this part of the thesis we will move beyond classical physics and discuss quantum phe-
nomena. The quantum nature of light [220,221] coupled with the quantized level structure
of atoms, result in the field of quantum electrodynamics (QED) [222,223]. A powerful plat-
form for QED in the microwave regime are integrated superconducting circuits [224,225].
In circuit QED (cQED), superconducting qubits [226] act as artificial atoms. High quality
coplanar waveguide resonators [227], or three-dimensional cavities [228] are used to contain
the quantized light field and allow experimental access. In this field of QED and cQED,
the Jaynes-Cummings model [229] is a powerful tool to understand the interaction between
quantum states and physical matter. Further, superconducting circuits show a high engi-
neering flexibility. This can be seen in the fact that they allow for strong [102, 224, 230],
ultrastrong [231–233] and even controllable coupling [234–238]. Recently, the research in
this field culminated in the demonstration of quantum supremacy by Arute et al. [239].
We want to discuss a different approach to use circuit QED. By coupling circuit QED
devices with mechanical elements, we enter the field of electromechanics, the microwave
pendant to the more known optomechanics [240]. This can be done by e.g. integrating
a nano-string resonator into a coplanar waveguide microwave resonator [90, 91]. It was
demonstrated, that strong coupling is reachable in a cavity electromechanical system [102].
The same system was further used to cool the mechanical resonator to its quantum ground
state by sideband cooling [96]. More recently coherent state transfer between an itinerant
microwave field and a mechanical resonator was shown [104]. Further, the readout of a
superconducting qubit by using a nano-electromechanical system was proved feasible [41]
and the integration of a mechanical element in a circuit qubit was shown [106]. All of this
shows not only the feasibility to combine mechanical elements with cQED devices, but
also, that the combination of nano-electromechanics with cQED is a powerful approach

91
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to delve into the quantum nature of mechanical motion. It also gives an insight on how
these hybrid systems can be used to enable ultra sensitive force sensors [94,241,242], new
quantum information processing technologies [105,243–245] as well as access to observing
quantum behavior in large scale structures [246,247].
Here, we will discuss a hybrid system, situated in the field of superconducting nano-
electromechanics and circuit QED. We will discuss the integration of a mechanical res-
onator in the form of a nano-string into a superconducting circuit qubit, specifically a
transmon qubit. This approach was proposed by by Abdi et al. in 2015 [248], to open sev-
eral interesting ranges rich in physics. Starting from three-partite entanglement, sideband
driven cooling, enabled by enhanced phonon-photon coupling strengths, to the generation
of mechanical Fock- or number states. Furthermore, also the possibility to use a mechanical
resonator, with its high quality factor, as an intermediate storage in a qubit environment
can be seen as a prospect. To set the context of the work done towards this goal within
this thesis, we will first outline the prior state of the art at the WMI, concerning this
specific topic. We will then consider second generation samples. We will compare finite
element simulation predictions with actual measurement results. At the end we discuss
the merits of using a different transmon layout, specifically the X-mon layout as a possible
new platform for integrating a nano-string into a qubit.

5.2 Embedding nano-electromechanics in superconducting
quantum circuits

In this section, we present an overview to the efforts invested into a project aiming to tech-
nically realize quantum hybrid structures based on mechanical elements in a superconduct-
ing circuit QED environment. Naturally, the mechanical element for this project is made
from aluminum, because this material choice enables larger electromechanical couplings
compared to insulating Si3N4 strings [91, 92, 102, 125, 126, 211, 249]. The first step within
this project is to combine circuit QED device layouts [224,250–252] with nanomechanical
string resonators [91,125,211]. The critical aspect from the fabrication perspective, is the
release of the nano-string. This requires using etching techniques to be applied to the
sample chip hosting a superconducting qubit with two delicate Josephson junctions. In
particular, for the first generation of devices we decided to locally separate the elements
qubit and nano-string on the chip as far as possible. The layout for this sample is shown in
Fig. 5.1. Here panel a) shows the full layout as a sketch. The 6×10 mm2 silicone substrate
hosts a microwave resonator in coplanar waveguide (CPW) design. The λ/2 resonator has
a center frequency of ωc/2π = 5.875 GHz. The two elements are placed next to the two
voltage anti-nodes, which are spatially located close to the coupling capacitances. These
positions are indicated in Fig. 5.1 a). The red box indicates the position if the transmon
qubit1 which is shown in detail in panel b). The green box indicates the position of the
nano-string. A more detailed picture of the nano-string also showing the release from the
substrate is shown in panel c). For the detailed fabrication process we refer to Ref. [253].
In the fabrication, the release process was of particular concern as the acceleration voltage
and plasma used for the RIE process was identified to potentially damage the Joseph-
son junctions. Nevertheless, conservative settings and protection of the transmon qubit

1The name transmon is an acronym for a transmission line shunted plasma oscillation qubit [250].
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Figure 5.1: Picture of the sample layout, containing a spatially separated circuit
qubit and nano-string resonator. Panel a) depicts the whole sample chip with
a transmon qubit and a mechanical string coupled to the same λ/2 microwave
resonator. Panel b) shows a micro-graph of the qubit area. The qubit is colored
in blue, whereas the cpw resonator is red. In panel c) two SEM pictures of the
string are visible, the upper panel shows the whole string (green) connected to the
microwave resonator (red). The lower panel shows a close-up of the clamping area,
showcasing the release from the substrate. Also the gap between the string and
the adjoining groundplane can be seen.

by using a carefully chosen sample layout enabled to realize a working device which was
later used to quantitatively compare effects of circuit QED with signatures of the optome-
chanical Hamiltonian In particular, as published in Ref. [249], we demonstrated, that the
capability to measure photon numbers using the ac-Stark effect of the transmon and the
electromechanically induced transparency [?,103,252,254–256] yield quantitatively corrob-
orative results. In detail, the device parameters for this sample are the resonator frequency
of ωc/2π = 5.875 GHz, with a linewidth of κc/2π = 1.468 MHz. The transmon plasma fre-
quency was determined as ωq/2π = 7.916 GHz with a linewidth of κq/2π = 6 MHz. The
mechanical resonator has a resonance frequency of Ωm/2π = 3.150 MHz with a linewidth of
Γm/2π = 12.4 Hz, which results in a Q-factor of ≈ 250.000 corresponding to a thermal co-
herence time of 38 µs at T ≈ 50 mK. The coupling between the qubit and the resonator was
extracted as 134 MHz and the coupling strength between the microwave resonator and the
nano-string was determined to be g0/2π = 0.31 Hz. Building on top of the insights gained
in [249, 253], we performed simulations and prototyping on a second generation device.
This work was done together with Lisa Rosenzweig, as part of her Master’s thesis. The
goal of this project, was to increase the coupling strength between a nano-string resonator
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and a CPW microwave resonator, as a study to further the understanding of engineering of
the coupling mechanics. An additional requirement is, that the same microwave resonator
is coupled to a qubit, and that a fast readout of this qubit is possible. For this reason, two
separate microwave resonators were used. One resonator is coupled to both the qubit and
the resonator, and is optimized for a high coupling strength between nano-string and mi-
crowave resonator. This was mainly done by engineering the impedance of this resonator.
The second resonator is only coupled to the qubit and is optimized for qubit control and
readout. This was done to go a step further from the first sample presented in [253] to-
wards the one proposed by Abdi et al. [248]. We will discuss the design of the transmon
qubit used in this device here. The results on the design and prototyping considering the
high impedance microwave resonators and the efforts of coupling them with a nano-string
as well as the measurements on those samples, will not be discussed in detail and can be
found in Lisas masters thesis [257]. By focusing on the simulations and engineering of the
qubit layout, we will gain insight into the necessity of changes to the qubit layout when
considering integrating a nano-string within the qubit. This research and development of
the qubit design, integrating a nano-string will be shown in the following. The work was
carried out together with Nathalie Segercrantz during her time as a postdoc researcher at
the WMI. This second project was carried complementary and subsequent to the design
and fabrication work done during the Master thesis of Lisa Rosenzweig.

5.3 Modeling and simulations

Based on the knowledge and confidence gained with the design discussed in Sec. 5.2 we
next discuss the alterations required to realize the proposal by Abdi et al. [248]. Key
aspects encompass the integration of the nano-string into a transmon type qubit and the
realization of a significantly larger coupling strength. For this we briefly review some key
formulas describing the qubit and its interaction with a nano-string as well as a microwave
resonator. We will not derive those formulas in detail, nor will we discuss the rich physics
connected to superconducting circuit qubits. We point towards [250, 251, 253, 257, 258]
for further information on transmon qubits. One of the main requirements, assumed by
Abdi et al. [248], is that the coupling strength between the nano-string and the qubit is
significantly large2. To reach this, is the goal of the study shown here. However, during
the engineering of this coupling parameter we find that great care needs to be taken to
ensure several key parameters of the whole system stay within their specific limits. We
will discuss those parameters and their respective limits in the following.

5.3.1 The transmon layout

A microwave resonator can be described as an harmonic LCCC oscillator, with an effective
inductance LC and capacitance CC. However, the level spacing of an harmonic oscillator
is equidistant and hence does not allow to address selective transitions. In contrast an
ideal qubit is a two-level system. The transmon qubit mimics this two-level behavior even
though it is an LC oscillator. In particular, the anharmonicity introduced by the Josephson
junctions is chosen to be at a level, where it is significantly distorted to allow addressing
selective transitions. In detail, this level of anharmonicity depends in the relative value

2In the order of ten to several tens of Hz.
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of the inductance LJ of the Josephson junctions and the qubit’s capacitance CΣ. For a
qubit to be considered in the transmon regime, the ratio between the Josephson energy EJ
and the charge energy EC needs to be sufficiently large: ξ = EJ/EC > 50 [250, 251]. The
Josephson energy is simply given by the energy of the two contributing junctions, whereas
the charge energy is defined by the qubits overall capacitance:

EC = e2

2CΣ

EJ = 2E0
J |cos(πΦ/Φ0)|.

(5.1)

Here, the sum capacitance of the qubit CΣ is given by the capacitance of the junctions CJ,
the coupling capacitance to readout resonators etc. Cg and the intrinsic capacitance of the
qubit. An equivalent circuit diagram of the qubit can be seen in Fig. 5.2. The maximum

Cr

Lr

Cg

LJCT

μ-wave Resonator Transmon

Coupling

Figure 5.2: Equivalent circuit diagram showing a transmon qubit coupled to a read-
out resonator via Cg, the capacitance of the qubit is mainly located in a shunting
capacitance CT.

frequency of the qubit is then given by [250]:

ωq = 1
~
√

8ECEJ. (5.2)

Its anharmonicity, the change in transition frequency between qubit levels, is given by [250]:

ωn,n+1 = (En+1 − En)/~ = ωq − EC/~(n+ 1). (5.3)

Here n is the level index and the energy of one specific level is given by [250]:

En = ~ωq(n+ 1
2)− EC

12 (6n2 + 6n+ 3). (5.4)

Next, we discuss the coupling strengths in the qubit resonator system. The coupling
between the qubit and a microwave resonator, mediated by a coupling capacitance Cg is
given by [248]:

χ = 4ECnac

(
ξ

2

)1/4
= eCg

CΣ

√
~ωc
2Cc

(
EJ
e2 CΣ

)1/4
(5.5)

with the root mean square number of resonator induced cooper-pairs in the qubit nac. If
we now want to integrate a nano-string in a capacitively coupled manner into these qubits,
it needs to be a mechanically compliant part of the qubit capacitance C ′T → CT,0 +CT(x).
It will therefore work as a capacitor between the qubit and the groundplane, as can be
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seen in Fig. 5.1 c). This causes a displacement dependent charging energy EC(x) and the
qubit frequency changes accordingly to

ωq(x) = 1
~

√
8EC(x)EJ.

Here Abdi et al. [248] define the bare coupling strength between the qubit and the me-
chanical resonator as g0 via

EC(x) ≈ EC + g0nphonon,

with nphonon the number of excitations in the nano-string. Consequently g0 becomes

g0 = ECCT
d0CΣ

xzpm = e2CT
2C2

Σd0

√√√√ ~
2ρAlwtπ

√
σAl
ρAl

. (5.6)

Here xzpm =
√
~/2meffΩm is the square amplitude of the mechanical zero point motion.

This depends on the string’s effective mass meff and resonance frequency Ωm as defined
in Sec. 1.2. The equilibrium distance between the string and the ground plane is defined
as d0. The effective coupling between the transmon and the nano-string is then given
by [248]:

gt = g0
√

2ξ = CT
d0CΣ

xzpm
√
ECEJ, (5.7)

as the coupling is enhanced by the EJ/EC ratio ξ, which can be tuned in situ for our
sample layout. Abdi et al. also derive a value for the three-body electromechanical mode
interaction between the microwave resonator, qubit and mechanical string resonator [248]:

gtc = ECCT
d0CΣ

xzpm
Cg
2e

√
~ωc
2Cc

(
ξ

2

)1/4
. (5.8)

Notably, both electromechanical coupling strengths can be enhanced by increasing the
EJ/EC ratio. The engineering challenge is to increase g0 from the first sample shown
in [249,253] where the coupling was g0/2π = 0.31 Hz. For a large coupling strength g0, the
ratio of mechanically compliant capacitance CT(x) to non-compliant capacitance CΣ needs
to be as large as possible. The mechanically compliant capacitance CT(x) is limited by the
geometry of the nano-string, therefore we will consider decreasing the non mechanically
compliant capacitance here. However, great care needs to be taken, such that all the
other parameters, like the qubit frequency, anharmonicity and coupling to the microwave
resonator do not suffer from this. Namely the resonance frequency should stay within the
experimentally feasible levels, and the coupling strength between qubit and microwave
resonator should be large enough to remain in the strong coupling limit χ � Γc,Γt.3
Also, apart from the electrical cross-dependences of the system capacitances via CΣ,
physical dependences may occur due to the used sample layout. The initial transmon
design shown in Fig. 5.1 has the issue, that the coupling capacitance to the microwave
resonator is at the same time also part of the internal capacitance, such that changing Cg
does not only affects CΣ but also CT. This is a hindrance when trying to optimize the
whole design. In Fig. 5.3 a layout used for coupling a transmon qubit to two microwave
resonators is shown, here, the coupling to the storage resonator (SR) was designed to be
much smaller compared to the coupling to the readout resonator (RR). This was done by
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Figure 5.3: Design layout of a transmon structure coupled to two microwave res-
onators. The capacitance gSR between qubit and storage resonator (SR) is chosen
smaller compared to the capacitance gRR between qubit and readout resonator
(RR), this results in a smaller/larger coupling strength to those respective res-
onators. Also the capacitance gT of the qubit structure itself as well as the coupling
capacitances gx and gy to the environment are included .

separating the two capacitances Cg,SR and CT. The specifications necessary for a device
given in [248] are summarized in Tab. 5.1 for two possible device setups. To design a
qubit-resonator-string hybrid device, we use two processes. First, we take the relations
shown in ((5.1) to (5.8)) to find an operating point in the parameter regime which fulfills
the specifications in Tab. 5.1. Then we design a layout and use finite element simulations
to extract the relevant parameters. By using the results of the simulations, we then
refine the layout step by step. The explicit simulations involved in designing this layout
can be found in Ref. [257]. In short, we used finite element simulations4 to simulate the
different capacitances of the layout. We use the extracted values to calculate the rest of
the parameters. This technique also allows to predict the possible crosstalk between the
microwave resonators. As is shown in Fig. 5.3 this resulted in a asymmetry in the qubit
structure. The coupling capacitance between the qubit structure and storage resonator
is relatively small, lowering the coupling strength between the two. On the other side a
strong coupling between the qubit structure and the readout resonator is of benefit, thus
the respective coupling capacitance is chosen larger. This results in a physically larger
capacitor. The capacitance of the qubit structure itself is mainly comprised by the large
central capacitor. Please note, that also the capacitances coupling the qubit structure to
the surrounding environment gx,y need to be taken into account, as they influence the

3Here Γc is the linewidth (full width half maximum) of the microwave resonator and Γq is the qubit
linewidth.

4CST®Microwave Studio suite
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Quantity set#1 set#2
ξ 150(50)a 142(60)a

m 1 pg 3 pg
g0 18.2 kHz 20.6 kHz
gt(ξc) 315 kHz 350 kHz
χ(ξc) 31.4 MHz 510 MHz
Ωm/2π 10 MHz 1 MHz
κc/2π 10 kHz 50 kHz
γt/2π 3 kHz 5 kHz
8ECnac/~ωb

c 2.0× 10−4 3.4× 10−3

Table 5.1: Table from [248] a resonance value e.g ωtr(ξ) = ωc
b prefactor of the

qubit-resonator coupling rate whose fundamental upper bound is ∼ 0.1

overall capacitance of the qubit structure. Starting from these results, we designed a
transmon with an included nano-string. The conceptual layout for this transmon qubit
can be seen in Fig. 5.4 a). In this design, the coupling capacitor towards the microwave
resonator was enlarged to engineer the coupling strength. The actual qubit structure is
spatially distanced from the resonator, to suppress parasitic coupling capacitances. The
main capacitance of the structure, which is comprised by the two capacitor plates, shunted
by the loop containing the Josephson junctions was also optimized. Here, the goal was
to increase the impact of the capacitance comprised by the nano-string onto the overall
qubit capacitance. This can be done by reducing the capacitance provided by the large
plates. At the same time, the overall capacitance cannot be too small, since the EJ/EC
ratio of the qubit needs to be within its limits. From a layout perspective, the shunting
loop and the nano-string were positioned in such a way, that an external flux line to tune
the Josephson junctions can be added. Here, care was taken to suppress crosstalk from
this antenna structure to the microwave resonator, as this was an issue we experienced in
previous experiments (cf. [257]). Since the complex and involved experimental setups and
data acquisition schemes do not contribute to the understanding of the discussion here,
we will only compare the simulated and design values to the experimentally extracted
values. For information on experimental techniques, we refer to [251, 253, 257]. The
design parameters chosen for implementation are summarized in Tab. 5.2. This assumes a
string with l = 20 µm length, w = 120 nm width and t = 120 nm thickness, corresponding
to a total mass of the string of m = 39 pg. Due to the double clamped design, this
leads to an effective mass of meff = m/2 = 19.5 pg. The equilibrium distance of the
string was set as d0 = 150 nm. Further, for the calculations, the Josephson energy was
assumed to be similar to previously measured junctions of the same dimensions and
design EJ,0 ≈ 2.5× 10−21 J [259]. We will now compare some of the experimentally
extracted device parameters to the values gained from finite element simulations of the
design layout. By doing so, we gain insight into where there are challenges. These may
reside either in transferring the design layout to the actual physical device, or in how
well the finite element simulation describes the actual situation. The coplanar microwave
resonator, has a designed frequency value of ωc/2π(simu) = 5.4 GHz, compared to this,
the experimentally extracted resonance frequency is determined as ωc/2π = 5.84 GHz.
This shows good agreement between simulation and experiment. However, the quality
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Quantity Value
ξ 153

ωc/2π 5.4 GHz
ωtr/2π 18 GHz
Ωm/2π 10 MHz
g0/2π 110 Hz
χ/2π 92 MHz
gt/2π 1.8 kHz
gtc/2π 18 Hz

Table 5.2: Simulated values for a sample with a layout similar to the one shown in
Fig. 5.4a)

factor Q = ωcκc ≈ 1000 is relatively low compared to previously fabricated resonators
with Q ≈ 6600 [253]. Here, the assumption is, that the challenge lies in the fabrication,
not the design. The coupling strength between qubit and resonator is experimentally
determined as χ/2π ≈ 10 MHz. This value shows a significant deviation from the intended
value of χ/2π ≈ 92 MHz. Due this low coupling value it is also impossible to gain
further insight into other qubit parameters e.g. qubit linewidth. The reason for the
large deviation is not strictly known. However, we can speculate towards several possible
reasons. Most stem from the fabrication process. Differently then for previous samples,
here the Josephson junctions and the nano-string were in close proximity. As a test, the
whole sample was etched without special protection. Thus, also the Josephson junctions
are under etched and freely suspended as can be seen in Fig. 5.4 c). The fabrication of
the nano-string and the rest of the qubit structure was separated. This was done to allow
annealing of the nano-string. We do not know the quality of the interface between qubit
and nano-string. I.e. if there are additional junction like structures in this area due to
oxidation during the annealing process. In particular since no special effort was made to
clean those interface areas before the growing process. A further consideration is, that the
qubit structure is partially evaporated over the existing nano-string here the substrate for
the qubit structure is uneven. Even though no issues are discernible in the SEM pictures
(cf. Fig. 5.4) there may be structural weaknesses in these areas.

5.3.2 The X-mon layout

As an alternative strategy, we study the option to realize the same physics in a X-mon
type qubit [258]. This device design has potential improvements compared to the imple-
mentation with the classical transmon type qubit. The X-mon layout is schematically
shown in Fig. 5.5. The capacitance of the structure is not locally constrained, as in the
previously shown transmon layout, but rather given by the distributed capacitance of the
cross shape, to which it owes its name, to the surrounding ground plane. This allows for a
more distributed device geometry. One consequence of this, is that it is possible to use all
of the arms of the cross to couple the qubit to other circuit devices, while keeping those
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Figure 5.4: a) Schematic of the resonator-transmon-nano-string sample. The trans-
mon is capacitively coupled to a microwave resonator. The bulk capacitor plates are
shunted by a SQUID loop on the right hand side, on the other side a nano-string is
inserted. Panel b) shows a tilted SEM picture of the transmons capacitor area. In
c) the nano-string area is shown in closer detail. The 20 µm string has a designed
equilibrium distance of d0 = 150 nm to its ground plane. Panel d) shows one of
the Josephson junctions in the SQUID loop, due to the underetching process used,
part of the junction is free standing.

from interacting with each other through spatial separation. We thus want to discuss the
merits of using a X-mon type qubit for our project.

From an equivalent circuit point of view the two designs differ little (cf. Fig. 5.6), since
both qubit designs are based on non-linear oscillators. However, from a geometric design
description the situation is more involved. In the case of a transmon qubit, as shown in
Fig. 5.3, bulky capacitor plates make up most of the device capacitance. The capacitance
of these plates is indicated as CS in Fig. 5.6. The same capacitor plates are also part
of the coupling capacitance Cg which couples the qubit structure to the resonator. This
means, that by changing anything about the internal capacitance CS, also the coupling
capacitance Cg will change, as they are based on partially shared device parts. This effect
does not only happen for this pair of capacitances. All connecting capacitances to the
qubit, e.g. from antennas or resonators have, apart from the physical coupling as part of
the overall capacitance CΣ, also a geometric influence. This is the reason why the mapping
of the parameter space is more involved for a transmon qubit, as many of the capacitors
share device parts. In the case of the X-mon layout the geometry is more relaxed. As can
be seen in Fig. 5.5, the coupling capacitance between the qubit and the readout resonator
only attributes to the self capacitance of the X-mon (CΣ) in a small area of one of the arms.
The same is obviously true for all antennas or resonators connected to the different arms.
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Figure 5.5: a) Schema showing the X-mon layout used, coupled to a readout res-
onator. Panel b) denominates the parameters used for the simulations. These are
the width w and length L of the X-mon arms are changed. The self capacitance
Cs depends mainly on the gaps to the ground plane gx and gy. Panel c) shows a
zoom in into one of the arms, where a SQUID-loop shunts the capacitance to the
groundplane.

This does not inherently change the physics connecting the single parameters, however it
allows to decouple them geometrically. Thus, for the rest of the qubit, the capacitance
can be changed rather freely without influencing Cg. This can be done by geometrical
means, as the capacitance CΣ is largely modulated by the gaps to the groundplane gx
and gy (cf. Fig. 5.5). Note, that this requires all connected microwave resonators or
antennas to have a voltage anti-node at the coupling capacitances they share with the
X-mon at its arms. A further advantage of the X-mon is, that due to its shape, it is
possible to spatially separate circuit parts coupled to the qubit. This way the SQUID-loop
and a possible control line for the flux can be separated from the readout resonator. Also
the rather sensitive Josephson junctions can be spatially separated from the fabrication
intensive nano-string. Altogether, we can identify the following potential advantages for
the implementation of a nano-string into a X-mon type qubit: i) Engineering the coupling
and internal capacitances in the qubit and microwave resonator system can be done more
easily. This is a consequence of the geometric layout of the X-mon, as the geometric
dependences between the single capacitors is less distinctive. ii) The possibility to use
different arms of the X-mon to couple to different resonators, antennas etc. suppresses
the crosstalk among those circuit devices. Further, the number of arms can be scaled up
for future endeavors, if more connections to other circuits are necessary. iii) By spatially
separating the areas where Josephson junctions are present in the qubit layout from the
areas where one or more nano-strings are located, it is easier to protect the junctions during
the fabrication processes concerning the nano-strings. This presents the X-mon layout
as advantageous for the implementation of one or several nano-strings as mechanically
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Figure 5.6: Comparison of the equivalent circuit diagrams for a transmon qubit
a) and the X-mon geometry b). From a electrical circuit point of view the two
designs are equivalent to each other, however the cross-correlations between single
elements are different for the actual layouts. For more information please see the
text.

compliant parts of a transmon qubits capacitance, compared to the standard transmon
layout [250].
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5.4 Disscussion and Outlook

In this part, we considered the engineering necessary to implement an Al nano-string res-
onator as a mechanically compliant element of a transmon qubit. We see this as a powerful
platform to enable a three system hybrid device, for which rich physics were proposed by
Abdi et al. in Ref. [248]. This hybrid device is comprised of a mechanical nano-string
resonator, a transmon qubit and at least one coplanar waveguide resonator. We consid-
ered different second generation design approaches. One in which two different microwave
resonators where used to address the still separated devices (qubit and nano-string). In the
second approach, we considered the integration of a nano-string into a transmon qubit and
engineering the layout of this intermediate device. To this end we also compared simulated
values from a pre-study with actually measured values of the fabricated devices. From this
we learned the limitations of using a traditional transmon layout for this purpose. We then
discussed the possibility of using a X-mon type qubit layout for the purpose of integrating
a nano-string as a mechanically compliant element. We come to the result, that the ad-
vantages of using such a layout are significant. Using a X-mon design should facilitate the
device engineering. It allows for easier connections to other circuit devices and inherently
simplifies the protection of Josephson junctions during subsequent fabrication processes.
We therefore recommend looking into this system of a nano-string integrated in a X-mon
qubit in greater detail.
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DISCUSSION AND OUTLOOK

In this thesis, we investigated the coupling mechanisms of nanomechanical resonators to
various experimental degrees of freedom. By using different coupling schemes, we formed
hybrid systems. These hybrid systems were established by coupling nanomechanical string
resonators to mechanical, magnetic and electric degrees of freedom. First, we introduced
the workhorse of the thesis, a doubly clamped, tensile stressed nanomechanical string.
We theoretically explored the models used to describe this system. We began with a ho-
mogeneous string in the linear regime and extended the model to multilayer strings and
non-linear effects including an in-situ tuning mechanism for the mechanical resonance fre-
quency. Then, we focused onto the hybrid systems originating from the different coupling
mechanisms. In part 2, we discussed and investigated a nano-string network comprised of
three nano-mechanical string resonators with independently tunable resonance frequencies,
and comparable strong inter-resonator coupling. We explored the emergence of a mechan-
ical dark state in the system, when all resonator frequencies are degenerate, corroborating
this dark state using numerical calculations as this goes beyond analytic description. We
investigated the dynamical evolution of the nano-string network by studying the excita-
tion transfer inspired by Landau-Zener physics. We did this in the range still describable
by analytic solutions as well as beyond them. This demonstrates control over the transfer
dynamics in a nano-string resonator network, thus enabling controlled information ex-
change between the single resonators in the network. This shows, that nanomechanical
string networks are an exquisite platform for realizing mechanical sensing applications and
that they can be used for analog simulation purposes. Part 3, introduces a hybrid system
consisting of a nanomechanical string resonator coupled to a magnetic degree of freedom.
The coupling is facilitated by the magnetostriction of a CoFe alloy thin film on top of a
nanomechanical string. We investigated the magnetostrictive constants of two low mag-
netic damping Co-Fe alloys grown within a specific layer stack [108]. The CoFe material
system recently gained interest in the field of spintronics and was identified as a metallic
magnetic system with ultra-low magnetic damping properties. One of the main questions
is, whether the magnetoelastic properties are connected to the magnetization damping
properties of the material, as for the case of the well known material system Permalloy
(NiFe). Here, we were able to make progress on two paths. On one side, the fact, that
the exceptional magnetic damping properties of CoFe only emerge in thin films and within
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specific layer stacks, makes it a formidable challenge to extract the magnetoelastic prop-
erties for conventional sensing methods. We were able to overcome this challenge by using
nanomechanical resonators and extract the magnetostrictive constant for the Co-Fe alloys.
Our method allows the investigation of the magnetostrictive and elastic properties of thin
film magnetic layers, even with small sample volumes and high aspect ratios. Both are
requisites for future technical applications of spintronic devices including, in particular,
magnetic sensing applications. On the other side, we found sizable magnetostriction in
the Co-Fe alloys which excludes the absence of magnetostriction mediated magnon phonon
coupling as origin of the low-damping properties. This is also a point where CoFe differs
from the Permalloy material system, where the emergence of low magnetic damping was
connected to the near-zero magnetostriction. We then gain further insight into the mag-
netomotive and magnetostrictive behavior of nanomechanical strings by focusing on the
effects of electrical currents passing through a string in part 4. Here, we discussed the
impacts of an electrical circuit in a metalized nano-string. By comparing a magnetomo-
tive readout with non-invasive optical interferometry, we examine the effects of external as
well as internal electrical currents on the nano-string’s behavior. We do this both in the
presence of an external magnetic field and the absence thereof. We find, that an additional
external current can significantly influence both the frequency as well as the lineshape of
the metalized string through heating and more involved electromagnetic interactions. We
were able to quantitatively describe the change in lineshape and frequency due to electrical
circuits. Apart from this, such a system might be used for future sensing applications, e.g.
for high speed on-chip temperature measurements. In the last part 5, we considered a
system, where a nanomechanical string resonator is coupled to a superconducting circuit
qubit. This could result in a powerful platform to enable a three system hybrid device.
The hybrid device is comprised of a mechanical nano-string resonator, a transmon qubit
and at least one coplanar waveguide resonator at microwave frequencies. We discussed the
system parameters for realizing ground state cooling and three partite entanglement and
how they can be reached in experiment for real world device layouts. Using finite element
simulations we simulated the device and compared the results to earlier experiments.
Within this thesis, we showed how nanomechanical strings can be used to extract the
magnetostrictive properties of a material where the special magnetic properties are only
apparent in thin films and within specific layer stacks, and which is therefore challenging
for conventional measurement methods. With this we validated the use of nanomechanical
string resonators for sensing applications using multilayer material systems. We investi-
gated the impact of electrical currents onto the system of a nanomechanical string resonator
and qualitatively described the effects of electrical currents on the frequency and lineshape
of a nano-string. This can be seen as a suspended conductor, which is of interest for spin-
tronic applications. We presented a network of mechanical strings and investigated the
dynamical excitation transfer within it. Further, we generated a mechanical dark state in
one of the modes of the network, which could be used for storage applications. We also
discussed the integration of a nanomechanical string into a circuit qubit, considering the
field of circuit quantum dynamics as a foundation for nanomechanical sensing and storage
applications. We thus showed the large potential of nanomechanical string resonators in
sensing applications by forming hybrid devices and the impact of environmental param-
eters onto nanomechanical string resonators uncovering novel aspects of their mechanical
properties.



APPENDIX A

NANOMECHANICAL STRING
RESONATORS

A.1 In situ frequency tuning mechanism - technical consid-
erations

The frequency tuning technique presented in Sec. 1.3.3 can be seen complementary to
the more commonly used tuning methods using electric fields [70, 73, 149, 209, 210] or a
magnetomotive approach [260]. The discussed method completely eliminates the need for
electric fields and thereby also the necessary corresponding local control gates, simplifying
the system. However, the purely mechanical tuning mechanism also presents future chal-
lenges. Due to all frequencies being applied to the same global piezo-actuator, frequency
crowding becomes an issue for networks with large resonator numbers. Furthermore the
necessary high drive tone powers lead to heating in the actuator and thereby also the sam-
ple. This changes the sample temperature over the course of a measurement, which has
influence on the material parameters. These challenges can be overcome, e.g changing the
nano-strings crossections to shapes different from simple prismatic shape, will allow them
to support more modes at different frequencies compensating the frequency crowding by
spreading the control frequencies. By engineering the sample and sample holder (including
the piezo-actuator) towards better heat management, the impact of the piezo heating can
be reduced and maybe even supressed.
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APPENDIX B

NANOMECHANICAL RESONATOR
NETWORKS

B.1 Optical interferometer

Figure B.1 shows a schematic of the optical interferometer used for measurements in Part
2. The red laser light 633 nm from a DL Pro 633 made by Toptica is used. The beam
first passes an optical bi-prism to roughly shape the beam profile, it is then coupled into
a single mode optical fiber using a commercial microscope objective. After passing the
fiber the beam is collimated and now has a circular spot and contains only one mode. A
Glan-Thomson polarizer, in conjuction with a λ/2-wave plate is used to smoothly set the
laser power. A polarizing beam splitter separates the beam now in two arms, the sample
arm and the reference arm. A λ/2-wave plate in front of the beam splitter is used to set
the splitting ratio. The beam passes two more beam splitters and changed to a circular
polarization by a λ/4-wave plate. It is then focussed onto the sample by a commercial
microscope objective. The reflected beam passes back through the objective and λ/4-wave
plate and is then deflected by a polarizing beam splitter into another polarizing beam
splitter where it is reunited with the reference arm. The reference arm starts at the same
polarizing beam splitter. It then passes a second polarizing beam splitter and a λ/4-wave
plate, after which it is reflected by a piezo-controlled mirror. The reflected beam again
passes the λ/4-wave plate and is then deflected by the polarizing beam splitter onto another
polarizing beam splitter where it is reunited with the sample arm. The laser beams from
the sample and reference arms then pass a last λ/2-wave plate and a polarizing beam
splitter and the two resulting beams are focussed into the input ports of a split photo-
detector. For a full description of the interferometer and it’s working mechanisms please
see [119]. An amplifier chain is used to amplify the voltage signal from the photo diode
before analyzing it. Typically, the strings oop motion is small for thermal measurements
and therefore a higher amplification of the signal is necessary. To reduce the added noise
of the amplifiers and to cut of the amplification of higher harmonics in the voltage signal,
lowpass filters were used in between amplification steps. Please note, that the frequency of
the nano-strings needs to be taken into account when selecting the filter cut-off frequencies.
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Figure B.1: Schematic of the optical interferometer used to measure the oscillatory
motion of nano-strings in Part 2.

B.2 In line network dynamics

Additional parameters and measurement data for the population transition dynamics in
the in-line network configuration.

D E F
Ω0/2π 9.237 MHz 9.241 MHz 9.2385 MHz
Γ/2π 80(10) Hz 80(10) Hz 80(10) Hz

Table B.1: Eigenfrequencies of the undisturbed modes of the string resonators
(D/E/F) in the and their linewidth (FWHM), for the in-line sample layout.
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δε εϕ δϕ

gij/2π 130 Hz 103.5 Hz −

Table B.2: Inter mode coupling strengths for the in-line three resonator network,
extracted from individual avoided crossing measurements
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Figure B.2: Excitation of the single strings over the time of a Landau-Zener ex-
periment for the in-line layout. The string network is set up to compare to the
on-resonance configuration of the star-shaped layout. Panels (a-c) show the mea-
surement data. And corresponding numerical simulation results are shown in panels
(d-f). In both cases an initial pulse is used to excite mode δ. The resonance fre-
quency of δ is then tuned, upwards through the resonance frequencies of the other
modes (ϕ and ε) with varying tuning speeds (fast to slow). The dashed red lines
are a guide to the eye to mark the times at which the mode frequency of δ matches
the mode frequencies of ϕ (lower) and ε (upper) respectively. The measurement
and model are shown for all read-out resonators (D,E,F) respectively. A high me-
chanical response of the measured string is depicted by dark color. Each row of the
graph is normalized to the initial excitation pulse.
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APPENDIX C

MAGNETOMECHANICAL AND
MAGNETOMOTIVE HYBRID

SYSTEMS

C.1 nano-stringfrequency buckling considerations using
FEM simulations

We used a finite element simulation (COMSOL®) to simulate the eigenfrequency and
mode-shape of a L = 25 µm nano-string. For this simulation we used the geometry and
material parameters of a nano-string with the same layout as shown in Fig. 3.4. We
also assumed an average pre-stress of the string of 458 MPa, as obtained by our measure-
ments3.5. From this we find the first eigenfrequency to be Ωsimu/2π = 7.373 MHz which is
in good agreement with the measured value of 7.316 MHz shown in Fig. 3.7. The simula-
tion also shows that this eigenfrequency has the mode-shape of a undisturbed out-of-plane
oscillation. This mode-shape also persist for a large range of compressive stresses in the
metal film, assuming a tensile pre-stress in the Si3N4. Simulations show, that the mode
shape only changes, once the compressive stress in the metal significantly exceeds the ten-
sile pre-stress in the SiN. For a typical pre-stress of σ0 ≈ 750 MPa this happens if the
compressive stress in the thin metal film reaches ≈ 3400 MPa. Which is not reachable in
any way using the discussed material system and fabrication techniques.

C.2 Magnetization damping of CoFe stacks on SiN sub-
strates measured using broadband magnetic resonance

To investigate the magnetization damping properties of the Co25Fe75and Co10Fe90alloys in-
vestigated in 3.5, we perform broadband ferromagnetic resonance measurements (bbFMR)
on extended CoFe thin films on reference SiN substrates1 at room temperature [261]. The

1These measurements were carried out using extended thin films, as the filling factor for structured
nano-string samples is to low to technically resolve with the used measurement technique
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Figure C.1: Result of a numeric finite element simulation of the eigenfrequency and
mode shape of a L = 25 µm nano-string, alike to what is shown in Fig. 3.4. Using
the same material and geometry parameters as in the experiment, as well as the
experimentally obtained pre-stress (σ0 = 458 MPa), the resonance frequency and
mode shape were simulated. Giving a resonance frequency of Ωsimu = 7.373 MHz
and the mode-shape of an undisturbed oop oscillation.

continuous CoFe films were grown on Si3N4 (SiN) in the same process as the string sam-
ples investigated in 3.5 by the group of Justin Shaw. The bbFMR measurements were
performed as described in Ref. [261,262]. The measurements and following analysis of the
data were carried out by Lukas Liensberger. For the bbFMR, the CoFe layer faced the
center conductor of the coplanar waveguide (center conductor width ≈ 250 µm), which
was located between the pole pieces of an electromagnet. A static magnetic field of
|µ0H0| ≤ 3 T was applied parallel (ip) and perpendicular (oop) to the sample surface
depending on the investigated effect. FMR spectra were acquired for various microwave
frequencies f ≤ 43.5 GHz using a microwave diode detection scheme including a lock-in
amplifier and microwace frequency modulation (c.f. Fig. C.2a)). In a first step, we fit
the FMR data (an example is shown in Fig. C.2b)) to a Lorentzian lineshape to extract
the resonance magnetic field Hres and linewidth ∆H for each frequency f . Fitting the
resonance magnetic field Hres vs. frequency f (see Fig. C.2 c)/e)) to [261]

f(H ip
res) = |γ|2πµ0

√
(Hres +Haniso)(Hres +Haniso +Meff), (C.1)

and
f(Hoop

res ) = |γ|2πµ0 · (Hres −Meff), (C.2)

for ip and oop data, respectively, yields the effective magnetization Meff, the in-plane
anisotropy Haniso and the gyromagnetic ratio γ = gµB/~. The Gilbert damping was
extracted from the linewidth over frequency data (c.f. Fig. C.2 d)/f)) using [261]

µ0∆H = µ0∆H0 + 4παf
|γ|

. (C.3)

The extracted fit values are listed in Tab. C.1. All values are in good agreement with
the values measured by Schoen et al. [108]. From this we conclude that using SiN as a
substrate does not change the low damping behavior of the CoFe stack. Note that the
extracted α values for the oop field geometry are expected to be better than for the ip
geometry, as the oop configuration suppresses the two-magnon scattering process.

C.3 Optical and electrical measurement setups

In this section, we give a more detailed description of the measurement setups used in
parts 3 and 4. Expanding on the measurement setup descriptions in 3.4.1 and 4.4.1.
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Figure C.2: a) Sketch of the FMR measurement setup: The sample is positioned
on the center conductor of a coplanar waveguide (CPW) with the CoFe facing the
CPW. The CPW is connected to a microwave source on one side and to a microwave
diode and a lock-in amplifier at the other. An external magnetic field is applied
c),d) in-plane or e),f) out-of-plane. b) Exemplary field-swept FMR measurement
at f = 20 GHz for Co10Fe90with the external field applied in-plane. Frequency
dependence of the ip (oop) resonance field Hres c)(e)) and full with half maximum
∆H d)(f) of the FMR spectra obtained from 20 nm Co10Fe90(red) and 10 nm
Co25Fe75(blue) grown on top of a Si3N4 substrate. The solid lines are fits to the
data.

Optical interferometer for magnetomechanic measurements

The optical interferometer used for magnetomechanical as well as magnetomotive experi-
ments can be separated into three parts. The first part is the laser source (a diode laser
with a wavelength of 633 nm), with optical filters and a lens array used to couple to a
single mode fibre. The fibre then connects this to the actual interferometer. This way
the laser source can be exchanged flexible and the actual interferometer gains portability.
The main part of the interferometer consists of two parts, one housing the majority of
the optical setup and one housing the sample stage. The sample container is fashioned
in a brass tube, which can be inserted between the pole-shoes of several electromagnets
at the WMI, and can be evacuated to suppress air damping of the nano-strings. For this
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Table C.1: List of the fit values extracted from broadband magnetic resonance
measurements shown in Fig. C.2.

µ0Meff (T) g µ0∆H (mT) α (10−3)
Co10Fe90 (ip) 2.12± 0.01 2.08± 0.01 2.6± 0.3 4.2± 0.2
Co25Fe75 (ip) 2.16± 0.01 2.06± 0.01 1.4± 0.2 5.6± 0.2
Co10Fe90 (oop) 2.14± 0.01 2.00± 0.01 0.95± 0.2 2.0± 0.1
Co25Fe75 (oop) 2.17± 0.01 2.00± 0.01 1.4± 0.2 2.1± 0.1

µ0Haniso (mT)
Co10Fe90 (ip) −0.8± 0.1
Co25Fe75 (ip) −3± 0.1

very reason, large efforts were made when constructing and upgrading this part, that no
magnetic materials were used. This was done to supress any motion or deflection of the
interferometer parts due to magnetic interactions, which could lead to misalignments of
the optical path. The main interferometer is designed in four optical stages. In the upper-
most stage, the laser is coupled from the fibre into a free space setup, also the light of a red
(635 nm) LED is coupled into the optical path. The laser then passes through the second
and third stage, into the fourth stage where it is guided into and through the vacuum tube
onto the sample stage, where it is focussed with a special microscope objective housed in a
German silver casing. The reflected laserbeam, which interferred with the sample the same
way as already described in 2.4.1, carries information on the center of mass motion of the
observed string. The relfected beam passes back through the fourth stage, while passing
the third stage a small percentage of 2 % is guided into a camera, giving optical access to
the sample and laser-spot. The main part of the reflected beam is then guided through
stage two onto a photo-diode, where the intensity of the reflected light is converted into a
voltage. A picture as well as the schematic of the whole setup can be seen in Fig. C.3

Optical measurement

We detect the frequency dependent displacement response of a nano-string to a stimulus
using a vector network analyzer (VNA). For this, we use the VNA to send an excitation
signal to the piezo-acutator at the sample. To remain in the linear response regime of the
nano-string, we choose an appropriately small excitation amplitude (cf. 1.3.2). We then
analize the reflected laser light by comparing the voltage signal of the photo-diode to the
excitation signal using the VNA. For the optical interferometric measurements, the voltage
signal from the photo-detector is amplified before analizing it. To this end, an amplifier
chain is used. Two low-noise-high-gain amplifiers with a total amplification of 20− 60 dB
are used. In front of both amplifiers, low-pass filters, suited for the mechanical frequencies
of interest, are added to suppress high frquency noise of the amplifiers.

Electrical measurements

To investigate the impact of an electrical current onto the system of a (magnetic) met-
allized nano-string we use the measurement setup described in 4.4.1. For this, electrical
connections onto the optically investigated strings were made via Al wire bonding. The

116



layer 1 layer 2

layer 3

det.

cam.

obj.

DUT

90
10 LED

635nm

λ/2

coll. pack

�bre

λ/4

PBS detector

lens

lens

928 camera

lenslens

notch �lter

Figure C.3: Rendered graphic of the overall interferometer and detailed schematic of
the interferometer head. The off-site laser source is connected to the interferometer
via a single mode fibre. In the top layer (1) the laser beam is coupled into the
interferometer, and the light from a red LED source is added to the optical path.
The light then passes through the next two layers (2 and 3) via a polarizing beam
splitter and a 92/8 beam splitter. It is then guided through the vacuum chamber
onto a microscope objective and focussed onto the string. The reflected light is
guided to a camera for optical access on one side (8 %) and to a photo-diode on
the other (92 %).

wire bonds connect the clamping pads of the single strings with electrodes on the sample
carrier. From there on, wires connect the sample stage through the vacuum chamber of
the oprical interferometer to a break-out box outside the vacuum enclosure. By connecting
the lock-in amplifier to the single channels of the break-out box, we can perform 4-wire
resistance measurements of the single strings as well as send external electrical currents
through the string. For this specific purpose, a 1 MΩ resistor is used between the output
port of the lock-in and the break-out box. As the metallized nano-strings resemble safety
fuses, great care needs to be taken to limit the voltage/currents across the strings to pre-
vent distroying them. To gain insight into the temperature at the sample stage, a pt100
temperature sensor is soldered onto the sample carrier PCB, further also a 10 Ω resistor
is present, to allow heating the whole sample carrier. This combination of temperature
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sensor and heater was used to stabilize the sample environment temperature. This is espe-
cially necessary when changing the external magnetic field, as the electromagnet changes
temperature by several degrees depending on the applied magnetic field.
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A. Buzdakov, T. Hula, H. Schultheiss, E. R. J. Edwards, H. T. Nembach, J. M.
Shaw, R. Gross, and M. Weiler, Applied Physics Letters 115, 122402 (2019).

[193] M. Collet, O. Gladii, M. Evelt, V. Bessonov, L. Soumah, P. Bortolotti, S. Demokri-
tov, Y. Henry, V. Cros, M. Bailleul et al., Applied Physics Letters 110, 092408
(2017).

[194] Y. K. Kim and T. J. Silva 68, 2885 (1996).

[195] J. Joule, Ann. Electr. Magn. Chem 8, 219 (1842).

[196] J. Joule, Philos. Mag. Ser 3, 30 (1847).

[197] S. Chikazumi, Physics of Ferromagnetism (International Series of Monographs on
Physics) (Clarendon Press, 1997).

[198] M. J. Seitner, K. Gajo, and E. M. Weig, Applied Physics Letters 105, 213101 (2014).

[199] F. Hocke, Microwave circuit-electromechanicsin a nanomechanical hybrid system,
Ph.D. thesis, Technical University of Munich (2013).

128



[200] P. Jörg, Aufbau eines Freistrahl-Interferometers zur Untersuchung nanomechanis-
cher Resonatoren im Magnetfeld, Bachelor’s thesis, Technical University of Munich
(2015).

[201] F. Hoehne, Y. A. Pashkin, O. Astafiev, L. Faoro, L. Ioffe, Y. Nakamura, and J. Tsai,
Physical Review B 81, 184112 (2010).

[202] F. Cardarelli, Materials Handbook: A Concise Desktop Reference, 101–248 (Springer
International Publishing, 2018).

[203] D. W. Hoffman and J. A. Thornton, Thin Solid Films 45, 387 (1977).

[204] C. T. Wu, Thin Solid Films 64, 103 (1979).

[205] H. Windischmann, Journal of Vacuum Science & Technology A 9, 2431 (1991).

[206] E. R. Edwards, H. T. Nembach, and J. M. Shaw, Physical Review Applied 11,
054036 (2019).

[207] W. Gil, D. Görlitz, M. Horisberger, and J. Kötzler, Physical Review B 72, 134401
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E. Il’ichev, H.-G. Meyer, and A. M. Zagoskin, Physical Review Letters 98, 057004
(2007).

[236] A. Hoffmann and S. D. Bader, Phys. Rev. Applied 4, 047001 (2015).

130



[237] A. Baust, E. Hoffmann, M. Haeberlein, M. J. Schwarz, P. Eder, J. Goetz,
F. Wulschner, E. Xie, L. Zhong, F. Quijandŕıa, B. Peropadre, D. Zueco, J.-J. G.
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