
WMI
Technische

Universität

München

Walther - Meißner -

Institut für Tief -

Temperaturforschung

Bayerische

Akademie der

Wissenschaften

Quantum Memory with

Optimal Control

Master Thesis

Stephan Trattnig

Supervisor: Prof. Dr. Rudolf Gross

München, Mai 2020

Fakultät für Physik

Technische Universität München

http://www.tum.de/
http://www.wmi.badw.de/
http://www.badw.de/
http://www.tum.de/
http://www.wmi.badw.de/
http://www.badw.de/








Contents

1 Introduction 2

2 Theory 4

2.1 Quantum information theory . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Quantum bit . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Quantum gates . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Superconducting quantum circuits . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Macroscopic quantum model . . . . . . . . . . . . . . . . . . . 8

2.2.2 Josephson inductance . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Transmon qubit . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 3D-cavity resonator . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Qubit-resonator coupling . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Jaynes-Cummings Hamiltonian . . . . . . . . . . . . . . . . . 12

2.3.2 Blue sideband transition . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Coupling-induced frequency shifts . . . . . . . . . . . . . . . . 14

2.4 Qubit dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Rabi theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Quantifying decoherence . . . . . . . . . . . . . . . . . . . . . 18

2.5 Quantum measurements . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Quantum state tomography . . . . . . . . . . . . . . . . . . . 20

2.5.2 Quantum process tomography . . . . . . . . . . . . . . . . . . 21

2.5.3 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Methods 24

3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Compact 3D quantum memory . . . . . . . . . . . . . . . . . 24

3.1.2 Cryogenic setup . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Pulse generation setup . . . . . . . . . . . . . . . . . . . . . . 27

3.1.4 Pulseshapes and IQ-modulation . . . . . . . . . . . . . . . . . 28

II



Contents III

3.1.5 Time domain readout with FPGA . . . . . . . . . . . . . . . . 30

3.2 Sample characterization . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Readout mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Storage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Experimental results 40

4.1 Optimal control engine . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 CMA-ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Optimal control implementation . . . . . . . . . . . . . . . . . 43

4.2 Single pulse optimization . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Qubit pulse optimization . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 BSB pulse optimization . . . . . . . . . . . . . . . . . . . . . 48

4.3 Tomography with optimized qubit pulses . . . . . . . . . . . . . . . . 52

4.4 Memory protocol and storage mode decay . . . . . . . . . . . . . . . 56

4.4.1 Memory protocol . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Storage mode time domain measurements . . . . . . . . . . . 58

4.4.3 Storage mode frequency domain measurements . . . . . . . . . 60

5 Conclusion and Outlook 62

A Lab picture 64







Chapter 1

Introduction

Throughout the last decades, quantum technology evolved to a field with numer-

ous of potential applications [1]. The subfield of quantum information processing

aims at providing new technology for communication and computing. Whilst com-

munication tasks would mainly benefit from a security perspective [2], quantum

computing allows for solving certain computational problems substantially faster

than classical computers [3–5]. One of the most promising architectures for en-

abling quantum computing are devices based on superconducting quantum circuits

[6, 7]. With multi-qubit experiments operating up to 53 physical qubits [8], the

question of improving single qubit performance is still an active area of research. It

is split into two parts, namely the improvement of fabrication and the improvement

of control. Whilst fabrication focuses on better qubit geometries and material, the

field of control aims at improving the fidelity of quantum operations.

The focus of this work lies in optimizing the control of a 3D quantum memory. Our

sample fabricated by E. Xie [9, 10] already proved to work as memory swapping a

qubit state into and out of a resonator. In contrast to other memory experiments

[11], the memory approach using 3D cavity modes as coupled resonators for storage

and readout purposes benefits from long coherence times which are related to the

high Q-factor of superconducting 3D cavities [12].

Built on the work of E. Xie, this work is a first step in introducing concepts of

quantum optimal control to our quantum memory experiment. Quantum optimal

control is a class of optimization techniques linked to the mathematical field of

optimal control [13–15]. The aim of optimal control is to efficiently drive a dynamical

quantum system from a given initial state to a desired target state with respect to

boundary conditions. It includes optimizing the drive pulse envelopes as well as

applying more sophisticated pulse shapes that predict improvements from a theory

point of view [16, 17].
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Throughout this work, we implement a communication interface allowing us to op-

erate our quantum memory experiment independent of the already established and

rigid device control in LabView. Shifting our pulse control to python provides us

with the full variety of optimization techniques developed by our theory collabo-

rators S. Machnes and N. Wittler from Saarland University. Pulseshapes can now

be defined on a nanoscale resolution. As a first proof to show the superiority of

our strategy, we apply our optimization scheme to simple pulses struggling for the

optimum between shortness desired for applicable gates and length desired for sup-

pressing state leakage. For the qubit pulse, a process tomography implemented by

M. Renger [18] shows noticeable improvements. Further progress of testing and

optimizing the full memory protocol is expected in future experiments.

This work ist structured as follows. In chapter 2, we introduce fundamental theory

and measurement protocols relevant for this thesis. Chapter 3 is divided into two

parts. The first one, Sec. 3.1, explains our experiment from a technical point of

view. This section includes a description of the sample, the cryogenic wiring, the

pulse generation setup, and the readout via an FPGA-enhanced digitizer card. In

Sec. 3.2, we provide the reader with measurements characterizing our sample. We

present our results on optimized drive pulses for our quantum memory in chapter 4,

starting with a detailed description of our optimal control engine in Sec. 4.1. We

then show first proof of concept results of optimizing qubit and blue sideband π-

pulses in Sec. 4.2. In Sec. 4.3, the improved qubit π-pulse fidelity is proven by

quantum process tomography. Finally, in Sec. 4.4, we present preliminary results

on the memory protocol itself.



Chapter 2

Theory

2.1 Quantum information theory

In this section, the fundamental concepts of quantum bits and quantum gates are

introduced from an information theory point of view. They are essential for any

quantum computing logic.

2.1.1 Quantum bit

The basic unit of classical information theory is the bit [19]. Necessary for the

physical implementation of such a classical bit is any system allowing for two dis-

tinguishable states. In information theory, these states are referred to as “0” - state

or “1” - state and can have various physical implementations.

For quantum computing purposes, the quantum bit (qubit) is the basic unit of

information [20]. Similarly to its classical counterpart, a qubit is defined over a basis

consisting of two distinguishable states. Due to the quantum nature, superpositions

are possible between the |0〉 - state and |1〉 - state. An arbitrary pure quantum state

is defined as [21]

|ψ〉 = α |0〉+ β |1〉 , (2.1)

where α and β are complex coefficients. The normalization condition for quantum

states implies |α|2 + |β|2 = 1 which reduces the number of free real parameters to

two. The qubit state in general is not unique since any global phase eiΦ does not

alter the state. Due to those conditions, we can rewrite Eq. (2.2) to

|ψ〉 = cos
θ

2
|0〉+ eiϕsin

θ

2
|1〉 , (2.2)

where θ ∈ [0, π] and ϕ ∈ [0, 2π] are real parameters. Using a vector notation, the

4
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states can be expressed as [21]

|0〉 =

1

0

 |1〉 =

0

1

 |ψ〉 =

 cos θ
2

eiϕ sin θ
2

 . (2.3)

The vector notation is useful but only possible for pure states. In real-world physics,

coupling to environment leads to a loss of information about the qubit state (cf.

Sec. 2.4.2). This leads to mixed qubit states which need to be described as statistical

ensembles of pure states. We can write both, pure and mixed qubit states using the

density matrix notation

ρ =
∑
i

pi |ψi〉 〈ψi| , (2.4)

where
∑

i pi = 1 and pi ≥ 0. Mixed states and pure states both fulfill the trace

condition, Tr(ρ) = 1, which ensures normalization. Pure states also fulfill Tr(ρ2) =

1, while for mixed states Tr(ρ2) < 1. An important example for mixed states is the

completely depolarized state 1/2 0

0 1/2

 , (2.5)

which can only be written as sum of pure states (|0〉 〈0| + |1〉 〈1|)/2. An intuitive

way to represent pure as well as mixed qubit states by means of the Bloch sphere

presented in the next section.

2.1.2 Bloch sphere

Any qubit state defined by Eq. (2.2) can be represented visually making use of the

Bloch sphere concept [21]. The surface of the sphere displays the two-dimensional

parameter space of an arbitrary pure qubit state using the fact that the two param-

eters θ and φ are bounded. Since θ defines to what extent a qubit state is in the |0〉
- state or |1〉 - state with values between [0, π] it is used as polar angle. The relative

qubit phase ϕ ranges between [0, 2π] and is thus displayed via the azimuthal angle.

In Fig. 2.1, the Bloch sphere is shown with a Bloch vector representing a pure qubit

state indicated by a red arrow. Any point on the surface of the sphere corresponds

to a pure qubit state and vice versa.
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θ

φ

x y

z

0

1

Figure 2.1: Bloch Sphere representation. The Bloch vector (red) indicates a pure
quantum state defined by angles θ and ϕ as described in Eq. (2.2).

The representation of a qubit state using a Bloch vector is not restricted to pure

states. An arbitrary qubit state defined by a density matrix ρ in Eq. (2.4) can be

converted into a Bloch vector and vice versa using the following formula [21]

ρ =
1

2
(I + σ · a) =

1

2

 1 + az ax − iay

ax + iay 1− az

 (2.6)

where σ = (σx, σy, σz) is the vector of Pauli matrices defined as

σx ≡

0 1

1 0

 σy ≡

0 −i

i 0

 σz ≡

1 0

0 −1

 (2.7)

The formulas above are valid for both, mixed states and pure states. For mixed

qubit states the Bloch vector does not point on the surface but inside the sphere.

As an example, the origin of the Bloch sphere with coordinates (0, 0, 0)T belongs to

the completely depolarized state described by Eq. (2.5).

Experimentalist convention In real-world physics, the two qubit states |0〉 and

|1〉 are encoded in a system with two distinguishable energy levels. The lower energy

level is referred to as |g〉 - state since a quantum system without external stimulation

resides in the “ground” state. When exciting the qubit, it populates the |e〉 - state

which is referred to as “excited” state. Experimental physicists consider the z-axis
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of the Bloch sphere as energy scale and thus label the southern pole as |g〉 - state

and the northern pole as |e〉 - state. This results in the following relabeling

|0〉 ↔ |e〉 |1〉 ↔ |g〉 (2.8)

We will need the experimental physics convention when introducing our transmon

qubit in Sec. 2.2.3.

2.1.3 Quantum gates

Gates are necessary for any computing logic. In order to manipulate classical bit

states, gates are applied. A classical gate is defined by a mapping of the two possible

initial states onto well-defined target states using a 2x2 lookup table. One example

is the NOT gate, which inverses the bit.

Similar to classical logic gates, qubit gates allow a mapping between initial and

target states. In contrast to classical gates, this mapping has to be unitary, i.e.,

each inital state on the Bloch sphere has a unique mapping to a final state, which is

also on the Bloch sphere. Nonunitary mappings imply a loss of quantum information.

Due to the two continuous degrees of freedom determining a single qubit state, an

infinite number of gates is possible. In fact, any rotation of a Bloch vector can be

viewed as a visual representation of a qubit gate. Rotations about an arbitrary axis

n = (nx ny nz)
T are described by the following formula [21]

R̂n(α) = e−i
α
2
n ·σ = cos

α

2
1− i sin

α

2
n · σ (2.9)

where α is the angle of rotation and σ the vector of Pauli matrices described by

Eq. (2.7). For rotations about the x, y or z axis we obtain

R̂x(α) =

(
−i sin α

2

cos α
2

cos α
2

−i sin α
2

)
R̂y(α) =

(
sin α

2

cos α
2

cos α
2

− sin α
2

)
R̂z(α) =

(
0

e−i
α
2

ei
α
2

0
)
,

(2.10)

where, in our experiment, we are especially interested in the R̂π
y -gate, performing a

rotation of an angle π about the y-axis of the Bloch sphere.

R̂π
y =

(
1

0

0

−1
)

(2.11)

It effectively maps the |1〉 - state to the |0〉 - state and vice versa.



8 Chapter 2 Theory

In order to perform quantum computation based on this theory, we need a physical

device providing us with a two-level system in the quantum regime. The next

section gives some insight in our implementation based on superconducting quantum

circuits.

2.2 Superconducting quantum circuits

For enabling experiments with qubits, various quantum resources have been es-

tablished. The approach we focus on in this thesis is to use superconductivity as

macroscopic quantum resource. In contrast to earlier approaches using ions or single

atoms, superconducting quantum circuits fulfil crucial requirements such as scaling.

One drawback are the low temperatures necessary to ensure superconductivity.

2.2.1 Macroscopic quantum model

The macroscopic quantum model allows to phenomenologically describe the phe-

nomenon of superconductivity [22]. It describes an ensemble of highly correlated

superconducting electrons without explaining the microscopic background. The su-

perconducting state and thus all highly correlated electrons are described by a wave

function

Ψ(r , t) = Ψ0e
iθ(r ,t), (2.12)

where Ψ0 is the amplitude and θ(r , t) is the phase. The squared absolute value of

the wave function can be viewed as the density of superelectrons in our system. The

description of superconductivity as macroscopic quantum effect is the foundation

of using superconducting devices for quantum computing. It leads to a quantum

treatment of Josephson junctions, which results in a nonlinear inductance described

in the next section.

2.2.2 Josephson inductance

A Josephson tunnel junction consists of an insulating barrier between two super-

conducting electrodes [23]. Up to some critical current Ic, the junction is capable

of transporting a tunneling supercurrent across the non-superconducting interface.

The junction behavior can be desribed using the Josephson equations which give

rise to various physical phenomena [23, 24]. We are interested in the nonlinear
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inductance of a Josephson junction described by [22]

LJ = Φ0/(2πIc cosϕ), (2.13)

where Φ0 = 2 × 1015 Vs is the magnetic flux quantum. The Josephson inductance

depends on the phase difference ϕ between the two macroscopic wave functions

Ψ1 and Ψ2 describing the superconducting state in the junction electrodes. It is

nonlinear in the variable ϕ and can even become negative. For suitable junction

parameters, the phase ϕ can be treated as quantum variable [25].

In the next section, we explain the effect of exchanging the linear inductance of a

quantum harmonic oscillator with the nonlinear inductance of a Josephson junction

in the quantum regime. As we will se, the nonlinearity enables us to implement an

artificial two-level system using the lowest two energy levels.

2.2.3 Transmon qubit

The qubit design used in our experiment is the nowadays state of the art transmon

qubit for solid state quantum computing [26]. Transmon qubits originate from the

cooper pair box (CPB) [27] by adding an additional shunt capacitance [28]. This

results in an exponentially decreased charge noise sensitivity but has the drawback of

a reduced anharmonicity. Anyway, the transmon qubit design offers coherence times

exceeding 100 µs and is therefore used in scaled quantum computing architectures

with multiple qubits [8].

The transmon qubit is explained best by comparing it to a quantum harmonic

oscillator [29]. In Fig. 2.2 (b), the transmon qubit circuit is shown. It differs

from the quantum harmonic oscillator circuit from Fig. 2.2 (a) by replacing the

linear inductive element with a Josephson junction. As described in Sec. 2.2.2,

the junction possesses a non-linear inductance which causes deviations from the

equidistant energy level spacing. Provided the junction is fabricated to operate in

the quantum regime, the overall circuit Hamiltonian of a transmon qubit can be

written as [28]

Hq = 4EC(N̂ −Ng)2 − EJ cos ϕ̂, (2.14)

where EC = e2/(2CΣ) is the charging energy and EJ = IcΦ0/2π the Josephson energy

with Ic being the critical current of the junction. The overall junction capacitance

CΣ = CJ + CS can be tuned by engineering the shunt capacitance CS, allowing to

design EJ/EC ≈ 50 which is a good compromise between charge noise insensitivity

and sufficient residual anharmonicity [28]. In Eq. (2.14), the electron number N̂ and
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the phase ϕ̂ act as conjugate quantum variables. Using a perturbative approach,

the eigenenergies of the transmon qubit in the limit EJ/EC � 1 can be expressed

as [28]

Em = −EJ +
√

8ECEJ (m+ 1/2)− EC

12

(
6m2 + 6m+ 3

)
, (2.15)

where m labels the energy levels. Using Eq. (2.15), we can calculate the energy of

the three lowest energy levels. The anharmonicity between the energy differences

E1 − E0 and E2 − E1 is α ≈ −EC/~.

(a)

(b)

(c)

E
ne

rg
y 

[ħ
ω

R
]

- - /2 0 /2
Superconducting Phase Ф

0.5

1.5

2.5

3.5

QHO
Transmon

g

e

f

h

0

1

2

3

Transmon LJ
CJ

CS

ωq

ωR

LR CR

Quantum
Harmonic
Oscillator

Figure 2.2: (a) Quantum harmonic oscillator (QHO) circuit diagram with induc-
tance LR and capacitance CR, (b) Transmon qubit circuit consisting of
Josephson junction (crossed box) with capacitance CJ and inductance
LJ shunted with capacitance CS. (c) Transmon qubit and QHO energy
level scheme with highlighted qubit levels |e〉 and |g〉.

In Fig. 2.2 (c), the energy level structure of a transmon qubit compared to the

equidistant energy level structure of a quantum harmonic oscillator is shown. The

eigenstates corresponding to the energy levels described by Eq. (2.15) are labeled as

|g〉, |e〉, |f〉 and |h〉 with their eigenenergies rising from |g〉 to |h〉. The anharmonicity

of the transmon qubit level structure allows us to selectively address the lowest two

energy levels as artificial quantum two-level system. Thus, the transmon qubit

Hamiltonian can equivalently be expressed as

Hq =
~
2
ωqσ̂z, (2.16)

where ωq = (E1−E0)/~. In Eq. (2.16), higher transmon qubit levels are omitted as

indicated in Fig. 2.2 (c). The simplification in Eq. (2.16) is insufficient for practical
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qubit operation, since the low anharmonicity of a transmon qubit leads to state

leakage to higher levels for short drive signals [30, 31]. This effect puts a lower limit

to the gate time of a transmon qubit.

Any transmon qubit needs to be read out at some point during quantum information

processing tasks. A widespread method to do so is to couple the transmon qubit to

a superconducting resonator which is then probed [32]. Our memory sample uses

the multimode structure of a 3D-cavity described in the next subsection.

2.2.4 3D-cavity resonator

The idea behind using a 3D-cavity as resonator coupled to a transmon qubit is to

make use of the multimode structure defined by the cavity geometry [9, 10]. The

first two modes couple roughly equally strong to the qubit, but the second mode

is decoupled from the antennas used for control and readout. In this way one can

use the cavity for both, storage and readout purposes. The boundary conditions for

the electric or magnetic field in a rectangular cavity allows for the following TEM

modes with frequencies [33]

νmnl =
c

2π
√
µrεr

√(mπ
a

)2

+
(nπ
b

)2

+

(
lπ

d

)2

, (2.17)

where c is the speed of light, µr the relative permeability and εr the relative per-

mittivity. The dimensions of the rectangular cavity, a× b× d, spatially restrict the

modes of the electric field and result in the discretization shown in Eq. 2.17. For a

detailed drawing of the cavity, we refer to Ref. [9].

Each mode is described by the textbook Hamiltonian for the quantum harmonic

oscillator [21]

Hosc = ~ωr

(
â†â+ 1/2

)
, (2.18)

where ωr is the eigenfrequency of the resonator and â† (â) the photon creation

(annihilation) operator, respectively. Adapting Eq. (2.18) to the 3D-cavity needs to

take care of any possible mode and reads

Hcav = ~
∑
m,n,l

ωmnl

(
â†mnlâmnl + 1/2

)
= ~

∑
m,n,l

ωmnl (n̂nml + 1/2) , (2.19)

where ωmnl = 2πνmnl are the possible modes described by Eq. (2.17). The creation

(â†mnl) and annihilation (âmnl) operators are adding or removing a photon with

frequency ωmnl from the cavity mode. Eigenstates of the Hamiltonian in Eq. (2.19)
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are so-called Fock states

â†nmlâmnl |nmnl〉 = nnml |nmnl〉 , (2.20)

where nmnl is the number of photons stored the resonator mode with frequency ωmnl.

As we will see in the next subsection, the coupling between qubit and a resonator

described by Eq. (2.19) leads to phenomena enabling us to store and to readout

qubit states.

2.3 Qubit-resonator coupling

The transmon qubit and the 3D-cavity resonator are coupled via the engineered

dipole moment of the transmon qubit circuit [9, 10]. This enables the two devices to

exchange energy quanta. In our case of strong coupling, this can be done coherently

multiple times before the excitation is lost to the environment [32].

2.3.1 Jaynes-Cummings Hamiltonian

For strong coupling, the coupling strength g needs to be higher than the actual

qubit and cavity decay rates κ, γ � g. Furthermore, the coupling strength needs to

be much smaller than the eigenfrequencies of the system ωq, ωc � g. In the case of

strong coupling, the interaction between qubit and a single resonator mode can be

well described using the Jaynes-Cummings Hamiltonian [29, 32]

HJC = Hq +Hcav +Hcoupling (2.21)

=
~ωq

2
σ̂z + ~ωc

(
â†â+ 1/2

)
+ ~g

(
σ̂+â+ σ̂−â†

)
, (2.22)

where the coupling term describes the coherent excitation transfer from qubit to cav-

ity mode (σ̂+â) and vice versa (σ̂−â†). Our coupled qubit-cavity system is designed

to operate in the dispersive regime, where the qubit transition frequency ωq and

the cavity mode resonance frequency ωc are detuned by an amount of ∆ ≡ ωq− ωc.

Provided the detuning is larger than the coupling strength, ∆� g, we can make use

of the interaction picture and expand the Hamiltonian in Eq. (2.22) up to second

order. This leads to the following, easier accessible representation [32]

Hdisp/~ =
1

2
(ωq + χ)σ̂z + (ωc + χσ̂z)â

†â, (2.23)
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where χ = g2/∆. The Hamiltonian in Eq. (2.23) can be solved analytically, exhibit-

ing new eigenstates [32]. In Fig. 2.3 (a) and Fig. 2.3 (b), the energy level structure

for the uncoupled qubit-cavity system as well as for the coupled qubit-cavity system

are shown, respectively.

Regarding Eq. (2.23), the qubit transition frequency and the cavity mode resonance

frequency are shifted compared to the uncoupled case. These shifts can be viewed

in Fig. 2.3 (b). The qubit transition frequency is increased by an amount of χ which

is referred to as the Lamb shift. For the cavity mode, the resonance frequency is

also altered by an amount of χ referred to as AC Stark shift. It is either decreased

if the qubit is in ground state or increased if the qubit is in excited state.
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Figure 2.3: In (a) the energy level scheme of an uncoupled qubit-cavity system with
corresponding qubit and resonator transition energy is shown. Including
a finite coupling g leads to the altered level scheme shown in (b). Energy
levels in the blue region correspond to resonator ket states with excited
qubit whilst levels in the orange region correspond to resonator ket
states with qubit in the ground state. Transitions necessary for this
thesis are indicated by arrows.

2.3.2 Blue sideband transition

When regarding Fig. 2.3 (b), other transitions than the regular qubit |g, 0〉 to |e, 0〉
transition can be driven. The transition from the |g, 0〉 state to the |e, 1〉 state

indicated by the blue arrows is called blue sideband (BSB) and is of high importance

for our quantum memory implementation. By taking the sum of qubit and cavity

transition energy, the blue sideband is defined as

ωBSB = ω̃q + ω̃c (2.24)
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where ω̃q and ω̃c are the shifted qubit transition and mode resonance frequencies as

discussed in the following section.

The blue sideband transition excites the qubit whilst also creating a single photon

fock state in our resonator. Due to selection rules, a direct transition between the

energy level of the |g, 0〉 state and |e, 1〉 state is forbidden [34–37]. Thus, a two-

photon process driven at half the transition frequency is necessary.

Together with the |g, 1〉 to |e, 1〉 qubit transition, the blue sideband transition allows

to store an arbitrary qubit state encoded in a resonator fock state [11]. A requirement

for using the |g, 1〉 - state as memory for qubit states is a long lifetime of the resonator

mode which is achieved by using a mode that is almost decoupled from the cavity

antenna (cf. Sec. 3.1.1 and Fig. 3.2). The lifetime of the transferred qubit state is

thus not limited by the qubit lifetime (cf. Sec. 2.4.2) buth rather by the lifetime of

this so-called “memory” mode [10].

2.3.3 Coupling-induced frequency shifts

Dispersive shift for readout

c - c + 
0

/4

/2

3 /4

phase

magnitude

e
g

2g2/∆

∆ϕ
R

O

Figure 2.4: Resonator response for qubit
in excited and ground state,
respectively.

Another possibility that arises from the

coupling between qubit and cavity is to

read out the state of the qubit. It can be

directly seen in Eq. (2.23) that the qubit

state alters the resonance frequency of

a coupled mode by ±χ depending on

whether the qubit is in ground or in ex-

cited state. In Fig. 2.4, the phase and

magnitude response of a resonator mode

for a coupled qubit in ground and in ex-

cited state is shown. By probing the res-

onator mode at a fixed frequency, one

can detect the state of the qubit. This

kind of measurement is called dispersive

readout [32]. It allows to measure the

z-projection of our quantum state continuously in time. In our experiment, we use

the phase since it shifts almost linear in a regime close to the resonance frequency.

A requirement for using a coupled cavity mode for readout purposes is a fast decay

of the mode. This is achieved by using a mode that exhibits considerable coupling
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to the cavity antenna (cf. Sec. 3.1.1 and Fig. 3.2). This “readout” mode needs to

decay significantly faster than the qubit.

Transmon qubit dispersive shift

The dispersive shift of a transmon qubit is not only affected by the transition between

ground and excited state. It is necessary to include the parasitic |e〉 to |f〉 transition.

With the third level included, the effective dispersive shift is defined as [28]

χ′ = χ01 −
χ12

2
(2.25)

where χ01 is the dispersive shift induced by the qubit transition and χ12 the disper-

sive shift induced by the |e〉 to |f〉 transition. Due to the higher coupling to the

parasitic transition, even negative effective dispersive shifts are possible. The overall

readout mode resonance frequency depending on the qubit state is finally defined as

ω̃r = ωr −
χ12

2
+ χ′σ̂z. (2.26)

Thus, the effective dispersive shift χ′ is not relative to the bare resonator frequency

ωr but to a shifted frequency ωr−χ12/2. Applying Eq. (2.26) to ground and excited

state of the qubit leads to the following altered readout mode resonance frequencies

depending on the qubit state

|g〉 → ω̃r = ωr − χ01 |e〉 → ω̃r = ωr + χ01 − χ12, (2.27)

where the difference equals 2χ′. Using a more sophisticated approach including

any higher transmon qubit levels, the altered dispersive shift in Eq. (2.25) can be

expressed as [28]

χ′ =
g2

∆

α

∆ + α
(2.28)

where g is the coupling strength, ∆ the detuning between qubit and resonator and

α the anharmonicity of the transmon qubit. The term g2/∆ can be identified as the

bare shift χ01 induced by the qubit transition.
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Stark shift

In quantum mechanics, the dispersive shift χ′ is a two-way effect. By rearranging

Eq. (2.23), we can get an expression for the altered qubit resonance frequency

ω̃q = ωq + 2nχ′ + χ′, (2.29)

where n = 〈â†â〉 is the number of photon excitations in the coupled mode. Thus, for

an increasing number of photons we get an increasing shift of our qubit transition

frequency.

To summarize, describing the coupling between qubit and resonator using the Jaynes

Cummings model leads to interesting quantum phenomena. Solving it leads to new

eigenstates, a new energy level structure and to a dependence between the qubit state

and the resonance frequency of a coupled mode. In the next subsection, we continue

our description of superconducting quantum circuits by explaining the dynamics of

driven quantum two-level system.

2.4 Qubit dynamics

In equilibrium, the qubit will always stay in the ground state if thermal excitations

are neglected or negligible. Using well-controlled drive pulses, other energy levels as

indicated by the energy level scheme in Fig. 2.3 (a) can be populated. This dynamic

property of the qubit is the basis for the implementation of qubit gates.

2.4.1 Rabi theory

An electric field that couples to the dipole moment of the transmon qubit circuit

effectively acts as rotating drive in x-y plane regarding the Bloch sphere picture.

Both, qubit and driving field, are thus described by the driven qubit Hamiltonian

[38]

HRabi = Hq +Hdrive (2.30)

=
~ωq

2
σ̂z +

~Ωd

2

(
σ̂−e

+iωdt+iϕd + σ̂+e
−iωdt−iϕd

)
, (2.31)

where Ωd is the drive power which is proportional to the amplitude of the electric

drive field, ωd is the drive frequency and ϕd the drive phase. Here, we have approx-

imated the sinusoidal with a rotating drive. Solving the Hamiltonian is possible by
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using a rotating frame transformation [32]. The transformed Hamiltonian can be

written as

HRabi =
~
2

[∆ωσ̂z + Ωd(σ̂x cosϕd + σ̂y sinϕd)] (2.32)

∆ω = ωq − ωd (2.33)

where the drive field has a fixed direction in the x-y plane specified by the phase ϕd

of the drive. The solution of this Hamiltonian in the case of no detuning ∆ω = 0

and phase zero ϕd = 0 is

|Ψ(t)〉 = cos
Ωdt

2
|g〉+ i sin

Ωdt

2
|e〉 . (2.34)

The effect of the drive field can thus be viewed as rotation on the Bloch sphere

depending on the duration of the drive pulse. The expectation value of the |e〉-level

population can be calculated via projection on the wave function Pe = | 〈e|Ψ(t)〉 |2

and leads to

Pe =
Ω2

d

∆ω2 + Ω2
d

sin2

(
t
√

∆ω2 + Ω2
d

2

)
, (2.35)

where the projected wavefunction |Ψ(t)〉 is an extended version of Eq. (2.34) includ-

ing a finite detuning ∆ω. The prefactor in Eq. (2.35) effectively reduces the highest

possible expectation value of the excited state. We can attribute this effect to a

tilted rotation axis depending on the detuning ∆ω [9].
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Figure 2.5: (a) Rabi traces. Blue: resonant drive without decay. Yellow: resonant
drive with decay. Red: detuned drive with ∆ω/Ωd = 2. (b) Rabi traces
mapped versus drive detuning ∆ω/Ωd.
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Motivated by Eq. (2.35), drive pulses can give acces to quantum state manipulation

by precisely adjusting the pulse duration and pulse phase. Thus the polar angle

can be rotated by a desired amount specified by the pulse duration among an axis

specified by the phase ϕd of the drive signal. Together with virtual z-rotations

enabled by adjusting the phase [39], this represents a set of universal single-qubit

gates.

We map Eq. (2.35) in Fig. 2.5 (b) for varying detuning and pulse duration. With

increasing detuning, the peak value of the amplitude decreases and the Rabi fre-

quency which is given by ΩR =
√

∆ω2 + Ω2
d increases. In Fig. 2.5 (a), the blue and

the red curve show time traces of resonant and detuned driven qubits, respectively.

The yellow curve refers to the real-world scenario, where coupling to environment

leads to decoherence, forcing the Bloch vector to collapse to the center of the Bloch

sphere (cf. Sec. 2.4.2).

2.4.2 Quantifying decoherence

In circuit quantum electrodynamics, devices exhibit coupling to their environment

leading to a loss of quantum coherence [29, 40]. In many cases, those processes can

be phenomenologically described by an exponential decay following two different

timescales.

1. T1 decay which forces the qubit z-projection to decay from the excited state

to the ground state by transferring energy to the environment.

2. Tϕ decay which causes the phase variable of the qubit defined by ϕ in Eq. (2.2)

to dephase, i.e. be indefinable.

Tϕ is referred to as pure dephasing time. Whilst the T1 decay time can be measured

directly, the dephasing time Tϕ is inaccessible by measurement. Instead, the T2 decay

time can be used as a measure for dephasing. It is linked to the pure dephasing time

Tϕ and the pure energy decay time T1 via the following formula

1

T2

=
1

2T1

+
1

Tϕ
. (2.36)

For determining the bare T1 or T2 decay times, specific protocols exist. The pulse

schemes defining those measurement protocols are shown in Fig. 2.6 (d)-(f). In

Fig. 2.6 (a)-(c) the qubit state evolution is visualized when applying those protocols.
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T1 Measuring the T1-time is done by preparing the qubit in the |e〉 - state and

projecting it after some evolution time ∆t. The exponantial decay curve depending

on the evolution time gives access to the energy decay. The protocol for measuring

the T1-time is shown in Fig. 2.6 (d).

T2 The T2-time can be measured using two different protocols. The Ramsey proto-

col takes the qubit initially to a superposition state with expectation value 〈σ̂z〉 = 0

and defined qubit phase ϕ which lies in the equatorial plane of the Bloch sphere as

indicated in Fig. 2.6 (b). After some free evolution time ∆t the qubit state is ro-

tated back from the equatorial plane to the perpendicular plane and then measured.

With increasing free precession time, the dephasing increases and the outcome of

the measurement approaches a completely depolarized state with expectation value

〈σ̂z〉 = 0.

prepare projectevolve

π/2

π/2

(b)

(a)

(c) π/2

π/2π

π

time

ROπ ∆t

π/2 ROπ/2∆t

π/2 π/2 ROπ
∆t ∆t

(d)

(e)

(f)

Figure 2.6: Different pulse protocols shown as Bloch Sphere picture (a)-(c) and
as pulse schemes (e)-(f). Subfigure (a) and (d) depict the T1 decay
measurement, (b) and (e) the Ramsey protocol for T ∗2 decay, (c) and
(f) the Hahn echo protocol for T2E decay, respectively.

Another possibility to measure the T2-time is the Hahn echo (spin echo) protocol
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shown in Fig. 2.6 (f), which effectively is a modified Ramsey protocol with a π-pulse

in between forcing coherent dephasing to refocus again [41]. Spin echo and Ramsey

protocols can be viewed as different filtering functions for the environment [42].

Hence, they provide information on the nature of the environment. To distinguish

between the two protocols, we denote the Ramsey time T ∗2 and the Hahn echo time

T2E.

The measurements described in this section give direct access to the coherence prop-

erties of our qubits. More sophisticated measurement techniques quantifying pre-

pared states and gate qualities are described in the next section.

2.5 Quantum measurements

2.5.1 Quantum state tomography

Quantum state tomography (QST) is an experimental technique to determine the

Bloch vector of a prepared single qubit quantum state. In quantum mechanics,

measurements only reveal a part of the information which is encoded in the quantum

state. In our case, the only accessible axis for measurements is the z-axis. We can

detect in which amount the qubit is in the |e〉 or in the |g〉 state without knowing the

qubit phase. Thus, our measurement projects the qubit to the z-axis by averaging

over many measurements (cf. Sec. 2.3.3).

For a detailed reconstruction of the quantum state, each dimension of the Bloch

vector needs to be projected. This makes QST a projective measurement of the

quantum state. Each Bloch vector dimension is mapped individually giving ac-

cess to full information about the quantum state. The protocol of quantum state

tomography is defined by three steps

1. Measure z-axis projection (az)

2. Measure x-axis projection (ax)

3. Measure y-axis projection (ay)

The x and y axis projection is done by rotating the qubit by an angle of π/2 previ-

ously among an axis defined by the phase of the drive signal. In Fig. 2.7 the pulse

protocols of the three relevant measurements for determining the quantum state are

shown.
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RO RO ROΨ Ψ ΨRy(π/2) Rx(π/2)

(a) (b) (c)

σz σx σy

Figure 2.7: Quantum state tomography pulse protocols. In (b) and (c) the qubit
state Ψ prepared by the initial pulsescheme is rotated about the y-axis
(b) or the x-axis (c) by an angle of π/2 before readout.

With Eq. (2.6), the measured Bloch vector components az, ax and ay can be used

to reconstruct the density matrix of the initially prepared quantum state. In our

experiment, we perform each projection multiple times in order to get precise results.

One drawback of QST is the necessity of an ideal π/2 pulse needed for rotations

together with a well-calibrated measurement setup allowing to control the phase

precisely. Imperfect pulses used in the pulse protocols shown in Fig. 2.7 lead to

distorted reconstructions.

2.5.2 Quantum process tomography

Quantum Process Tomography (QPT) is a useful tool for quantifying the fidelity of

quantum operations. Here we give a short introduction for QPT on quantum two-

level systems. Detailed information on QPT in general can be found in Refs. [21, 43].

To motivate the derivation of QPT, we start by defining quantum operations de-

scribed as superoperator E(ρ̂) acting on density matrices. This operator effectively

maps an initial quantum state ρ̂ to a final state ρ̂′. We can express this quantum

operation using trace-preserving Kraus operators Êi and write it as decomposed

operator sum [44]

E(ρ̂) =
4∑
i=1

Êiρ̂Ê
†
i . (2.37)

Since we lack information on our Kraus operators, we can choose a fixed operator

basis {B̂m} and again rewrite Eq. (2.37) to

E(ρ̂) =
4∑

m,n=1

B̂mρ̂B̂
†
nχmn (2.38)

where χ is the positive and Hermitian quantum process matrix obtained by reshap-

ing χmn in a (4 × 4) matrix. By choosing the fixed operator basis {B̂m} we swap

the information about our unknown superoperator E from the Kraus operators Êi

to the process matrix χ. To get some insight in our quantum process we have to
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experimentally determine the process matrix. We do so by applying our quantum

process to a set of four independent quantum states {ρ̂i} of our system. The initial

density matrices ρ̂i are basis states spanning our (2× 2) qubit state space. The out-

come of an applied quantum process on our initial states ρ̂i can then be decomposed

in the ρ̂i-basis

E(ρ̂i) =
4∑
j=1

λij ρ̂j (2.39)

Inserting Eq. (2.38) into Eq. (2.39) results in a system of equations which can be

solved for χ [21]. To summarize, we get experimental access to our hermitian process

matrix by measuring the effect of our superoperator E on our set of independent

quantum states {ρ̂i} as described by Eq. (2.39).

In experiment, we proceed by choosing our fixed operator basis to be {1, σ̂x,−iσ̂y, σ̂z}.
As set of independent initial states we use {ρ̂i} = {|g〉 , |e〉 , |+〉 , |−〉}. We use the two

eigenstates, |g〉 and |e〉, together with the superposition states |+〉 ≡ (|0〉+ |1〉)/
√

2

and |−〉 ≡ (|0〉 − |1〉)/
√

(2) since they are experimentally easy accessible [45].

For an easier reconstruction of our process matrix χ, we switch to the following basis

of auxiliary density matrices which do not represent valid qubit states but form a

basis of the (2× 2) qubit state space.

ρ̂1 =

1 0

0 0

 ρ̂2 =

0 1

0 0

 ρ̂3 =

0 0

1 0

 ρ̂4 =

0 0

0 1

 (2.40)

We then calculate the action of our quantum process E on those states by decom-

posing them in a sum of our set of actual measured initial states.

ρ̂′1 = E(|g〉 〈g|) (2.41)

ρ̂′2 = E(|+〉 〈+|) + iE(|−〉 〈−|)− 1 + i

2
[E(|g〉 〈g|) + E(|e〉 〈e|)] (2.42)

ρ̂′3 = E(|+〉 〈+|)− iE(|−〉 〈−|)− 1− i
2

[E(|g〉 〈g|) + E(|e〉 〈e|)] (2.43)

ρ̂′4 = E(|e〉 〈e|) (2.44)

Finally, using the linear algebra solution described in [21], we can calculate our

process matrix with the following formula

χ = Λ ·

ρ̂′1 ρ̂′2

ρ̂′3 ρ̂′4

 · Λ, where Λ =
1

2

 I σ̂x

σ̂x −I

 . (2.45)
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The process matrix χ̂ together with our fixed operator basis {B̂m} allows us to calcu-

late the action of our quantum process to any initial state ρ̂ by applying Eq. (2.38).

We visualize our quantum process in Sec. 4.3 by plotting a Bloch sphere map of

final states ρ̂′ = E(ρ̂). For extracting Kraus operators, Refs. [9, 18, 21] give a more

detailed description of process tomography in general.

An important technical detail of our quantum process tomography is the possibility

to obtain unphysical density matrices with Tr(ρ̂) > 1 due to measurement artifacts.

We solve that problem by using a maximum likelihood approach mapping those

states back on the Bloch sphere [18].

2.5.3 Fidelity

We quantify the quality of our quantum gates described as quantum processes by

using the fidelity as a measure of similarity between two quantum states [21]

F(ρ̂, ρ̂′) = Tr

[√√
ρ̂′ · ρ̂t ·

√
ρ̂′
]
, (2.46)

where ρ̂t is the desired final quantum state in theory and ρ̂′ is the result of our

quantum process. Since the process matrix χ can be viewed as a two-qubit quantum

state with Tr(χ) < 1, we can apply Eq. (2.46) to our process matrix [18].
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Methods

3.1 Experimental setup

This section gives a description of our experimental setup. It starts with a brief ex-

planation of our memory sample fabricated by E. Xie [9] in Sec. 3.1.1. In Sec. 3.1.2

and Sec. 3.1.3 the necessary electronics and wiring enabling us to operate our mem-

ory sample are shown. We finish the description of our experiment by introducing

our time-domain pulseshaping technique in Sec. 3.1.4 followed by our readout scheme

shown in Sec. 3.1.5.

3.1.1 Compact 3D quantum memory

Our quantum memory experiment sample consists of a 3D-Cavity made of alu-

minium with a transmon qubit chip inside [9, 10]. The cavity geometry is designed

to exhibit a low quality-factor readout mode and a high quality-factor storage mode.

(a)

antenna pin

antenna
connection

transmon
chip

microwave
cavity

500 µm

1 µm

JJ

(b) (c)

tr
an

sm
on

z

Figure 3.1: (a) 3D cavity half with transmon qubit chip and dummy chip inserted
(black rectangles). (b) Optical micrograph of transmon qubit. The rect-
angular paddles acting as capacitive plate are connected via a Josephson
Junction. (c) Scanning electron microscopy image of Josephson junc-
tion.

24
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In Fig. 3.1 (a), one half of our cavity with inserted transmon qubit and dummy chip is

shown. The modes relevant for our experiment exhibit an electric field in z-direction,

the same direction of our transmon qubits dipole moment. Figure 3.1 (b) shows the

transmon qubit with its two superconducting paddles made out of aliminium acting

as capacitance. The Josephson junction which exhibits the nonlinear inductance

necessary to establish an artificial two-level system as described in Sec. 2.2.3 is

shown in Fig. 3.1 (c). It is fabricated using shadow evaporation to generate a thin,

non-superconducting aluminium oxide layer between two aluminium electrodes [46].

x
y

(a) (b) (c) (d)

x
y

TE101 TE201 TE102

Figure 3.2: Electric field distribution of readout mode (a), storage mode (b) and
twin mode (c) in cavity xy-plane. Small circles are in and output an-
tenna ports. Image (d) shows an actual image of the cavity with in-
and output antenna.

In Fig. 3.2 (a) to (c) the magnitude of the electric field distribution (Simulation

by E. Xie) of the lowest three modes in z-direction is mapped over the x-y plane.

The high quality-factor storage mode in (b) has a negligible electric field magnitude

at the antenna positions which results in low coupling. The low Q-factor readout

mode in (a) has a considerably electric field magnitude close to the antenna which

results in losses through the ports. Both modes exhbit coupling of their electric field

distributions to the transmon qubit dipole moment whilst the storage twin mode in

(c) is designed to decouple from the qubit.
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3.1.2 Cryogenic setup

Our quantum memory experiment is embedded in the low temperature stage of a

He3/He4 dilution refrigerator with a base temperature of approximately 30 mK.

A more detailed description of the refrigerator working principles can be found in

Refs. [47, 48].

Room Temperature

4K
1.2K
700mK
300mK
40mK
25mK

10 dB attenuator
HEMT amplifier
low-pass filter

300K

isolator

He4 Bath
1K Pot
Still
coil exchanger

sample stage
step exchanger

Cavity

RF in RF out thermometer
heater

DC lines

Figure 3.3: Image and schematic drawing of dilution refrigerator low temperature
stage embedding our quantum memory experiment.

The low temperature stage shown as image and as schematic drawing in Fig. 3.3

contains our quantum memory experiment denoted as cavity at 30 mK. It is con-

nected via AC wiring for input and output signals at GHz frequencies. As a result

of the low power needed for transitions we attenuate our input signal by 40 dB. The

output signal leaving the refrigerator needs to be amplified in order to measure at

room temperature. This is done at 4 K using a cryogenic HEMT amplifier (+42dB)

and again at room temperature using an RF amplifier (+22dB). Both amplifiers add

noise to the output signal making the use of an FPGA-enhanced digitizer card for

averaging crucial. DC lines connected with a thermometer and a heater allow us to

precisely control the sample temperature.
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3.1.3 Pulse generation setup

For generating pulsed microwave signals acting as qubit gates (cf. Sec. 2.4.1) we

make use of an arbitrary waveform generator (AWG) for pulse shaping. As indicated

in Fig. 3.4 we use several identical Agilent 81160A AWGs for that purpose (denoted

81160A in Fig. 3.4). The generated pulse envelopes act as I and Q components (cf.

Sec. 3.1.4) used as input for our RF sources.
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Figure 3.4: Schematic drawing of our pulse generation setup. Three couples of
AWG and RF devices allow for generating readout (RO) pulse and two
drive pulses (DRV1 & DRV2) with different frequency and power.

The RF sources used in our experiment are of three different types. Most important

our Keysight PSG vector signal generator (denoted PSG in Fig. 3.4) which is capable

of providing high power microwave pulses whilst offering the option of a differential

wideband IQ input. The wideband IQ input with a range of 800 MHz offers smooth

modulation. In conclusion the PSG RF source is the most reliable one.

The second RF source used in our experiment is the R&S SMF100A microwave

signal generator (denoted SMF in Fig. 3.4) which has a good on/off ratio but no
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wideband IQ input. It can only be operated in pulsed mode. Throughout this thesis

it showed problems at providing stable high-power pulselength sweeps.

The third RF source available is the R&S SGS100A RF source (denoted SGS in

Fig. 3.4). It offers pulse modulation via wideband IQ inputs. The drawback of the

SGS100A is the instability in the high power regime necessary for the BSB pulse

together with signal leakage occuring at lower power.

For readout purposes, we downconvert the signal emerging the cryostat using a R&S

SMB100A microwave signal generator (denoted SMB in Fig. 3.4) acting as local

oscillator. The downconversion is done inside a shielded copper box (cf. Sec. 3.1.5).

In order to have phase stability at GHz frequencies the devices have to be syn-

chronized. We do so by connecting all our devices to a 10 MHz rubidium atomic

reference clock.

3.1.4 Pulseshapes and IQ-modulation

For defining our pulseshapes with specific length, phase and shape we make use of

the IQ-decomposition of a microwave signal using the following formula

S(t) = A(t) sin(ωt+ ϕ)

= I sinωt+Q cosωt
(3.1)

tup tup+ tramp tdown- tramp

10 30 60 80
pulselength [ns]

0

0.5

1

tdown

Figure 3.5: Flat-top Gaussian pulse.

where I = A(t) cosϕ and Q = A(t) sinϕ

are the in-phase and quadrature vari-

ables of the drive signal. Using an Ag-

ilent81160A arbitrary waveform genera-

tor (AWG), the I and Q components of

a microwave signal can be defined on a

nanosecond timescale. In experiment, it

turns out that a flat-top Gaussian shape

reduces state leakage due to avoiding a

sharp transition. The flat-top pulse con-

sists of a rising and falling slope with a

constant part in between. In Fig. 3.5, a typical flat-top Gaussian pulse is plotted

with a ramp time tramp of 20 ns. We use this ramp time throughout the whole

experiment since it is a good tradeoff between shortness demanded for applicable

gates and length demanded for harmonic gates. The formula describing the shape
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is defined as

A(t) =


exp

[
−
(
t/tramp−1

2σ

)2
]

if tup < t < tup + tramp

1 if tup + tramp < t < tdown − tramp

exp

[
−
(
t/tramp

2σ

)2
]

if tdown − tramp < t < tdown

(3.2)

where tup defines the starting time of the pulse, tdown the end and tramp the duration

of the slope in nanoseconds as indicated in Fig. 3.5. The variable σ defines the shape

of the slope and has a value of σ = 0.2. Equation (3.2) does not match with the

standard Gaussian nomenclature but effectively is of the same shape. The difference

is due to the easier implementation in LabView.

Using the pulse shaping of the I and Q component on a nanosecond timescale de-

scribed above we are able to modify a simple RF signal with fixed frequency and

fixed power. In our experiment we use the differential IQ inputs of our R&S PSG

Vector Network Analyzer to modulate our carrier signal. As described in Eq. (3.1), a

time dependent I and Q component of our AWG output results in a time dependent

Amplitude A(t) and phase ϕ of our RF pulse.
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Figure 3.6: Left: continuous signal from RF source without IQ modulation. Middle:
pulse I and Q components as specified by our “Deepthought” measure-
ment program. Right: Final pulse after pulse modulation.

In Fig. 3.6, the result of a pulse modulation with our flat-top Gaussian pulse defined

by Eq. (3.2) is shown. The phase of the resulting signal is controlled by the ratio

of the in-phase and quadrature component ϕ = arctan(Q/I) which is highlighted in

the final pulse sequence (right).
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3.1.5 Time domain readout with FPGA

In Sec. 2.3, we described the dispersive shift as an effect that shifts the resonance

frequency of a mode depending on the state of a coupled qubit. Here, we present

our technical solution enabling us to detect that shift.

Our time domain readout setup shown in Fig. 3.4 sends a readout pulse at a probing

frequency close to the readout mode resonance frequency. When leaving the cryostat,

the readout signal needs to be amplified which is adding a lot of noise exceeding the

signal by at least one order of magnitude [47]. This makes averaging crucial.
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Figure 3.7: Simplified readout scheme with downconversion in copper box (orange
rectangle) and digital homodyning (“Deepthought” program). More
details can be found in Refs. [9, 47].

As indicated in Fig. 3.7, the amplified signal emerging the cryostat is mixed with

an IQ mixer separating it into I and Q components at an intermediate frequency

of 62.5 MHz. The downconversion is done inside a shielded copper box. Analog

components of the downconversion setup are not shown for simplicity.

The I and Q components of the signal at intermediate frequency are then sampled

at 512 points via the FPGA card with a sampling rate of 240 MHz and sent to the

computer. This scheme is repeated N times for averaging which is done using a

C+ code called “Snap tool” (in experiment N ≈ 104 to 105). The averaged I and

Q components of the signal at intermediate frequency (indicated in Fig. 3.7 as IAvg

and QAvg) are then converted to I and Q DC signals using digital homodyning in

our “Deepthought” LabView code. We then extract the phase and amplitude of the

readout signal from the time dependent I and Q DC values using an optimization

scheme to correct for various deviations [47]. The phase and amplitude curves in

the right panel of Fig. 3.7 contain 512 values sampled at a frequency of 240 MHz,

which results in a recording time of approximately 2.13 µs. If desired, the FPGA

sampling rate can be decreased for achieving a longer readout time. Since the phase

response of a mode at resonance changes almost linearly for small deviations it can

be regarded as rescaled z-projection of the qubit state. We will refer to this quantity
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as readout phase during this thesis.

3.2 Sample characterization

Here we present our results on sample characterization measurements. We do so in

order to compare them with the previously measured data by E. Xie [9]. A detailed

comparison of the values is given in Tab. 3.1.

3.2.1 Qubit

We start our characterization with a qubit frequency sweep in Fig. 3.8. The circles

representing the readout phase are measured following a 200 ns drive pulse with

varying frequency. It exhibits the known Rabi pattern shown in Fig. 2.5 (b) for a

fixed pulselength. We use Eq. (2.35) as a fit model and initialize all parameters close

to the experimental values in order to extract the qubit transition frequency ωq.
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Figure 3.8: Blue circles represent the readout phase measured following a drive
pulse with varying frequency close to the qubit transition frequency.
The drive power and the pulselength are fixed at -40 dBm and 200 ns,
respectively. The red curve represents a fit corresponding to Eq. (2.35)
resulting in a qubit transition frequency of 6.0687 GHz.

The fit in Fig. 3.8 reveals a qubit transition frequency ωq of 6.0687 GHz. The

experimental drive pulse length of 200 ns with slopes (cf. Sec. 3.1.4) results in an

effective pulselength of approximately 176 ns obtained by fit. Our drive power of

10−4 mW (-40dBm) corresponds to a drive frequency Ωd of 7.9 MHz. The fit also

allows us to determine the maximum dispersive phase shift, corresponding to the

qubit state in |e〉, to be approximately 49◦.
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We continue our sample characterization by measuring the qubit response to a vary-

ing pulselength. The qubit exhibits Rabi oscillations (cf. Sec. 2.4.1) which increase

their oscillation frequency with increasing drive power. In Fig. 3.9 (a) a map show-

ing the readout phase in dependence of the applied pulse power and the pulselength

is shown. We use the Rabi oscillation frequency to determine the conversion factor

between the drive power shown at the signal source and the drive frequency in the

Hamiltonian in Fig. 3.9 (b). The relation between the two quantities is linear as

expected from Eq. (2.35). The slope gives Ωd (MHz) = 5.07
√

P(mW). Our fit value

obtained from our qubit frequency sweep in Fig. 3.8 corresponds well with the fitted

power to frequency conversion.
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Figure 3.9: In (a), the measured readout phase following a drive pulse at qubit
transition frequency with varying power and pulselength is mapped.
In (b), the blue circles represent the Rabi frequency for varying drive
power. The red line represents a linear fit with a slope of Ωd(MHz) =
5.07

√
P(mW).

Using the basic pulse protocols described in Sec. 2.4.2 allows us to determine the

characteristic timescales for qubit decay and qubit dephasing. In Fig. 3.10, proto-

typical traces for the three protocols discussed in Sec. 2.4.2 and corresponding fits

are plotted.

The T1-time of our qubit is measured using multiple π pulses with increasing free

evolution time between pulse and readout. Fitting the exponential decay in Fig. 3.10

(T1) results in a T1-time of 1.875 µs. The T ∗2 -time measurement in Fig. 3.10 (T ∗2 )

exhibits its characteristic oscillating behavior due to the weakly detuned drive which

allows the Bloch vector representing the quantum state to rotate in the x-y plane.

Our exponential sinusoidal fit leads to a T ∗2 -time of 1.875 µs.



3.2 Sample characterization 33

0 2 4 6
 t (µs)s)

-40

-20

0

re
ad

ou
t p

ha
se

 (°
)

0 2 4 6
 t (µs)

0 2 4 6
 t (µs)

-20

-10

0

re
ad

ou
t p

ha
se

 (°
)T T* T1 2 2E(    ) (    ) (     )

Figure 3.10: Qubit decoherence measurements. In all subfigures, blue data points
represent the measured readout phase versus varying free evolution
time when applying the protocols shown in Fig. 2.6 (d)-(f). In (T1),
the exponential decay fit reveals a T1-time of 1.875 µs. The Ramsey
measurement in (T ∗2 ) is fitted using an exponential sinusoidal decay
revealing a T ∗2 -time of 1.875 µs. In (T2E), the exponential decay fit
reveals a decay time of 0.9295 µs resulting in a Hahn echo time of
T2E = 1.939 µs (cf. Fig. 2.6 (f)).

Using the Spin Hahn protocol with the result shown in Fig. 3.10 (T2E) leads to a

T2E-time of 1.939 µs. To prevent confusion we note that the fit value obtained by

the exponential decay in Fig. 3.10 (T2E) only gives acces to the free evolution time

∆t. In order to obtain the full T2E-time we have to account twice for that time

and need to add the π-pulse length of (80 ns) in between too, as specified in the

Hahn echo protocol in Fig. 2.6 (f). These times still indicate a significant dephasing

caused by low-frequency noise [42].

The curves in Fig. 3.10 represent single measurements, which are known to fluctu-

ate over time. For a precise specification, sufficient statistics would be necessary.

Anyway, the shown measurements can be regarded as approximate values since we

do not expect the deviation from the distribution mean to be large.

3.2.2 Readout mode

Our time domain setup allows us to measure the resonance curve of the readout

mode without using a vector network analyzer (VNA). This kind of measurement

is more time consuming and inaccurate than the transmission measurement using a

VNA. Anyway, it is sufficient and allows us to measure without changing our setup

shown in Fig. 3.4.

We characterize our readout mode by applying a readout pulse only and start mea-

suring after waiting long enough for the photon population in the resonator to be
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in equilibrium. Using our FPGA-enhanced digitizer card described in Sec. 3.1.5

we are able to determine the amplitude of the reflected readout signal. This kind

of measurement yields the Lorentzian shaped response curves in Fig. 3.11. The

measurement thus acts similar to a VNA transmission measurement.
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Figure 3.11: Readout mode transmission measuremement. Circles represent the
normalized amplitude of the reflected signal for varying drive frequency
close to the readout mode resonance. It is measured using the FPGA-
enhanced digitizer card. The red curves are obtained by fitting the
resonance curves with a regular Lorentzian. The curves shift by an
amount of χRO

01 = 3.3 Mhz.

In Fig. 3.11, such a measurement mapping the readout mode is shown. We measure

the two curves using two different readout pulse power levels. The curve measured

with -55 dBm drive power represented by orange circles leaves the transmon qubit

transitions unaffected and can be regarded as coupled readout mode resonance fre-

quency for the transmon qubit in |g〉 - state described in Eq. (2.27). The blue circles

in Fig. 3.12 represent the measurement at a considerably high power of -20 dBm. At

this power level, the number of photons in the resonator exceeds a critical number

leading to a breakdown of the Jaynes-Cummings model. The measured resonance

frequency can be then be regarded as bare readout mode resonance frequency ωr.

Regarding Eq. (2.27), we can identify the shift in Fig. 3.11 to be χRO
01 = 3.3 MHz.

For determining the reduced dispersive shift χ′ of our transmon qubit, we use another

approach. In Fig. 3.12 (a), the reflected readout signal amplitude recorded is mapped

versus varying length of our qubit drive pulse applied in advance. It is clearly

visible that for a sufficient pulselength (approximately 75 ns) the readout mode

resonance frequency shifts to a lower frequency due to the excitation of the qubit.

In Fig. 3.12 (b) the readout mode resonance frequencies for varying pulselengths

are plotted. They are obtained by fitting the Lorentzian shaped resonance curves in



3.2 Sample characterization 35

Fig. 3.12 (a). The effective dispersive shift obtained by the frequency difference of

readout mode resonance frequency with qubit in |g〉 and |e〉 state can be viewed as

purely induced by the qubit since the excitation of transitions other than the qubit

transition are negligiby small.
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Figure 3.12: (a) Readout mode transmission mapped close to the resonance fre-
quency following a drive pulse at qubit transition frequency with vary-
ing pulselength and a fixed drive power of -50 dBm. It is measured
using the FPGA-enhanced digitizer card. In (b) the circles represent
fitted resonance frequencies of the readout mode for varying pulse-
length. By averaging the yellow and red colored circles, we estimate
the effective dispersive shift of the readout mode to be χ′RO = −1.4
MHz. The yellow (red) line shows the resonance frequency of the
readout mode for qubit in |g〉-state (|e〉-state).

Summarizing the measurements above, we determine the dispersive shift to be χ′ =

−1.4 MHz and the shift between the bare resonator frequency and the qubit in

ground state to be χRO
01 = 3.3 MHz. Using Eq. (2.25) we can now identify our shift

induced by the third level to be χRO
12 = 9.4 MHz. With χRO

01 and ∆ at hand, we can

finally calculate the coupling coefficient g in Eq. (2.22) describing the interaction

strength between qubit and coupled readout mode to be g = 43 MHz.

3.2.3 Storage mode

In contrast to the readout mode measurements in Sec. 3.2.2, the frequency sweeps

mapping our storage mode transmission are obtained using a vector network analyzer

(VNA). Similar to Fig. 3.11 we measure two different curves for high and low VNA

power. We do so in order to measure both, the bare resonance frequency of the

storage mode and the resonance frequency of the mode for the qubit in ground
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state. The result is shown in Fig. 3.13. We determine the shift in resonance to

be χS
01 = −1.33 MHz and the uncoupled storage mode resonance frequency to be

8.706839 GHz.
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Figure 3.13: Circles represent the reflected power when measuring the storage
mode transmission close to resonance with a VNA. Using a modified
Lorentzian accounting for cross-coupling between the two resonator
ports according to Refs. [49] to fit our transmission curves, we obtain
an effective dispersive shift of χS

01 = −1.33 MHz.

Using Eq. (2.28), we can calculate the reduced dispersive shift χ′S to be −87 kHz1.

Thus, the effective shift of the storage mode is significantly decreased. According to

Eq. (2.28), the large detuning ∆q,S of the storage mode is responsible for that effect.

As described in Sec. 2.3, other transitions than the regular qubit transition can be

driven. The blue sideband (BSB) pulse indicated in Fig. 2.3 excites the qubit and

additionally adds one photon excitation in the storage mode. Thus, the BSB pulse

can be regarded as transition from |g, 0〉 to |e, 1〉.
In Fig. 3.14 (a), the BSB transition is mapped. The plot shows the readout phase

for varying drive power and frequency whilst the pulselength is fixed. For increasing

drive power, the transition frequency shifts towards lower frequencies. This behavior

can be explained taking into account two phenomena. The first one is the decreasing

qubit frequency for an increasing number of photon excitations in a coupled mode

called Stark shift. It depends linearly on the drive power which is proportional to the

number of photons. The second effect causing the blue sideband transition frequency

to decrease is the Kerr nonlinearity depending on the squared power applied. The

Kerr effect is not of interest for this thesis and we refer the interested reader to

[9, 50].

1assuming our anharmonicity α = −187 MHz measured by E. Xie did not change
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In Fig. 3.14 (b), the power dependent transition frequencies obtained by fitting

Fig. 3.14 (a) are shown. The red curve is fitted using a second degree polynomial

acocunting for both, Kerr and Stark shift, respectively. The yellow line represents

the linear contribution caused by the Stark shift described by Eq. 2.29. Using the

slope of the linear fit in Fig. 3.14 (b) we determine a power of 72 µW necessary to

excite a single photon.
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Figure 3.14: (a) Readout phase measured following a drive pulse with a fixed pulse-
length of 80 ns mapped for varying drive frequency and power. The
power dependent blue sideband transition at frequency ωBSB is clearly
visible. In (b) the blue circles represent the BSB transition frequency
for varying drive power. We fit the transition frequency with a second
degree polynomial (red curve) and obtain a linear contribution caused
by the Stark shift (yellow curve) with a fitted slope of −0.6 MHz/mW.
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3.2.4 Comparison

In Tab. 3.1, all relevant measured parameters are shown. They summarize the

results of our sample characterization measurements in Sec. 3.2. We compare the

results with the previously measured values by E. Xie [9].

parameter Xie 2018 Trattnig 2019

νq (GHz) 6.234 6.0687

T1 (µs) 1.3 (1.875 48)

T ∗2 (µs) 2.5 (1.875 53)

T2E (µs) - (1.939)

Tϕ (µs) 65 -

α (MHz) -187 -

νRO (GHz) 5.518 5.519

FWHMRO (MHz) 4 5.72

χ′RO (MHz) -1.4 -1.4

gRO/2π (MHz) 53 43

∆q,RO/2π (GHz) 0.716 0.554

νS (GHz) 8.707546 8.706839

FWHMS (kHz) 24.7 102.1

χ′S (kHz) -77 -93

gS/2π (MHz) 53 59

∆q,S/2π (GHz) -2.474 -2.638

Table 3.1: Sample characterization measurement results compared between Xie
(2018) and Trattnig (2019). Values in brackets are not measured us-
ing sufficient statistics.

Compared to the values measured by E. Xie, the qubit and storage mode parameters

seem to have changed significantly. It is apparent that the decoherence times appear

to change massively from cooldown to cooldown. Although T1 has improved, Tϕ has

become worse.

2might be broadened due to measurement with FPGA
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Experimental results

The experimental results presented here are split into three parts. In the first part

presented in Sec. 4.1, we explain our approach for optimizing pulses. In Sec. 4.2

and Sec. 4.3 we present the results of our approach. Finally, in Sec. 4.4 we show our

results on measurements where we try to find out why our memory protocol does

not work as expected.

4.1 Optimal control engine

In this section we present our “black box” optimization approach to find optimal

pulses for our quantum memory experiment. We want to note that our optimal

control engine is not directly linked to the mathematical field of optimal control but

rather summarizes our efforts towards achieving higher fidelities of quantum gates,

including the quantum memory protocol.

4.1.1 CMA-ES

The Covariance Matrix Adaption Evolution Strategy (CMA-ES) is a stochastic

method for optimization in non-linear and non-convex search domains. It is a gra-

dient free method which makes it suitable for noisy environments. Our quantum

memory takes between 104 and 105 readout phase averages of the same pulse in

order to manage noise contributions in the amplification chain which makes the use

of an algorithm which is resiliant to such noise unavoidable.

In general an optimization process can be viewed as a “black box” scenario which

aims to minimize an objective function f(x) ∈ R where x ∈ Rλ represents a point

in an n-dimensional search space. The aim of the algorithm is to find the smallest

possible x′ in the whole search domain by doing function evaluations as little as

40
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possible. The mechanism behind the objective function f(x) is neither known to

the algorithm nor relevant, it is hidden in a “black box”.

CMA-ES tracks the function minimization problem by randomly sampling and eval-

uating possible candidates x in each optimization step according to a multivariate

normal distribution

N (x|µ,Σ) ∼ e−
1
2

(x−µ)TΣ−1(x−µ) (4.1)

where the mean µ and the covariance matrix Σ are the parameters defining the

distribution.
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Figure 4.1: CMA-ES optimization on two-dimensional dummy objective function
defined in Eq. (4.3). Subfigures (a)-(f) differ in generation number
(2,3,6,8,11,25) and show the optimization progress. Red crosses repre-
sent the mean of distributions. The 20 black data points in each figure
represent candidates within the sampled population.

The optimization steps of an evolutionary algorithm like CMA-ES are called “gen-

erations”. Each generation consists of λ candidates x where λ is called “population

size”. The population size stays constant but candidates are sampled new in every



42 Chapter 4 Experimental results

generation. The mean and the covariance matrix are updated from one genera-

tion to another throughout the optimization process. A new generation is sampled

according to the following distribution

x
(g+1)
k ∼m(g) + σ(g)N

(
0,C(g)

)
k = 1...λ

∼ N (m(g), (σ(g))2C(g)) k = 1...λ,
(4.2)

where x
(g+1)
k are the new generation candidates. The values determining the dis-

tribution for generation (g + 1) namely m(g), σ(g), C(g) are calculated using the

knowledge gain from the previously evaluated generations. The covariance of the

distribution is given by a product of σ(g) and C(g) where C(g) is the updated covari-

ance and σ(g) is an update factor for the covariance ensuring an increase or decrease

if needed and thus ensures a proper movement of the distribution through search

space. The calculation of the mean m(g), the covariance C(g) and the update fac-

tor σ(g) is done taking into account information gain from the previously evaluated

population of generation (g). Better or worse performing candidates are weighted

accordingly resulting in an update which ensures an approach of the mean value

m towards the objective function minimum. Further information for the precise

calculation of the updates can be found in Ref. [51].

In Fig. 4.1, an optimization run on a dummy objective function is shown. With in-

creasing generation number, the mean of the distribution moves towards the function

minimum at (0, 0). The initial covariance matrix is isotropic with small eigenval-

ues resulting in a small spread within the 20 sampled candidates. With increasing

generation number the spread increases and decreases again after the distribution

mean approaches the minimum. It also demonstrates the capability of the CMA-ES

algorithm to adapt the covariance matrix for different directions in parameter space

accordingly.

The dummy objective function defining the two-dimensional search space in Fig. 4.1

is defined as

f(x) = 1− 10/(0.5x2 + 4y2 + 10). (4.3)

In order to demonstrate the capability of the CMA-ES algorithm gaussian noise

with a standard deviation of 0.02 is added resulting in a noisy landscape.
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4.1.2 Optimal control implementation

For optimizing pulse parameters the CMA-ES algorithm described in Sec. 4.1.1

needs to control the relevant pulse parameters. This is enabled using ZeroMQ1 as

messenger. The communication transmits a dictionary

comdict = {’search_id’: search_id,

’pulse_id’: pulse_id,

’pulse’: pulse,

’fidelity’: 0,

’do_stop’: False}

where the search_id labels the optimization run and the pulse_id defines one

specific trasmitted dictionary containing the information of a set of pulse parameters

to be evaluated in experiment. The value pulse contains another dictionary with

pulse parameters.

pulse = {’I’: I,

’Q’: Q,

’omega’: omega,

’carrier_amp’: carrier_amp}

where I and Q are lists containing I and Q components of the pulseshape in ns

resolution, omega is the drive frequency and carrier_amp the drive power in angular

frequency as preferred by theoreticians. The conversion to dBm is done in LabView

using the power-dependent Rabi frequency (cf. Fig. 3.9) for calibration.

The overall scheme for optimizing pulses is shown in Fig. 4.2. As indicated, a param-

eter guess encapsuled in comdict is sent to the computer hosting the “Deepthought”-

LabView program and evaluated in experiment. After evaluating the single pulse

measurement (further data acquisition details can be found in Sec. 3.1), the dictio-

nary comdict is changed. The readout phase which acts as fidelity indicator of the

experiment is assigned to the key ’fidelity’. Via the ZeroMQ socket the dictio-

nary comdict is sent back to the computer running the python CMA-ES algorithm

where it is processed. This cycle of selecting possible candidate parameters by CMA-

ES and evaluating them in our experiment takes approximately 5 to 6 seconds and

is mainly limited by the averaging and data acquisition on the experimental side.

In order to not confuse the optimizer due to the large differences in orders of mag-

nitude, all parameters are scaled down to a range between 0 and 1 in python. This

1https://zeromq.org
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ensures stability and equal treatment of each parameter regardless of whether it is

large (Frequency - O(109s)) or small (pulselength - O(10−7s)).

CMA-ESmeasurement
computer

LabView
“Deepthought”

readout electronics

pulse generation
electronicsto experiment

from experiment

received fidelity

parameter guess
“black box” network connection

Figure 4.2: Simplified “black box” optimization scheme. Pulse generation electron-
ics controlled via “Deepthought” program (LabView) send pulses to ex-
periment. Measurement computer connected with an FPGA-enhanced
digitizer card is measuring and averaging the readout signal, resulting in
a detected readout phase processed by “Deepthought”. Our CMA-ES
optimal control engine is recieving the readout phase as fidelity indica-
tor and sending a new parameter guess.

The protocol which is implemented allows for various pulse implementations. The

nanosecond step resolution of the I and Q variables in the communication can be

used to perform pulse modulation if the relevant RF source is capable (cf. Sec. 3.1.3).

It also offers the opportunity of performing predefined protocols without the use of

the “Deepthought” LabView program where protocols have to be defined manually.

The implementation in python also gives access to a variety of toolboxes like QuTiP.

In our experiment, the PSG vector signal generator was capable of performing fre-

quency modulation which we applied at multiple occasions without recognizing a

significant benefit.
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4.2 Single pulse optimization

In a first step, we want to optimize π-pulses for the qubit and blue sideband (BSB)

transition acting as quantum gates. We do so by applying our optimal control engine

to our simple flat-top gaussian pulses (cf. Sec. 3.1.4). For both, qubit and BSB, we

used the PSG as RF source which is capable of pulse modulation via wideband IQ

inputs (cf. Sec. 3.1.3). The CMA-ES population contained 20 candidates.

4.2.1 Qubit pulse optimization

The qubit π-pulse optimization per hand can be handled quite well. This is due

to the stable transition frequency which is independent of the applied power. Thus

the mapping of pulselength versus drive power is sufficient for good results. We fix

the drive frequency at 6.0687 GHz which is the transition frequency we determined

separately (cf. Fig. 3.8), and set the phase of the drive pulse to zero.

In Fig. 4.3, the result of this mapping is shown with our “sweet spot” marked with

a red cross in Fig. 4.3 (b). Table 4.1 lists the handoptimized parameters.
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Figure 4.3: Readout phase measured following a drive pulse at qubit transition fre-
quency (6.0687 GHz) mapped for varying drive power and pulselength.
The red dot in (b) indicates the optimum chosen by Hand.

Using our CMA-ES optimizer approach and taking the values of the handoptimized

qubit π-pulse parameters as initial guess leads to better results. The optimization

process is shown in Fig. 4.4 and Fig. 4.5 (a). Fig. 4.4 shows the parameter guesses of

CMA-ES whilst Fig. 4.5 (a) shows the readout phase for each optimizer guess. We
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achieve convergence within approximately 300 iterations. The CMA-ES optimized

parameters for our qubit π-pulse are listed in Tab. 4.1.

Focusing on parameter convergence in Fig. 4.4 we still recognize a considerably high

variance for the drive power, pulselength and drive phase guesses after convergence

of the readout phase in Fig. 4.5 (a). Those parameters have a shallow optimum

in parameter space covered with noise preventing CMA-ES from tightening the

sampling area defined by Eq. (4.2). We can explain this behavior by considering the

readout phase in Fig. 4.5 (a) acting as objective function. After approximately 300

iterations, no significant change of the readout phase is visible. Thus, the effect of

noise exceeds the effect of a small deviation in readout phase, leading to a constant

sampling area with a fixed variance within the sampled parameter guesses in Fig. 4.4.
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Figure 4.4: Parameter guesses of CMA-ES algorithm optimizing a qubit π-pulse.

In Tab. 4.1, a direct comparison between the handoptimized and the CMA-ES op-

timized π-pulse parameters is shown. We want to highlight that, in comparison to

our previously measured qubit frequency in Fig. 3.8, the drive frequency of our opti-

mized pulse is positively detuned by an amount of 0.6 MHz. This behavior occurred

at multiple optimization runs and can thus not be assigned to a temporal change of

the qubit transition frequency.

One possibility for that positive detuning of our qubit drive frequency might be

the prevention of driving parasitic transitions. For transmon qubits, those occur at

lower frequencies than our desired |g〉 to |e〉 qubit transition frequency. Detuning the

drive also leads to an increased detuning of those transitions. Since our optimizer
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is mainly interested in a high readout phase, the higher drive frequency might be a

tradeoff with a (to be confirmed) positive impact on our gate fidelity.

Qubit π-pulse pulselength drive power drive frequency drive phase

Handoptimized 108 ns -42.5 dBm 6.0687 GHz 0◦

CMA-ES optimized 112 ns -42.5 dBm 6.0693 GHz −8.85◦

Table 4.1: Comparison of handoptimized and CMA-ES optimized qubit π-pulse
parameters.

To visualize the differences between the handoptimized and the CMA-ES optimized

π-pulse, we evaluate each pulse 100 times in order to obtain sufficient statistics. In

Fig. 4.5 (b), the distribution results of those measurements with their gaussian fits

are shown. Using the optimized pulse leads to an increase of the readout phase

magnitude of approximately 2.6%.
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Figure 4.5: (a) Readout phase measured following a qubit pulse with parameters
from CMA-ES guess for increasing CMA-ES iteration number (evalu-
ated candidates). In (b), readout phase statistics using handoptimized
pulses (−42.0± 0.4)◦ and CMA-ES optimized pulses (−43.1± 0.5)◦ are
compared.

To summarize the results in this section, we want to note that a CMA-ES optimized

π-pulse exhibits a higher readout phase indicating a higher z-fidelity than our han-

doptimized π-pulse. Since the z-fidelity is only an indicator for the overall fidelity

of a quantum gate, we perform Quantum State Tomography in Sec. 4.3.



48 Chapter 4 Experimental results

4.2.2 BSB pulse optimization

The blue sideband transition, as indicated in Fig. 2.3, maps the |g, 0〉 to the |e, 1〉
state. When driving, the necessity of a two-photon process results in a transition

frequency of (ω̃B + ω̃q)/2 which is strongly power-dependent due to the stark shift

[cf. Eq. (2.29)]. Thus, finding good parameters for the BSB π-pulse is challenging.

In Fig. 4.6, the readout phase indicating the BSB transition is mapped versus drive

power and drive frequency. We fix the pulselength to 80 ns for practical considera-

tions. Considering the pulselength as additional parameter to be mapped would fail

in terms of exceeding feasible measurement time.

In the region around 7.31 to 7.32 GHz the readout phase exhibits extraordinary high

values due to some parasitic resonance which are cropped for visibility. Using a high-

pass filter can circumvent this behavior2. For high drive power, the readout phase

exhibits some minor deflection from zero independent of the frequency applied.

The optimum chosen by hand is marked with a red cross in Fig. 4.6 and the han-

doptimized π-pulse parameters are listed in Tab. 4.2.
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Figure 4.6: Readout phase measured following a BSB pulse mapped for varying
drive power and drive frequency. The pulselength is fixed at 80 ns. The
red cross indicates the optimum chosen by hand.

When considering CMA-ES for optimizing the BSB π-pulse, the deflection of the

readout phase for high drive power can lead to a distraction. It results in a conver-

gence at the high power boundary. To circumvent this behavior, the initial values

2We use a high-pass filter at the output port of the PSG RF source which has a cut-off frequency
of 7.15 GHz



4.2 Single pulse optimization 49

of the mean and the covariance matrix in Eq. (4.2) need to be set properly. The

mean value should be close to the transition mapped by hand in Fig. 4.6 and the

covariance matrix should have a sampling area which is approximately four times

smaller than the frequency span shown in Fig. 4.6.

Starting with the handoptimized values as initial guess it takes the optimizer ap-

proximately 800 iterations to find the optimal π-pulse parameters. In Fig. 4.7 the

BSB π-pulse parameter guesses are shown depending on the iteration number. The

value of the pulselength parameter reaches its upper bound which is defined as 119

ns. The bound is considered for practical reasons: the full memory protocol should

not exceed 500 ns regarding a qubit T1-time of approximately 1.8 µs. This value

hitting the boundary hints that longer π-pulses with less power result in a higher

readout phase magnitude.
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Figure 4.7: Parameter guesses of CMA-ES algorithm optimizing a BSB π-pulse.

In Fig. 4.8 (a), the BSB readout phase of the optimization run is shown depending

on the iteration number. Compared to the maximum readout phase obtained by the

qubit π-pulse optimization in Fig. 4.5 (a), the readout phase obtained by the BSB

π-pulse is reduced. Due to the Stark shift altering the qubit transition frequency, the

detuning ∆ between qubit and readout mode decreases. This decrease in detuning

leads to a change in the effective dispersive shift χ′ between qubit and readout mode.

Thus, we would expect an altered readout phase.

Figure 4.8 (b) shows the measured readout phase statistics for the handoptimized
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case and the CMA-ES optimized case. The CMA-ES optimized case shows a signif-

icantly higher readout phase magnitude of approximately 19.1%.
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Figure 4.8: (a) Readout phase measured following a blue sideband pulse with pa-
rameters from CMA-ES guess for increasing CMA-ES iteration number
(evaluated candidates). In (b), readout phase statistics using handopti-
mized pulses (−28.2±0.8)◦ and CMA-ES optimized pulses (−33.6±0.4)◦

are compared.

The optimal BSB π-pulse parameters resulting from the optimization run shown in

Fig. 4.7 are listed in Tab. 4.2.

BSB π-pulse pulselength drive power drive frequency drive phase

Handoptimized 80 ns 16 dBm 7.219 GHz 0◦

CMA-ES optimized 119 ns 15.1408 dBm 7.2874 GHz −46.28◦

Table 4.2: CMA-ES optimized qubit pulse parameters

Finally, the results above show that if optimizing the readout phase, CMA-ES can

lead to better results in less amount of time. For the qubit π-pulse, the improvement

is visible but not extraordinary. For the blue sideband π-pulse, the improvement

is remarkable. Anyway, we expect the readout phase to be an indicator for the

memory fidelity.

For the qubit, it has been shown in the past that for a given readout pulse (fixed

frequency, power and duration), the higher the phase the better the fidelity of the

|0〉 to |1〉 transition [18].
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For the blue sideband, the high readout phase is less obviously related to a better

memory fidelity because of the high drive power necessary for the two-photon pro-

cess. This high power can lead to deflections of the readout phase without actually

driving a desired transition. Furthermore, the Stark shift affecting our effective dis-

persive shift χ′ needs to be considered. Thus, for the BSB transition, the readout

phase might not be an ideal objective function to optimize for.

In order to test the performance of the CMA-ES optimized qubit π-pulses, Quantum

Process Tomography (QPT) as described in Sec. 2.5.2 is applied and the results are

shown in the next section.
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4.3 Tomography with optimized qubit pulses

In this section, we present our results on performing quantum process tomography

(QPT) on our optimized qubit pulses. The optimization of a qubit π-pulse is done as

described in Sec. 4.1. By optimizing for two successive and identical pulses, we obtain

an optimized π/2-pulse which is required for process tomography. To compare our

result and highlight the improvement, we also show the expected result of a perfect

π-pulse and the result of a simple hand-optimized pulse.

Theory π-pulse

As a first step, we show the real and imaginary part of the process matrix χ̂ for

a perfect π-pulse acting as R̂π
y -Gate [cf. Eq. (2.11)] in Fig. 4.9. Each axis of the

bar chart is labeled with the four operators forming our chosen operator basis (cf.

Sec. 2.5.2). The only operator contributing is the −iσ̂y-operator defining a rotation

around the y-axis of the Bloch Sphere by an angle of π.
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Figure 4.9: Real and imaginary part of theoretical process matrix representing a
perfect π-pulse acting as R̂π

y -gate.

With the process matrix at hand, we have the opportunity to calculate the result of

our quantum process acting on any input state by applying Eq. (2.38). In Fig. 4.10,

a Bloch sphere representing a map of states ρ̂′ as a result of our quantum process

Etheory(ρ̂) is shown. A map of pure states ρ̂ act as input states. Since our theory

process matrix above does not contain any energy decay or dephasing, no distortions

occur.
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Figure 4.10: Bloch sphere map of quantum states ρ̂′ obtained by applying our the-
ory quantum process Etheory representing a perfect R̂π

y -gate to an initial
map of pure quantum states ρ̂.

Handoptimized π-pulse

For obtaining experimental quantum process matrices we need to follow the process

tomography procedure described in Sec. 2.5.2.

We proceed by initializing our set of four initial states and applying our quantum

process E which is our handoptimized π-pulse to be benchmarked. In Fig. 4.11

the real and imaginary part of the resulting process matrix for the handoptimized

π-pulse is shown.
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Figure 4.11: Real and imaginary part of experimental process matrix obtained by
applying QPT to our handoptimized π-pulse acting as R̂π

y -gate.

In contrast to the expected result for a perfect π-pulse shown in Fig. 4.9, other

operators than −iσ̂y contribute.
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In order to see distortions on the Bloch sphere, we again apply our reconstructed

quantum process to a map of density matrices. The result can be seen in Fig. 4.12.

Compared to the theory Bloch sphere in Fig. 4.10, deviations occur due to non-

perfect pulses in experiment. It is clearly visible that the axis of the reconstructed

sphere is not in parallel with the z-axis. This is an indicator for a deviation in the

pulselength, leading to an unfinished rotation. Another artifact that occurs is the

compression of the sphere along the x-axis which is attributed to dephasing effects.
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Figure 4.12: Bloch sphere map of quantum states ρ̂′ obtained by applying quantum
process Ehandoptim to an initial map of pure quantum states ρ̂.

Using Eq. (2.46), we can calculate the fidelity as a measure of similarity between the

theory process matrix in Fig. 4.9 and our experimentally measured process matrix in

Fig. 4.11. The fidelity of our handoptimized qubit pulse is F = 0.9375. This value

is worse than the value 0.9705, obtained by M. Renger in Ref. [18]. Taking into

account that we did not measure multiple process tomographies of qubit π-pulses

during this thesis to select them for good results the fidelity seems reasonable.

CMA-ES optimized π-pulse

As a next step, we apply quantum process tomography to our CMA-ES optimized

qubit π-pulse. In Fig. 4.13, the resulting process matrix is shown. In comparison to

the previously shown process matrix of our handoptimized π-pulse in Fig. 4.11, the

elements not contributing to a π-pulse are negligibly small.

In Fig. 4.14, the result of our quantum process acting on a initial Bloch sphere map

consisting of pure states is shown. The sphere is almost an ideal sphere tilted by a

small angle. In comparison to our handoptimized π-pulse in Sec. 4.3, the fidelity is

significantly higher with a value of F = 0.9864.



4.3 Tomography with optimized qubit pulses 55

0

0.5

I

1

X Z
-iY-iY XZ I

0

0.5

I

1

X Z
-iY-iY XZ I

real imaginary

Figure 4.13: Real and imaginary part of experimental process matrix obtained by
applying QPT to our CMA-ES optimized π-pulse acting as R̂π

y -gate.

Regarding the reconstructed Bloch sphere in Fig. 4.14, the only deviation that is

clearly visible is a tilted z-axis. This tilt is a result of the finite detuning between

the optimized pulse and the qubit transition frequency.
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Figure 4.14: Bloch sphere map of quantum states ρ̂′ obtained by applying quantum
process ECMA-ES to an initial map of pure quantum states ρ̂.

Summarizing the results above, our optimal control engine using CMA-ES as an

algorithm for optimizing simple flat-top gaussian qubit pulses leads to a significant

increase of our process fidelity. For the blue sideband, process tomography was not

applied.
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4.4 Memory protocol and storage mode decay

In this section, we show our memory protocol storage time measurements and find

out that they are not comparable to the previously measured storage times recorded

for the same experimental setup. We further analyze the decay times of the cavity

storage mode to find out that the memory time of our experiment is recently limited

by a decay of the storage mode.

4.4.1 Memory protocol

We start our memory protocol measurements by finding a reasonable blue sideband

pulse. Below the Rabi curves of two BSB pulses are plotted. The curves are mea-

sured using the PSG vector signal generator with an additional high-pass filter3.
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Figure 4.15: Readout phase measured following an applied drive at blue sideband
transition frequency for two different drive power levels and varying
pulselength. Those Rabi measurements are made for determining the
relevant handoptimized π-pulse length. The high readout phase com-
pared to Fig. 4.8 is due to an additional high-pass filter at the PSG
RF output.

The blue sideband pulse with less power in Fig. 4.15 (14.5 dBm) leads to a signifi-

cantly higher readout phase. Since we optimize for the readout phase (results shown

in Sec. 4.2), our CMA-ES optimization algorithm would prefer the lower BSB drive

power to the higher one.

The performance of our memory protocol is not benchmarked by the measured

readout phase of a single pulse but by the fidelity of the process and the storage

3we use a high-pass filter at the output port of the PSG RF source which has a cut-off frequency
of 7.15 GHz
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time. In Fig. 4.16, the T1,m-time statistics of the memory protocol is shown. The

BSB pulses used for the protocol are the same as in the Rabi plot in Fig. 4.15. The

qubit pulses are the same for both cases and are performed using the R&S SGS100A

RF source.
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Figure 4.16: Memory time statistics for applied memory protocol. The two his-
tograms use BSB π-pulses which differ in drive power but the same
qubit π-pulse. A memory protocol with 14.5 dBm BSB drive power
yields a memory time of (1.79 ± 0.09) µs and a 18.5 dBm BSB drive
yields (1.95± 0.12) µs.

In Tab. 4.3, the mean and the standard deviation of the Gaussian distributions in

Fig. 4.16 are shown. The difference in memory T1,m-time using two different BSB

pulselengths indicates that a high readout phase does not automatically correspond

to a good memory protocol performance. Thus, the readout phase used for optimiza-

tion with CMA-ES as performed in Sec. 4.2.2 is not a good objective to optimize

for.

drive power (dBm) 14.5 18.5

memory time T1,m (µs) 1.79± 0.09 1.95± 0.12

Table 4.3: Mean and standard deviation of statistics recorded of Memory Protocol
time displayed in Fig. 4.16.

In this thesis, we do not explore better objective functions further. The reason

is as follows. Independently of the BSB drive power used, the decay times shown

in Tab. 4.3 are much smaller than the decay times measured by Xie in [10]. In

order to find out why our memory times decreased from 8 µs to below 2 µs, further

measurements characterizing the storage mode are necessary.
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We do so by measuring the decay time of the storage mode using a direct method

in the next section.

4.4.2 Storage mode time domain measurements

Compared to the memory storage time of approximately 8 µs measured by the

predecessors (E. Xie and M. Renger), our memory protocol measurement exhibits a

significantly decreased storage time. The measurements shown below indicate that

the decrease can be linked to a decreased memory mode lifetime.

In order to measure the lifetime of the storage mode directly, we make use of a

specific measurement technique. For directly driving the mode, we apply a long

drive pulse at the storage mode resonance frequency in order to ensure a constant

number of photons in our storage mode. When turning that drive tone off, the mode

decays. Immediatley after turning the drive tone off, we start probing our readout

mode resonator. The fast decay of our readout mode ensures a proper mapping of

the storage mode population.

In Fig. 4.17 (a), storage mode frequency sweeps are mapped versus varying drive

power. This mapping allows us to determine the low-power limit for storage mode

drive pulses in which we are capable of measuring the storage mode population in

time.
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Figure 4.17: (a) Readout phase measured following a sufficiently long drive pulse
close to the storage mode resonance frequency. The readout phase is
mapped versus power and frequency of the applied pulse. (b) Readout
phase for selected levels of low pulse power in (a).
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In Fig. 4.17 (b), four of the frequency sweeps in (a) mapped in the low-power limit

are shown individually. The peak of those curves indicates a storage mode drive on

resonance for a given drive power. Plotting the time trace recorded by the FPGA-

enhanced digitizer card at that frequency peak shows the exponential decay of the

storage mode population.

In Fig. 4.18, a comparison between a storage mode decay recorded in 2017 [10] and

a decay recorded during this thesis in 2019 is shown. The storage mode decay in

2019 with a lifetime of 1.4 µs is significantly shorter than the decay measured in

2017 with a lifetime of 9.2 µs. This decrease is the result for our short storage

time shown in Fig. 4.16 when applying our memory protocol. To prevent confusion,

we note that the differences in noise of the two decay curves are due to different

averaging in the recording with the FPGA-enhanced digitizer card (cf. Sec. 3.1.5).
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Figure 4.18: Comparison between storage mode decay times in 2017 and 2019. Blue
data points are recorded in 2017 by Xie. An exponential fit results in
a T1,S-time of 9.2 µs. Red data points are recorded during this thesis
in 2019, with a T1,S-time of approximately 1.5 µs.

We proceed our storage mode measurements by measuring the storage mode lifetime

using sufficient statistics. In Fig. 4.19 the histograms for decay time measurements

with three different levels of drive power applied to the storage mode are shown.



60 Chapter 4 Experimental results

drive power -42 dBm -40 dBm -38 dBm

storage mode decay time T1,S (µs) 1.57± 0.11 1.47± 0.07s 1.53± 0.09

Table 4.4: Mean and standard deviation of statistics recorded of storage mode decay
time displayed in Fig. 4.19.

The mean storage mode decay time and the standard deviation of the histograms

shown in Fig. 4.19 are listed in Tab. 4.4. The distributions do not differ significantly

and indicate that a broadening in the frequency domain of our probed readout

response in Fig. 4.17 occuring for increasing drive power does not affect the lifetime

of our storage mode.
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Figure 4.19: Storage mode decay time statistics obtained for three different levels
of applied drive power at storage mode resonance frequency.

4.4.3 Storage mode frequency domain measurements

We continue to further investigate the storage mode in order to determine the reason

for our memory underperformance. For three different cooldowns, we perform fre-

quency sweeps with a VNA power of -70 dBm. In Fig. 4.20 those frequency sweeps

are plotted.

The shape of the Lorentzian curves differs significantly within the cooldowns. We

fit the three curves by using a resonator model allowing to correct for cross-coupling

between the two resonator ports [49]. Quality factors and resonance frequencies

obtained by fit are listed in Tab. 4.5. All three resonance curves show a significantly

increased linewidth compared to the 24.7 kHz measured by E. Xie in 2017 [10].
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Figure 4.20: Blue points represent the reflected power when measuring the storage
mode transmission close to resonance with a VNA for three different
cooldowns (CD1-CD3). All three measurements are performed with
-70 dBm VNA power and 1 Hz intermediate frequency. The low VNA
power made averaging (N ≈ 10) crucial. Using a modified Lorentzian
accounting for cross-coupling between the two resonator ports accord-
ing to Refs. [49] to fit our transmission curves, we obtain the fit values
listed in Tab. 4.5.

Using an underdamped oscillator model [52], we calculate the theory storage mode

lifetime based on the linewidth of the resonance curve. The values are also listed

in Tab. 4.5 and exceed the experimentally measured lifetime. The reason for this

behavior is still unclear and requires further experiments beyond the time frame of

this thesis.

Cooldown Nr. 1 2 3

quality factor 0.853× 105 1.4765× 105 1.4071× 105

FWHM (kHz) 102 59 62

νS (GHz) 8.7081665 8.7081576 8.7081672

relative resonance f1 f2 = f1-8.9 kHz f3 = f1 + 0.7 kHz

T1,S 1.5689 2.0726 1.4876

T1,S theory from Q-factor 3.118 5.397 5.1434

Table 4.5: Specific storage mode parameters measured for three different cooldowns.



Chapter 5

Conclusion and Outlook

Within this work, the main focus has been laid on optimizing pulseshapes for our

quantum memory sample. As a main result, we can point out our implementation

of a python-LabView interface allowing us to control our quantum memory exper-

iment using a simple communication dictionary. We benefit from that interface in

two ways. First of all, the remote control of the I and Q components of our pulsed

microwave signal allows us to shape our pulses on a nanosecond timescale allowing

more sophisticated pulseshapes than with our rigid “Deepthought” LabView pro-

gram. The second positive effect that arises by swapping the pulse shaping from

LabView to python is the possibility to use any python based optimal control tech-

nique. This includes optimization performed by CMA-ES throughout this thesis. It

also enables access to our quantum memory experiment for our theory collaborators

as well as the opportunity to use any python toolbox for optimization.

Another goal that has been achieved in this thesis is the proof of principle that

optimization using the CMA-ES algorithm leads to better values for both, readout

phase and overall quantum process fidelity for our qubit π-pulse. For the qubit π-

pulse we have achieved an increase in gate fidelity, raising the value of F = 0.9705

measured by M. Renger and E. Xie to a new high of F = 0.9864 benchmarked by

quantum process tomography. Optimization of the blue sideband has also led to

promising results regarding the readout phase increase of 19.1% compared to our

pulse optimized by hand.

Unfortunately, optimization on the full memory protocol has not been established

due to some altering process of our memory sample. Thus, the last part of this

thesis has focused on the storage mode, revealing a decreased lifetime. We have

emphasized the decreased storage mode lifetime directly by VNA measurements

yielding an increased linewidth. As a final result, we made this increased linewidth

responsible for our short storage mode lifetime and directly link it to our memory
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underperformance.

Even through optimizing our full memory protocol could not be implemented, this

work can be regarded as a successful first step in achieving an optimized control

of our compact quantum memory. The python-LabView interface offers the oppor-

tunity to control our experiment independent of our pulse generation setup. This

enables future considerations in performing closed loop experiments for obtaining

insight in theory [53], a testbed for optimized pulses [31] as well as simple application

of complex pulse schemes.



Appendix A

Lab picture

gas handling
shielding with dewar and cryostat inside
DC electronics
time domain devices rack
helium lines

FPGA

Figure A.1: Quantum memory experiment and lab equipment.
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Hiermit möchte ich mich bei allen Personen bedanken, die direkt oder indirekt zur

Fertigstellung dieser Masterarbeit beigetragen haben.
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Allem voran natürlich auch meinem Betreuer Dr. Frank Deppe, der mir diese Arbeit
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