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München, April 10, 2018

http://www.tum.de/
http://www.wmi.badw.de/
http://www.badw.de/
http://www.tum.de/
http://www.wmi.badw.de/
http://www.badw.de/




Contents

1 Introduction 1

2 Theoretical Description 3

2.1 Mechanical String-Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Microwave Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Flux Tunable Microwave Resonators . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Fundamental Concepts of Electromechanical Interaction . . . . . . . . . . . . . . 17

2.4.1 Single Tone Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Two-Tone Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Nanostrings Inductively Coupled to Flux Tunable Resonators . . . . . . . . . . . 21

2.6 Magnetic Force Microscopy Cantilevers Coupled to Flux Tunable Resonators . . 25

2.7 Detection of Electromechanical Interaction - Noise Analysis . . . . . . . . . . . . 29

3 Sample Layout, Fabrication and Experimental Setups 33

3.1 Sample Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Transmission-Line and MW Resonators . . . . . . . . . . . . . . . . . . . 33

3.1.2 SQUIDs and Mechanical String-Resonators . . . . . . . . . . . . . . . . . 36

3.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Gold Deposition (Alignment Markers and Contact Pads) . . . . . . . . . . 38

3.2.2 Aluminium Deposition (MW Circuit, SQUIDs, String-Resonators) . . . . 39

3.2.3 Release of the Mechanical System . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Optical Interferometry at Room Temperature . . . . . . . . . . . . . . . . 43

3.3.2 500 mK Cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 20 mK Cryostat (”Kermit” and ”Triton”) . . . . . . . . . . . . . . . . . . . 45

4 Characterization of the Nanomechanical Hybrid Sample 49

4.1 Precharacterization of Mechanical String-Resonators at Room Temperature . . . 49

4.2 Precharacterization of SQUIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Characterization of Flux Tunable Resonators . . . . . . . . . . . . . . . . . . . . 58

4.4 Two Tone Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Summary and Outlook 79

A Appendix 83

Bibliography 89

Acknowledgement 97

I





Chapter 1

Introduction

The importance of sensing technologies on small length scales has just been demonstrated again,

with the Nobel Prize winning detection of gravitational waves at the LIGO detector in the year

2016 [1]. This laser interferometer is able to detect a length change 10 000 times smaller than an

atomic nucleus [2] and confirmed Albert Einstein’s prediction of gravitational waves. Besides

fundamental aspects, sensors of mechanical motion in general are sensitive to displacement

and acceleration and are used in a variety of applications in every day life. Whereas in the

automotive industry acceleration sensors activate protective airbags in the case of an accident

[3], they are also implemented into modern hand-held electronic devices allowing a rotation

of the screen when the device is turned upside down [4]. Commercial applications as well as

scientific research have imposed demanding requirements onto the sensing technology regarding

size and versatility. While for commercial devices low-cost and robustness are the main aspects,

in science the focus lies on shrinking the sensors and hereby increasing their sensitivity, resulting

in nanomechanical devices. Ultra high sensitivities with the ability of sensing single molecules

or even atoms [5] have been demonstrated and mass sensors with yoctogramm resolution [6, 7]

have enabled an entirely new way of mass spectroscopy. This increase in sensitivity has also

paved the way towards new experiments on the quantum theory of macroscopic objects as e.g.

levitating masses in cryogenic environments [8, 9].

The challenge of controlling the mechanical motion and reading out its state has led to the

field of optomechanics where a nanomechanical resonator is integrated into an optical cavity.

In such a cavity, one of the mirrors is free to vibrate and its displacement modifies the length

of the cavity. Thus the mechanical degree of freedom is coupled to the light field of the cavity

enabling a light-matter interaction [10]. When used appropriately, this interaction has two

effects. On the one hand the radiation pressure in the cavity exerts a force onto the mechanical

element, on the other hand the displacement changes the boundary conditions of the cavity and

hence the resonance frequency [11]. This mutual interaction enables a plethora of experimental

methods including optical measurements, amplification and cooling of mechanical motion [10].

The interaction mechanism is versatile and can be implemented in a variety of systems e.g.

whispering gallery resonators [12], photonic crystals [13], suspended or levitated nano-objects

[14] and electrical resonators [15]. The latter one transforms the optomechanical approach

into an electrical circuit which gives rise to the field of electromechanics, where a mechanical
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Chapter 1 Introduction

element is integrated into an LC-resonator. In analogy to optomechanics the displacement of

the mechanical element is coupled to the inductance or the capacitance of the LC circuit. It

changes the electrical length and hence the resonance frequency. With the use of superconducting

microwave (MW) resonators we can enter the size and frequency regime of nanomechanical

resonators [16].

The electromechanical devices considered in this thesis are realized with superconducting coplanar

waveguides in the GHz regime and mechanical resonators in the MHz regime. When operated at

mK temperatures, the electrical resonator is in the ground state and the mechanical element is

in a thermal state. The interaction between electrical field and mechanical element provides the

possibility of controlling and reading-out the mechanical motion at the quantum limit. Hereby

the coupling strength is the quantum parameter of the system and one can resolve more and

more quantum features as it grows [10]. Recently, ground state cooling [17, 18], preparation

of squeezed states [19–21] and measurements with quantum limited precision [22] have been

demonstrated. With the ability of cooling a macroscopic mechanical resonator into its ground

state it may also be suitable for the storage of quantum information and could be operated as

an interface between the optical and the microwave domain [23, 24]. Coherent state transfer

onto a mechanical resonator has already been shown [25, 26]. As the phenomena mentioned

above have all been demonstrated with capacitively coupled systems, current research focuses on

realizing them also in an inductively coupled system. Although literature [27–29] predicts that it

is possible and the coupling strength is even expected to exceed the capacitive counterpart, an

experimental demonstration has not been achieved to date. Nevertheless recent results from Refs.

[30, 31] are very promising. The micromechanical motion of an inductively coupled resonator has

been detected with a displacement sensitivity of 10 fm/Hz1/2 by using a dc-SQUID in the voltage

state as magnetic flux sensor. Integrating such a system into a MW resonator and operating it

in the zero voltage state is expected to finally enable the fundamental light-matter interaction.

In this thesis we are going to present an inductive coupling mechanism between mechanical

resonators and superconducting flux tunable MW resonators.

We start in Chapter 2 with a theoretical introduction to mechanical string-resonators as well as

flux tunable microwave resonators. The fundamental coupling strength of the coupling scheme

is derived and compared. Furthermore we analyse the magnetic flux noise in our system and

define demands regarding the flux resolution of our SQUIDs. In Chapter 3 we present the

sample layout and describe the fabrication procedure. In Chapter 4, we present experimental

results starting with characterizations of the string-resonators, the SQUIDs and the microwave

resonators. Last but not least, we show measurements on a hybrid device, with the aim to

quantify the electromechanical interaction. We analyse and compare all results with the theoretic

models introduced in Chapter 2. Finally we summarize the results and give an outlook about

further steps and improvements that can be implemented in future experiments.
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Chapter 2

Theoretical Description

In this chapter we introduce the theoretical concepts required to understand and describe elec-

tromechanical hybrid systems. We will introduce the theory of nanomechanical string-resonators

and MW resonators based on coplanar wave guides, separately. In addition we will show that

the integration of a direct current superconducting quantum interference devices (dc-SQUID)

into a MW resonator realizes a flux tunable resonator (FTR).

Further, we introduce the basic ideas and concepts of electromechanical interaction and we

discuss two possibilities of realizing the optomechanical coupling in our samples. We derive the

fundamental coupling strength for both systems assuming experimentally feasible parameters and

compare them. Finally we provide an analysis of the requirements regarding noise and sensitivity.

2.1 Mechanical String-Resonators

We start the theoretical description by analysing the mechanical motion of a doubly clamped

highly tensile stressed nanomechanical string, considering the string as a one-dimensional damped

harmonic oscillator. According to Refs. [32–35], the fundamental resonance frequency of such a

string is given by:

Ωm = π

l

√
σ

ρ
, (2.1)

with the density of the material ρ, the length of the string l and the tensile prestress σ. The

length of the string is determined by the distance between the clamping points.

The equation of motion of the nanostring with an external driving force F0 exp (−iΩt) and a

damping force −meffΓmẋ is given by [36]

ẍ+ Γmẋ+ Ω2
mx = F0

meff
exp (−iΩt) , (2.2)

with the effective mass of a doubly clamped string meff = m/2, where m is its total mass.

This differential equation can be solved with the ansatz x(t) = x0 exp(iΩt) yielding the absolute
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Chapter 2 Theoretical Description

amplitude of the strings motion at the vibrational antinode [36]

x(Ω) = F0/meff√
(Ω2

m − Ω2)2 + (ΓmΩ)2
≈ x0

∣∣∣∣∣ Γm

i (Ωm − Ω) + Γm
2

∣∣∣∣∣ , (2.3)

with x0 = F0
2meffΓmΩm

.

The approximation on the right hand side of Eq. (2.3) is valid for Γm � Ωm which is typically

well satisfied.

The quality factor of the mechanical resonator Qm relates the energy stored in the mechanical

motion to the energy loss during one oscillation and is therefore a measure for the amount of

oscillations the undriven resonator performs before the amplitude becomes negligibly small. It is

defined as [37]:

Qm = Ωm
Γm

. (2.4)

Although the damping rate Γm was defined in the equation of motion as amplitude damping

rate, it can also be used for the definition of the Q-factor in terms of energy damping as shown

in Ref. [37].

When thermalized in a bath of temperature T , the mechanical motion of the string-resonator

corresponds to n̄m phonons:

n̄m = kBT

~Ωm
, (2.5)

where kB is the Boltzmann constant and ~ the Planck constant.

The root-mean-square (rms) displacement of the mechanical string-resonator in a thermal state,

occupied with n̄m phonons is given by [38]:√
〈x2〉 = xzpf

√
〈n̄m| (b† + b)2 |n̄m〉 = xzpf ·

√
2n̄m + 1 (2.6)

with the zero point fluctuation [10]:

xzpf =
√

~

2meffΩm
. (2.7)

Please note that Eq. (2.3) is only valid for small displacements of the string as it does not

consider a non-linear response. If the string is excited with higher drive powers the strong

displacement starts to affect the effective length and hence the stress in the string. It enters

a non-linear regime where the restoring force depends on the amplitude and according to Ref.

[39] one has to add a cubic term to the equation of motion which introduces a duffing non-

linearity. The effects on the response of the string-resonator are discussed in detail in Ref. [40, 41].
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2.2 Microwave Resonators

2.2 Microwave Resonators

In the following we are going to introduce the planar MW resonators which are used to confine

electromagnetic waves. The basis of a MW resonator is a coplanar wave guide (CPW) of length

a) b)

ℓ

200 µm 

Figure 2.1: a) sketch of a coplanar wave guide on a silicon substrate. The central conductor of width x and length

l is separated from the ground plane by a gap of width y. b) overview of a λ/4 MW resonator of

length lr.

l. It consists of a central conductor of width x which is separated from the ground plane by a

gap of size y. A sketch of such a CPW together with the resulting MW resonator is depicted in

Fig. 2.1. In an equivalent circuit picture a coplanar wave guide can be seen as an LC circuit

with impedance Z0 =
√
Ll/Cl where Ll and Cl denote the inductance and capacitance per unit

length of the wave guide [42]. They can be calculated by solving elliptic integrals as shown in

Ref. [42]. By choosing appropriate parameters x and y we match the impedance of the wave

guide [42] to 50Ω, being the standard of MW cables and electronics.

In such an LC-circuit, electromagnetic waves can oscillate at the characteristic frequency

ωr = 1/
√
LC, where L and C are the total inductance and capacitance respectively, creating a

standing wave pattern. It is convenient to calculate the resonance frequency with an alternative

formula based on the wavelength λ of the MW and the effective dielectric constant as given in

Ref. [42]
ωr
2π = c

λ
√
εeff

, (2.8)

where c is the speed of light in vacuum. The length of the MW resonator defines the boundary

conditions of the standing wave with wavelength λ. Hence, the resonance frequency can be

tailored by changing the length. For frequencies in the GHz regime this typically results in

resonator lengths of a few cm, so it is useful to employ λ/4 resonators. In such a resonator the

length is reduced to a quarter of the wavelength and one end is terminated to ground, satisfying

the boundary condition of the fundamental mode which has a current anti-node at λ/4.

Here, excitations in the MW resonator are induced by coupling the resonator to a transmission

line. We depict a capacitively coupled λ/4 resonator in Fig. 2.2. For comparison an equivalent

circuit diagram and the actual structure are shown in panels a) and b). The coupling area and

the termination to ground are indicated in green and blue respectively.

In analogy to mechanical resonators we define the electric quality factor

Q = ωr
κ
, (2.9)
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L C

CextSin Soutκext

κint

a) b)

Sin Sout

Figure 2.2: A λ/4 MW resonator coupled capacitively to a transmission line via coupling capacity Cext

and terminated to ground at the end. a) Equivalent LC circuit diagram and b) sketch of the

actual structure. The coupling area and the termination to ground are indicated in green and

blue respectively.

with κ the total energy loss rate which is the sum of internal and external losses: κ = κint +κext.

Internal losses are dominated by two-level state losses, quasiparticle losses and eddy current

losses (cf. Ref. [43]). External losses depend on the coupling to the environment which can be

tailored via the geometry of the coupling capacitor depicted in Fig. 2.2 b).

We write down analytic equations for both loss mechanisms [41]

κext = ω2
rZ0

C2
ext
C

and κint = αLr
Z0C

, (2.10)

with Cext the external coupling capacity and α the internal damping constant per length.

In cavity QED experiments one aims for the so-called overcoupled design of the resonator, i.e.

κext > κint. Hereby, the signal of interest being inside the resonator is dominantly emitted into

the MW circuit to the detection electronics.

The power transmission spectrum of such a MW resonator is given by [41]

T (ω) = 1− (κ/2)2 − (κint/2)2

(ω − ωr)2 + (κ/2)2 . (2.11)

Under realistic experimental conditions, one observes besides the pure absorption of Eq. (2.11)

undesired port-to-port transmission of MWs which can be modelled as complex background

in addition to the expected Lorentzian lineshape [41]. Therefore a modified Lorentzian with
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2.3 Flux Tunable Microwave Resonators

complex background is introduced in Appendix B of Ref. [41], resulting in:

Tmeas(ω) = 1−
∣∣∣∣ √

κextκ/2
κ/2 + i(ω − ωr)

+ ic1

∣∣∣∣2 + c2 . (2.12)

We can fit Eq. (2.12) to experimental data and extract κ, κint, κext and ωr.

From an experimental point of view the power transmission is measured with a vector network

analyser (VNA) by recording the complex scattering parameter S21. The squared absolute value

|S21|2 corresponds to the power transmission T . Details on the measurement method will be

given in the experimental part of this thesis.

As mentioned above the aim of employing MW resonators is to study the interaction of electro-

magnetic waves and nanomechanical motion. In the quasi particle picture this interaction takes

place between photons and phonons. In order to quantify the interaction it is necessary to know

the number of photons trapped in the resonator. It depends on the drive power that is sent into

the transmission line and on the strength of the external coupling [44]:

n̄r = Pd
~ωd

κext/2
(κ/2)2 + ∆2

, (2.13)

where Pd denotes the drive power at the sample input and ωd the angular frequency of the drive

tone. ∆ = ωd − ωr is the detuning from the resonators resonance. Pd is related to the output

power of the microwave source Psource which is typically given in decibel milliwatt by:

Pd(mW) = 10(Psource(dBm)−Lp(dB))/10 , (2.14)

where Lp is the total signal attenuation between microwave source and sample in decibel.

2.3 Flux Tunable Microwave Resonators

In order to be able to tune the resonance frequency of the MW resonator we add a non-linear

tunable inductance in form of a SQUID. In the following we first introduce the fundamental

concepts of Josephson junctions and SQUIDs which belong to the field of Josephson Physics,

then we describe flux tunable MW resonators.

Introduction to the Josephson Effect

The Josephson effect is a physical phenomenon based on the coherence of the superconducting

state. Together with the phenomena of zero resistance, field screening and flux quantization

[45, 46] it is one of the few examples where quantum effects manifest on macroscopic length

scales. In the following we are going to describe the Josephson effect briefly, based on a detailed

treatment that can be found in Ref. [47].
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Chapter 2 Theoretical Description

A Single Josephson Junction

A Josephson junction consists of two superconducting materials that are separated from each

other by a thin insulating barrier. In the superconducting state conduction electrons around the

Fermi edge condense into a phase-locked state and can be described by a single macroscopic

wave function Ψ [47]. From this follows, that on both sides of the tunnel barrier macroscopic

wave functions develop with a gauge invariant phase difference ϕ to each other. The overlap of

the wavefunctions enables tunnelling of cooper pair electrons through the barrier which results in

a tunnelling or Josephson current. This current across the barrier depends on ϕ and is described

by the first Josephson equation, the current-phase relation [47]

I = Ic sinϕ . (2.15)

Here, Ic is the critical Josephson current which is determined by the coupling strength between

the junction electrodes. In this thesis Ic is controlled via the Josephson junction area and the

thickness of the tunnel barrier.

Similar to equation (2.15) one can also derive a voltage-phase relation by considering the time

derivative of ϕ resulting in the second Josephson equation [47]

dϕ

dt
= 2π

Φ0
V (2.16)

with the flux quantum Φ0 = h/2e.
From both Josephson equations we derive the Josephson inductance LJ of a Josephson junction

LJ = V

dI/dt
= Φ0

2πIc cosϕ . (2.17)

The charging energy of a single electron on the Josephson junction EC is given by [47]

EC = e2

2C , (2.18)

where C is the capacitance of the junction.

The overlap of macroscopic wave functions does not only enable tunnelling, it also causes a finite

binding energy stored in the junction which is called Josephson coupling energy [47]

EJ = Φ0Ic
2π (1− cosϕ) = EJ0 (1− cosϕ) . (2.19)

This coupling energy is derived by integrating over the energy which is required to increase

the current from zero to a finite current state. The stored energy can be understood as kinetic

energy of the moving superelectrons [47]. Furthermore, the potential energy of the Josephson

junction is given by Ref. [47]

Epot(ϕ) = EJ0

(
1− cosϕ− I

Ic
ϕ

)
+ c . (2.20)

We plot the potential energy according to Eq. (2.20) as a function of ϕ in Fig. 2.3. It has

8
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0 2 4
-20

-10

0

E
po

t
(a

.u
.)

I / Ic

0
0.5
1
1.5

ϕ/π

Figure 2.3: Potential energy of a Josephson junction. The state of the junction is compared to a classical particle

in the potential landscape. The slope of the washboard potential depends on the current which flows

through the junction. For I = Ic the local minima in the potential vanish and the particle moves

down the tilted potential. Further explanation is given in the main text. Figure taken from Ref. [40].

the shape of a tilted washboard and explains the dynamics of Josephson junctions. In this

picture the state of the junction is compared to a classical particle. For I < Ic the potential

has minima at discrete phase values ϕn in which the particle is trapped, thus ϕ is constant in

time. According to Eq. 2.16 the voltage across the junction in this state is zero. With increasing

current the tilt of the washboard potential increases. For I > Ic the local minima vanish and

the particle moves down the tilted potential, resulting in a constant phase slip and a voltage

drop across the junction. The junction is then in the voltage state with an ohmic resistance

[47]. By decreasing the current through the junction the tilt of the potential decreases and the

system is retrapped in a pure superconducting state as soon as the particle comes to rest in a

minimum. The amount of damping is defined by the Stewart-McCumber parameter [47, 48]:

βc = 2πIcR
2
nC

Φ0
=
(

2− (π − 2) Ir
Ic

)(
Ic
Ir

)2
, (2.21)

with Rn the resistance in the normal conducting state, C the capacitance of the Josephson

junction and Ir the retrapping current in IU-characteristics. The right part of the equation is

valid for 0.05 < Ir/Ic < 0.95 [48]. For β � 1 the junction is weakly damped, for β � 1 the

junction is strongly damped. We will use Eq. (2.21) in Sec. 4.2 to calculate the capacitance of

our Josephson junctions and estimate the thickness of the insulating layer by considering the

junction as a plate capacitor. In our experiments the junctions are operated solely in the zero

voltage state, so the damping parameter is not significant for their performance.

To sum up, Josephson junctions can be described by an equivalent circuit diagram including a

capacitive-, a resistive- and a supercurrent. It is depicted in Fig. 2.4.
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C
IJ

Icap IR

I

RJJ

+

-

Figure 2.4: Equivalent circuit diagram of a Josephson junction including a capacitive-, a resistive- and a

supercurrent. The Josephson junction is indicated by a diagonal cross

Superconducting Quantum Interference Devices

If two Josephson junctions are connected by a superconducting loop their macroscopic wavefunc-

tions overlap and create quantum interference. In general such devices are called superconducting

quantum interference devices (SQUIDs). One can connect the junctions in rf- or dc-configuration.

In this thesis we consider solely the latter ones using the abbreviation SQUID. A circuit diagram

of a SQUID is depicted in Fig. 2.5.

I

I1

I2 I

Φext

Figure 2.5: Circuit diagram of a SQUID including two Josephson junctions which are connected in a

superconducting loop. A dc-current flows through the loop from the left to right hand side.

Φext describes the magnetic flux passing through the loop.

One can derive that the gauge invariant phase differences ϕ1 and ϕ2 are coupled to each other

in order to guarantee total flux quantization in the loop [47].

ϕ2 − ϕ1 = 2πΦ
Φ0

, (2.22)

with Φ being the total magnetic flux passing through the loop. For the moment, we want to

assume that Φ = Φext, exceptions are discussed later.

10



2.3 Flux Tunable Microwave Resonators

With Kirchhoff’s law we write the supercurrent through the loop as:

I = I1 + I2 = Ic,1 sinϕ1 + Ic,2 sinϕ2 , (2.23)

with Ic,i the critical currents of the Josephson junctions.

In general, the junctions are not identical resulting in Ic,1 , Ic,2. According to the approaches

made in Ref. [28] we define an average critical current Ic,0 = (Ic,1 + Ic,2)/2 and an asymmetry

parameter αI = (Ic,2 − Ic,1) / (2Ic,0) such that Ic,1 = Ic,0(1− αI) and Ic,2 = Ic,0(1 + αI).
We spilt Eq. (2.23) into two terms, where the first one equals two symmetric junctions and the

second one accounts for the asymmetry [28]:

I = Ic,0 [(sinϕ1 + sinϕ2) + αI (sinϕ1 − sinϕ2)] . (2.24)

With ϕ− = (ϕ2 − ϕ1)/2 and ϕ+ = (ϕ2 + ϕ1)/2 one can write Eq. (2.24) as:

I = 2Ic,0 [(cosϕ− sinϕ+)− αI (sinϕ− cosϕ+)] (2.25)

As shown in Ref. [28] one can use Eq. (2.25) to define the critical current of the asymmetric

SQUID by shifting ϕ+ by a phase ϕ0 which satisfies tan(ϕ0) = αI tan(ϕ−).
The resulting critical current through the SQUID is flux dependent and reads [28]:

Im
s (Φext) = 2Ic,0

√
cos2

(
π

Φext
Φ0

)
+ α2

I sin2
(
π

Φext
Φ0

)
. (2.26)

In the symmetric case αI is zero and the equation simplifies to:

Im
s (Φext) = 2Ic

∣∣∣∣cos
(
π

Φext
Φ0

)∣∣∣∣ . (2.27)

In Fig. 2.6 we plot the maximum supercurrent over external flux according to Eq. (2.26) for

different values of αI. We see that in the symmetric case the maximum current varies between 0
and 2Ic,0. In the asymmetric case the minimum does not reach zero. The modulation depth is

reduced to 2Ic,0 (1− αI).
Next, we want to derive the Josephson inductance of the SQUID. Therefore we add up the

inductances of both parallel shunted Josephson junctions:

1
LJJ

= 1
LJ,1

+ 1
LJ,2

= 2π
Φ0

(Ic,1 cosϕ1 + Ic,2 cosϕ2) . (2.28)

Again we rewrite this equation in the general case of Ic,1 , Ic,2 to:

LJJ(Φext) = Φ0

4πIc,0

√
cos2

(
πΦext

Φ0

)
+ α2

I sin2
(
πΦext

Φ0

) = Φ0
2πIm

s (Φext)
. (2.29)
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Figure 2.6: Flux dependence of the maximum supercurrent Im
s through a SQUID for different values of

the asymmetry parameter αI according to Eq. (2.26)

For the symmetric case the Josephson inductance simplifies to [47]:

LJJ(Φext) = Φ0

4πIc
∣∣∣cos

(
πΦext

Φ0

)∣∣∣ . (2.30)

In the above considerations we have assumed that the magnetic flux passing through the SQUID

loop equals the externally applied flux. Now we want to discuss under which conditions this

assumption is justified. Due to circulating currents Icirc = I1 − I2 in the SQUID loop, additional

flux ΦL = LIcirc can be generated. The phases ϕ1 and ϕ2 then have to be solved self consistently

for both, the dc-current and the circulating current.

We introduce the screening parameter βL which compares the self induced magnetic flux to the

magnetic flux quantum [47]:

βL = 2LloopIc
Φ0

, (2.31)

where Lloop is the inductance of the SQUID loop which consists of geometric and kinetic

contributions.

According to Ref. [49], the kinetic inductance of a straight wire of length lstring, width wstring
and thickness tstring is given by:

Lkin
loop = µ0λ

2
L

lstring
tstring · wstring

, (2.32)

where λL = 200 nm [50] is the London penetration depth for thin film aluminium and µ0 the

permeability constant of vacuum. The value of λL has been calculated by transforming Eq.

(2.32) to λL = ((Lkin
loop · tstring · wstring/(lstring · µ0))1/2 and inserting values given in Ref. [50].

We see that the kinetic inductance is proportional to the length of the wire and inverse

12



2.3 Flux Tunable Microwave Resonators

proportional to its cross section.

According to Refs. [51, 52], the geometric inductance of a rectangular SQUID loop of length

lloop, width wloop, loop diagonal gloop = (w2
loop + l2loop)1/2 and wire diameter d is given by:

Lgeom
loop =

[
0.4
(

(l + w) log
(

4 lw
d

)
− l log(l + g)− w log(w + g)

)
+0.4 (2g + d− 2(l + w))] · 10−6 .

(2.33)

For reasons of simplicity we have excluded the indices in Eq. (2.33).

The total loop inductance is [50]:

Lloop = Lgeom
loop + Lkin

loop (2.34)

For βL � 1 we neglect circulating currents in the SQUID loop and the derivations of Eqs. (2.26)

and (2.29) are valid. In order to be in this regime we need small self inductance Lloop and a small

critical current Ic. In section 2.5 however we will see that maximizing the electromechanical

coupling strength, requires to maximize both Ic and L. This conflict poses a delicate optimisation

problem which results in a finite 0 < βL < 1. Optimal parameters will be discussed in Sec 2.5.

For β > 1, one observes a reduction of the modulation depth of the critical current. We will

discuss the consequences of finite βL on the performance of flux tunable resonators in the next

section and want to emphasise here, that βL is the most important parameter in the SQUID

design. Additionally it has been discussed in Ref. [53] that the effects of βL can also occur for

βL / 1, so we aim for values significantly smaller than 1.

To sum up we have seen that the maximum supercurrent through the SQUID modulates with

externally applied magnetic flux. An asymmetry in the SQUID geometry as well as a high βL
parameter reduce the modulation depth. The Josephson inductance LJJ is inverse proportional

to the critical current Ic.

Flux Tunable MW Resonators

Having derived the SQUID equations, we can now theoretically describe flux tunable MW

resonators (FTR). Due to the influence of the SQUID inductance, which itself is tunable by

applying external flux, the resonance frequency ωr of the MW resonator becomes flux dependent

and thus tunable.

We depict a capacitively coupled MW resonator with embedded SQUID at the current anti-node

in Fig. 2.7. An equivalent circuit diagram and a sketch of the actual structure including a zoom

into the SQUID are shown in panels a) and b). The inductances Lr and Lsq of the bare MW

resonator and the SQUID, both contribute to the total inductance of the LC circuit. When

calculating the total inductance one has to consider that the MW resonator is a distributed

circuit element and the SQUID is a lumped circuit element. Meaning that the inductance of the

MW resonator is distributed continuously throughout the coplanar waveguide. In Ref. [54] the

effective Lagrangian of the FTR is calculated by representing the MW resonator as a chain of
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b)

Sin Sout

C

CextSin Soutκext

κint

a)

Lr

Lsq

Figure 2.7: A capacitively coupled MW resonator with embedded SQUID at the current anti-node. The

inductances Lr and Lsq of the bare MW resonator and the SQUID both contribute to the

total inductance of the LC circuit. a) Equivalent circuit diagram and b) sketch of the actual

structure including a zoom into the SQUID.

LC resonators. From the Lagrangian the wavelength dependent capacitance and inductance as

well as the resonance frequency are derived. The latter one is a transcendental characteristic

equation which can be Taylor expanded as shown in Ref. [55].

The resonance frequency of the FTR then reads [55]:

ωr(Φext) = ω0
r

1 + Lsq(Φext)
Lr

, (2.35)

with ω0
r , the resonance frequency of the bare MW resonator and Lsq(Φext) = LJJ(Φext) + Lloop

the total inductance of the SQUID.

We note that in Refs. [54, 55] only the Josephson inductance LJJ of the SQUID is taken into

account. In this thesis however, the SQUIDs do have very thin loop arms and the contribution

of the kinetic inductance can be significant. We therefore add a general inductance Lloop which

accounts for the geometric and kinetic inductance of the SQUID loop. In Fig. 2.8 we plot the

tuneability of the MW resonator frequency as a function of the externally applied flux according

to Eq. (2.35) assuming a typical value of Lr = 1 nH for different critical currents Ic and loop

inductances Lloop in panels a) and b) respectively.

As one can see, the resonance frequency ωr tunes down periodically for flux values of multiples

of the half-integer flux quantum and takes its maximum value for multiples of the integer flux

quantum. The maximum of ωr is shifted to lower values compared to the bare MW resonator

(ωr(0) < ω0
r ).

ωr(0) = ω0
r

1 +
(

Φ0
4πIc,0

+ Lloop
)
/Lr

. (2.36)
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Figure 2.8: Flux tunability of a MW resonator with a symmetric SQUID embedded at the current anti-

node. The maximum resonance frequency is shifted to lower values compared to the bare

MW resonator due to the influence of the SQUIDs inductance (ωr/ω
0
r < 1). The resonance

frequency tunes down periodically for externally applied flux values of the half-integer flux

quantum. Eq. (2.35) is evaluated for a) different values of Ic with fixed Lloop = 0 and b)

different values of Lloop with fixed Ic = 2 µA. While the critical current defines the shape

of the curve and the frequency shift, the loop inductance only causes a frequency shift. For

higher Ic, the down tuning is narrower and steeper.

The loop inductance Lloop causes an additional frequency shift without changing the shape of

the curve significantly.

By solving this equation for Ic one can extract the averaged critical current of the Josephson

junctions from transmission measurements, assuming that one knows ω0
r , the resonance frequency

without SQUID:

Ic,0 =
(

4π
Φ0

(
Lr

(
ω0

r
ωr(0) − 1

)
− Lloop

))−1

(2.37)
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In Fig. 2.6 we have seen that an asymmetry in the SQUID geometry reduces the modulation

depth of the maximum critical current. The Josephson inductance and following the modulation

of the FTR frequency are influenced by this asymmetry as well.

In the symmetric case the Josephson inductance diverges at the half integer flux quantum

and ωr tunes to zero, in the asymmetric case the Josephson inductance does not diverge. The

modulation depth is then given by:

∆ωr = ωr(0)− ωr(Φ0/2) = ωr(0)
(

1− ωr(Φ0/2)
ωr(0)

)
, (2.38)

By inserting Eq. (2.35) into Eq. (2.38) we find:

∆ωr
ωr(0) =

1−
1 + Lsq(0)

Lr

1 + Lsq(Φ0/2)
Lr

 =

1− Lr + Lloop + LJJ (0)
Lr + Lloop + LJJ(0)

αI

 , (2.39)

with LJJ(0) = Φ0/(4πIc,0).
We plot the relative modulation depth as a function of the SQUID asymmetry for different

critical currents and different loop inductances in Fig. 2.9. We see that the impact of the

αI
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Figure 2.9: Relative modulation depth ∆ωr/ωr(0) of the FTR with Lr = 1 nH as a function of the

asymmetry parameter αI for different values of the critical current Ic (blue, orange, green)

and different loop inductances Lloop (solid, dashed, dotted). If the Josephson junctions in

the SQUID are asymmetric, the frequency modulation of the FTR is strongly reduced. For

SQUIDs with large critical currents the impact of the asymmetry is stronger.

SQUID asymmetry on the modulation depth scales strongly with Ic. The loop inductance adds

only a small correction. For large critical currents the Josephson inductance becomes small

and the modulation of ωr is suppressed even for small asymmetries (αI � 1). Additionally,

βL = 2Ic,0L/Φ0 scales with Ic and flux jumps due to screening currents can occur if βL is close
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2.4 Fundamental Concepts of Electromechanical Interaction

to 1. In this case the full modulation depth can not be used. In order to maintain the flux

tunability of the MW resonator we take care that Ic,0 and αI are sufficiently low.

As side note we want to mention that the change of resonance frequency ωr as a function of

external flux can be considered as an effective change of the resonator length. By tuning the

frequency to zero the electrical length of the resonator becomes infinitely long.

When the external flux is changed rapidly, the boundaries of the resonator move very fast,

reaching a substantial fraction of the speed of light [56]. Thus they can be considered as

relativistic mirrors.

The so called dynamical casimir effect predicts that such a fastly moving boundary condition can

convert virtual photons into real observable ones. Virtual photons are particles that pop in and

out of existence due to small fluctuations of energy at a given position in vacuum space following

the uncertainty rules of Heisenberg [57]. Indeed Ref. [58] showed the creation of photons from

vacuum fluctuations with a superconducting FTR.

The devices fabricated in this thesis are able to exploit the same effects since they are similar

to the ones discussed in the references mentioned above. This means, the FTR could be used

as photon source by operating it as a parametric amplifier [29]. Such a parametric interaction

creates a squeezed resonator mode and enables control of the photon spectrum [29] which

enhances the electromechanical coupling and improves the measurement noise [59].

2.4 Fundamental Concepts of Electromechanical Interaction

Having introduced mechanical string-resonators and flux tunable MW resonators, we can now

discuss the fundamental concepts of the coupling mechanism between both elements. Most of

the basic ideas have been adapted from the field of optomechanics. A detailed review of this

field can be found in Ref. [60]. In the following we are going to present the basic relations and

methods and consider two possibilities how to realize them in a hybrid sample.

Let us begin with a resonator for electromagnetic waves that is coupled to a mechanical element.

The electrical length and consequently the resonance frequency of the FTR depends on the

displacement of the mechanical element.

We start with the generic Hamiltonian of the system [10]:

H = ~ωr(x)
(
a†a+ 1

2

)
+ ~Ωm

(
b†b+ 1

2

)
, (2.40)

with a, a† and b, b† the ladder operators of the MW resonator and the mechanical string-resonator

respectively.

The displacement of the mechanical resonator can be written as [10]:

x = xzpf(b† + b) , (2.41)

17



Chapter 2 Theoretical Description

with the zero point fluctuation [10]:

xzpf =
√

~

2meffΩm
. (2.42)

As the displacement of the mechanical resonator is small we can Taylor-expand ωr(x) around

x = 0 to first order:

ωr(x) ≈ ωr(0) + dωr
dx

x . (2.43)

We insert Eq. (2.43) into Eq. (2.40), define the coupling parameter G = dωr/dx and simplify

the Hamiltonian:

H = ~ωr(0)
(
a†a+ 1

2

)
+ ~Ωm

(
b†b+ 1

2

)
+ ~Gxzpf

(
a†a+ 1

2

)(
b† + b

)
, (2.44)

The vacuum coupling rate g0 = Gxzpf defines the strength of the interaction between a single

photon and a single phonon. The total electromechanical coupling strength g scales with the

square root of the average number of photons in the MW resonator [60]:

g = g0
√
n̄r . (2.45)

A coupled system as described above, allows to apply a wide range of experimental methods

[60]. In the following we introduce the concepts of single tone and two-tone spectroscopy.

2.4.1 Single Tone Spectroscopy

One way of observing electromechanic interaction is to apply a drive tone on resonance (ωd = ωr).

The inserted drive photons interact with the mechanical string-resonator and are up (down)

converted to photons with higher (lower) energy by annihilation (creation) of a mechanical

phonon. The scattered photons appear in the transmission spectrum as anti-Stokes (Stokes)

sideband peaks at +Ωm (−Ωm), as depicted schematically in Fig. 2.10.

Ωm

ω
ωd = ωr

κ
Ωm

drive

anti-
StokesStokes

Figure 2.10: Schematic of Stokes and anti-Stokes sidebands for an undetuned drive tone. The probabilities for up

and down conversion are equal, thus the total phonon number is preserved and the mechanical state

is not affected by the measurement. Picture taken from Ref. [41].

In a more hand waving picture, the motion of the mechanical string-resonator results in a

fluctuation of the FTRs resonance frequency which can be detected as downconverted sideband
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2.4 Fundamental Concepts of Electromechanical Interaction

peaks.

The detected power spectrum of the sideband peaks is proportional to the frequency fluctuation

spectrum and allows direct measurement of the coupling strength [10]. Nevertheless one has to

consider that the resulting coupling strength has to be calibrated by determining the transfer

function K(ω) which depends on the actual setup, including all losses and amplifications in the

MW lines as well as the effects of the down conversion of the MW signal.

The transfer function can be determined experimentally by applying the frequency noise calibra-

tion technique which is described for example in Ref. [61]. One injects an additional MW tone

at Ωmod ≈ Ωm with a known frequency modulation depth of ±Ωdev which results in additional

sideband peaks close to the stokes and anti-stokes peaks depicted in Fig. 2.10. With this

additional sideband peak one can calibrate the coupling strength using the following relation

[41]:

g2
0 = Ω2

devΓm
16n̄mENBW

SPP(Ωm)
Smod

PP
, (2.46)

with Γm the linewidth of the mechanical string-resonator, n̄m the average number of thermally

excited phonons, ENBW the detection bandwidth of the spectrum analyser and SPP(Ωm)/Smod
PP

the relation of the amplitudes of the sideband peaks in the measured power spectrum.

The challenge one has to face when performing single tone spectroscopy is, that the linewidth

of the sideband peak is in the order of a few Hz, while the frequency range in which it can be

situated is in the order of MHz. Finding the sideband peak typically requires long measurement

times and precise knowledge of Ωm is crucial.

2.4.2 Two-Tone Spectroscopy

Another way of observing electromechanic interaction is to apply two MW tones to the FTR: a

strong drive tone and a weak probe tone. In this case, the drive tone is applied with a detuning

∆ = ±Ωm from the resonance frequency of the FTR. For positive (negative) detuning the

injected photons have higher (lower) energy than the photons in the resonator. Due to scattering

processes with the mechanics, the injected photons can be down (up) converted to resonator

photons at ωr [10]. If the condition of the resolved sideband Ωm > κ is given, then a drivetone

at ∆ = +Ωm (∆ = −Ωm) results in an effective increase (decrease) of phonons and amplification

(cooling) of the mechanical motion. We depict the schematics for a perfectly detuned drive tone

in Fig. 2.11.

The weak probe tone is applied from a vector network analyser recording the power transmission

in a frequency sweep around ωr. Without a drive tone the normal transmission spectrum of

the FTR according to Eq. (2.12) would be observed. With the drive tone present, however,

drive photons which have been up (down) converted by the mechanics are also present in the

FTR and interfere with the probe tone. Depending on the detuning of the drive tone and the

sample geometry the interference is either constructive or destructive resulting in an enhanced

or reduced transmission of the probe tone.

In other words, one observes an additional peak or dip inside of the resonance dip of the FTR.

19



Chapter 2 Theoretical Description
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∆
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Figure 2.11: Schematic of Stokes and anti-Stokes sidebands for a perfectly detuned drive tone in the a) red

sideband regime and b) blue sideband regime. The interaction process is described in the main text.

In green, we define the detunings ∆ and Ω used in Eq. (2.47) and (2.48). Picture taken from Ref.

[41].

These features are called electromechanically induced transparency (EMIT) and electromechani-

cally induced absorption (EMIA).

The resulting modified power transmission in the blue and red sideband regime can be described

by Eqs. (2.47) and (2.48) respectively [44, 62]:

T = |S21|2 =

∣∣∣∣∣∣1− κex/2

−i(∆ + Ω) + κ/2 + g2
0 n̄r

−i(Ω−Ωm)+Γm/2

∣∣∣∣∣∣
2

, (2.47)

T = |S21|2 =

∣∣∣∣∣∣1− κex/2

−i(∆ + Ω) + κ/2 + g2
0 n̄r

+i(Ω+Ωm)−Γm/2

∣∣∣∣∣∣
2

, (2.48)

with n̄r = ndrive(Pdrive,∆) + nprobe(Pprobe) and the detunings ∆ = ωd − ωr and Ω = ωp − ωd
which are shown in Fig. 2.11.

We show the expected interaction for a set of reasonable parameters in Fig. 2.12: κ/2π = 1.0 MHz,

κext/2π = 500 kHz, Ωm/2π = 13 MHz, Γm/2π = 10 Hz and g0/2π = 100 kHz, Pprobe = 0.5 pW,

Pdrive = 15 pW.

In the following we are going to present two ways of implementing such a coupling mechanism

into a flux tunable resonator.
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Figure 2.12: Electromechanical interaction in a two-tone spectroscopy setup in the a) red sideband regime and b)

blue sideband regime. The drive tone is swept in a frequency range of ±5 MHz around the perfect

detuning. Drive photons are converted into resonator photons by electromechanical interactions in

the coupled hybrid device. The converted photons interfere with a weak probe tone and are thus

visible in the power transmission spectrum.

2.5 Nanostrings Inductively Coupled to Flux Tunable Resonators

Let us first consider a FTR as introduced in Sec. 2.3, a bare MW resonator with a SQUID

embedded at the current anti-node. We integrate a mechanical degree of freedom into this system

by replacing one side of the SQUID loop with a doubly clamped mechanical string-resonator.

As depicted in Fig. 2.13 the mechanical motion of the string-resonator changes the area of the

SQUID loop and subsequently the magnetic flux which passes through it.

We split the total flux into two parts, a static contribution given by length and width of the

SQUID loop (Φp, blue) and a contribution dependent on the strings displacement (Φq(x), green).

The latter one can be calculated by integrating over the lateral shape of the string-resonator.

In Ref. [41] it has been derived that the lateral shape of the fundamental mode of a highly

stressed double clamped string-resonator aligned along the y-direction and displaced along the

x-direction is given by

x(y) = x0 cos
(
π
y

l

)
, (2.49)

where l is the length of the string-resonator, x0 the maximum amplitude at y = 0 and the

clamping points being at y = ±l/2.

The integration yields Φq = Bz2lx/π. So the total flux becomes:

Φ(x) = Φp + Φq(x) = Bzlw +Bzβlx , (2.50)

with β = 2/π, Bz the component of the magnetic induction that is perpendicular to the SQUID

loop and x = x0 the maximum amplitude of the nanostring. We assume the displacement to be

small compared to the length of the string. This assumption is justified as the displacement is
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Figure 2.13: Overview scheme of a rectangular SQUID loop with inductively coupled mechanical string-

resonator (brown). The mechanical string-resonator is free to oscillate in plane of the SQUID

loop and thus modulates its area. In blue we depict the static area given by length and width

of the SQUID loop. In green we depict the area modulation due to the nanostrings motion

where x is the displacement of the nanostring from its equilibrium position. The magnetic

flux passing through the SQUID loop Φ = Aloop × Bz is split into a static part Φp and a

contribution Φq(x) modulated by the nanostring.

typically not exceeding a few nm (see Sec. 4.1) while the length is in the order of micro meters.

In the last section we have derived in Eq. (2.35) that the resonance frequency of a FTR depends

on the amount of flux that passes through the SQUID loop. Now the flux itself depends on

the displacement of the mechanical resonator which results in a direct relation between the

resonance frequency of the FTR and the displacement of the mechanical resonator: ωr (Φ(x)).
We develop ωr (Φ(x)) in a Taylor-series around x = 0 to first order:

ωr(Φ(x)) ≈ ωr|x=0 + ∂ωr
∂x

∣∣∣∣
x=0

x = ωr(Φp) + ∂ωr
∂Φ

∣∣∣∣
Φ=Φp

∂Φ
∂x

x

= ωr(Φp) + ∂ωr
∂Φ

∣∣∣∣
Φ=Φp

Bzβlx .

(2.51)

By plugging Eq. (2.51) into Eq. (2.40) we simplify the Hamiltonian, as shown for the general

case. We find the electromechanical vacuum coupling strength g0 for inductively coupled

string-resonators embedded into the SQUID loop:

g0 = ∂ωr
∂Φ Bzβlxzpf . (2.52)

In the Taylor-series we have only considered first order terms. The resulting coupling mechanism

is called radiation pressure coupling. If one considers second order terms the so called cross-Kerr

coupling becomes apparent [28]. The latter one scales with x2 and is normally much weaker than

the radiation pressure coupling and therefore not observable. In asymmetric SQUIDs however

the radiation pressure vanishes at the half integer flux quantum and the cross-Kerr term can
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become dominant [28].

The aim of this thesis is to observe a high single photon-phonon coupling, ideally entering the

strong coupling regime where the vacuum coupling strength exceeds the total loss rate of the MW

resonator g0 > κ. Furthermore, one can possibly observe the cross-Kerr coupling in asymmetric

SQUIDs.

For both, the vacuum coupling strength has to be maximized. The parameters which control the

coupling strength became evident in Eq. (2.52). In Refs. [29, 40] a set of experimentally feasible

parameters has been proposed which possibly enable access to the strong coupling regime. They

will be revised in the following:

Slope of the flux tunable resonator (g0 ∝ ∂ωr/∂Φ):

The electromechanical coupling strength is proportional to the slope of the resonance frequency

which means that the working point of the MW resonator controls the coupling strength as shown

in Fig. 2.14. For applied flux equal to the integer flux quantum, the resonance curve becomes

totally flat i.e. the coupling is switched off. For flux values approaching the half-integer flux

quantum the slope becomes infinitely steep in the case of ideal identical Josephson junctions. The

ability of switching the coupling on and off makes the device suitable for quantum information

processing and phonon lasing applications as discussed in Ref. [25, 63].

In the experiment however, tuning the resonator to very low frequencies is not desired, as at

low frequencies, the MW resonator becomes populated with photons. In addition, there are

constraints imposed by the measurement apparatus. The cold amplifiers in the experimental

setup can only be operated in the range of 2 GHz to 8 GHz. Furthermore screening currents

in the SQUID loop (βL , 0) and asymmetries in the SQUID geometry reduce the modulation

depth, so the achievable steepness of the slope is limited. So, for optimal results βL should be

significantly smaller than 1 and asymmetries in the Josephson junctions should be avoided. In

previous measurements slopes of 2π × 59 GHz/Φ0 have been reported [40].

23



Chapter 2 Theoretical Description

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Φext / Φ0 

ω
r /

 ω
r0  coupling off

coupling on

Figure 2.14: The electromechanical coupling can be switched on and off by tuning the FTR. The coupling is

strong if the FTR is tuned close to the half integer flux quantum where the slope ∂ωr/∂Φ is steepest.

The coupling is off if the FTR is tuned to the sweet spot at an integer flux quantum where the slope

∂ωr/∂Φ is flat.

Strength of the magnetic field (g0 ∝ Bz):

The coupling strength is proportional to the externally applied static magnetic field Bz which

is limited by the critical field of superconducting thin film aluminium. In Ref. [41] it was

determined experimentally that the superconductivity in aluminium MW resonators breaks

down at 2.2 mT. Furthermore the linewidth κ of the MW resonators increases with magnetic

field as shown in Ref. [64]. In order to operate in a regime well below the critical field we intend

to apply a maximum magnetic field of Bz = 1 mT. Higher fields are in principle possible if one

applies the magnetic field in plane of the thin film.

Length of the nanomechanical string (g0 ∝ l):

The coupling strength is proportional to the length of the nanomechanical strings i.e. the longer

the string the stronger the coupling. However, the experiments envisaged in this thesis require the

resolved sideband regime: Ωm > κ. With Ωm ∝ 1/l the maximum length of the string is limited

by κ. When designing the SQUID one must additionally consider that the length of the nanos-

tring influences the inductance of the SQUID loop. Increasing the length of the nanostrings leads

to an increase in βL. In order to study the influence of the length on the coupling strength and on

βL we intend to fabricate samples with the length of the nanostrings ranging from 15 µm to 60 µm.

Zero point fluctuation of the nanomechanical string (g0 ∝ xzpf ):

The coupling strength is proportional to the zero point fluctuation of the nanomechanical strings.

We have seen in Eq. (2.7) that the zero point fluctuation becomes large for small mass and small

resonance frequency of the nanostring. As the mass depends on l and the resonance frequency

on 1/l, the length of the strings cancels out and xzpf depends only on width, thickness and

material parameters. Strings with widths of 80 nm have been successfully fabricated [41, 65]. The

thickness is limited to 110 nm due to restraints imposed by the shadow evaporation technique,

resulting in effective beam masses of meff ≈ 1 pg.
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For string widths of 80 nm we expect a zero point fluctuation of xzpf ≈ 58 fm.

With the assumptions made above we estimate the maximum vacuum coupling strength to be:

g0
2π ≈ 59 GHz/Φ0 · 1 mT · β · 60 µm · 58 fm = 65.8 kHz (2.53)

2.6 Magnetic Force Microscopy Cantilevers Coupled to Flux

Tunable Resonators

Above we have introduced the idea of coupling mechanical motion to a MW field by integrating

a mechanical string-resonator into a FTR. We discuss in the following an alternative method of

inductive coupling. Instead of integrating the mechanical string-resonator into the FTR, in this

approach a commercial cantilever with a ferro-magnetic tip is mounted on top of the FTR.

The magnetic dipole at the tip of the cantilever causes a magnetic dipole field which scales with

the distance as 1/|r|3. The amount of flux passing through the SQUID loop thus depends on

the distance between cantilever tip and SQUID.

As the cantilever vibrates up and down at a given frequency Ωm, the magnetic flux in the SQUID

loop is modulated and results in a frequency shift of the FTR identical to the case of embedded

mechanical string-resonator discussed above. In the following we derive the coupling strength of

an inductively coupled cantilever and compare it to the one of an embedded string-resonator.

A schematic drawing of the system is depicted in Fig. 2.15.

I

h I

ℓ
z

y
x

Figure 2.15: Schematic drawing of an inductively coupled cantilever with magnetic tip. The cantilever is mounted

onto a FTR with the tip beeing placed over the SQUID loop at a height h. The magnetic dipole

moment of the cantilever tip induces a magnetic field in the SQUID loop plane with an 1/h3

dependence, where h is the distance between dipole and SQUID loop. Vibration of the cantilever

arm results in flux change in the SQUID loop and following a shift of the resonance frequency of the

FTR.

We start our discussion by calculating the magnetic field of the dipole in a steady state. The
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shape is identical to the field of an electrical dipole and reads in spherical coordinates [66]:

~B(~r) = µ0|~m|
4π|~r|3 (2 cos θ · r̂ + sin θ · θ̂) , (2.54)

with ~m the magnetic moment and ~r the position relative to the dipole. In cartesian coordinates

the magnetic field in the x-z plane is given by:

~B(z,x) = µ0|~m|
4π(x2 + z2)3/2 (3 cos θ sin θ · ẑ + 2(cos2 θ − sin2 θ)x̂) , (2.55)

with θ = arctan z/x.

We plot Eq. (2.55) in figure 2.16 and note that only the x̂ component of ~B contributes to the

magnetic flux in the SQUID loop which is indicated by a red line.
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Figure 2.16: Magnetic field of a dipole (red arrow) in the x-z plane. The cross section of the SQUID loop is

indicated by a red line

The SQUID loops considered here have a rectangular shape, extended in z direction (≈ 60 µm)

and very narrow in the y direction (≈ 2 µm). We therefore consider the magnetic field being

constant in y direction and calculate the total magnetic flux per width, by integrating Bx(z,x)
over the length of the SQUID loop for a given height x = h:

Φ(x)
ws

=
∫ ls/2

−ls/2
Bx(z,x)dz =

∫ ls/2

−ls/2

µ0|~m|
2π(x2 + z2)3/2

[
cos2

(
arctan

(
z

x

))
− sin2

(
arctan

(
z

x

))]
dz

= µ0|~m|
6πx2(x2 + z2)3/2

(
z
(
z2 + 3x2

))∣∣∣∣ls/2
−ls/2

= µ0|~m|ls

6πx2
(
l2s
4 + x2

)3/2

(
l2s
4 + 3x2

)
, (2.56)

with ws and ls the length and the width of the SQUID loop.
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With Eq. (2.56) we have calculated how the magnetic flux in the SQUID loop depends on the

height of the cantilever.

For x � ls all dimensions are small compared to x and the magnetic field can be considered

being constant over the whole SQUID loop (far field approximation). Equation (2.56) then

simplifies to:

Φ(x) = ws · ls ·
µ0|~m|
2πx3 , (2.57)

To compare the near field calculation to the far field approximation we plot both models for

typical parameters of a commercial magnetic force microscopy cantilever in Fig. 2.17 a). The

assumed parameters of the cantilever are presented in Tab. 2.1 and the area of the SQUID loop

was assumed to be Aloop = 2× 60 µm2. We see that for small distances between cantilever and

SQUID loop (x < 40 µm) the far field approximation starts to deviate.

parameter value

h 100 µm
|~m| 1 · 10−16 A/m2

Ωm 70 kHz
k 3 N/m
meff 2.66 · 10−10 kg
xzpf 1.6 fm

Table 2.1: Typical parameters of a commercial magnetic force microscopy cantilever.

Furthermore we have seen in Sec. 2.5 that the vacuum coupling strength is given by:

g0 = ∂ωr
∂Φ

∂Φ
∂x

xzpf . (2.58)

To maximize the coupling strength we have to tune the setup, such that the derivative ∂Φ(x)/∂x
is maximized. In Fig. 2.17 a) we see that the slope of Φ(x) becomes steep for small distances

between cantilever and SQUID loop. Therefore, in order to achieve strong coupling the tip of

the cantilever should be brought to the SQUID loop as close as possible. We plot the derivative

of the near field calculation in Fig. 2.17 b) and observe that for distances x < 20 µm the slope

becomes significantly steep.

We assume that x = 10 µm is the smallest experimentally feasible distance and evaluate the

coupling strength for this value according to Eq. (2.58):

g0
2π = 59 GHz/Φ0 · 27.3 Φ0/m · 1.6 fm = 2.6 mHz . (2.59)

The coupling strength achievable with a cantilever is 7 orders of magnitude smaller than the

one of an embedded string-resonator. The reason for this big discrepancy is that the magnetic

moment of the cantilever tip is small and so the change in magnetic flux induced by the vibration

of the tip is small as well.

In the case of the embedded string-resonator the value of ∂Φ/∂x scales with the externally applied

magnetic field and can therefore be ramped up strongly. Furthermore the string-resonators in

the embedded design are optimized for large zero point fluctuations resulting in xzpf = 58 fm,
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Figure 2.17: Magnetic flux induced in a SQUID loop of dimensions Aloop = 2× 60 µm2 by a commercial magnetic

force microscopy cantilever positioned over the SQUID loop at height x. In panel a) the near field

calculation according to Eq. (2.56) is compared to the far field approximation according to Eq. (2.57)

in the range 10 µm < x < 100 µm. The far field approximation deviates for heights x < 40 µm. In

panel b) we plot the derivative of Eq. (2.56) and see that for strong inductive coupling the distance

between cantilever and SQUID loop should be small (g0 ∝ ∂Φ/∂x).

whereas the one of the cantilever is ≈ 35 times smaller.

An additional problem arises as the mechanical resonance frequency Ωm = 70 kHz is smaller than

the linewidth of the FTR. The necessary condition of the resolved sideband regime (Ωm > κ) is

not given which reduces the variety of experimental methods that can be applied.

The arguments presented above show that the performance of an embedded string-resonator

outruns the one of a cantilever. Therefore we have focused in the experimental part of this thesis

on the fabrication of the design shown in Sec. 2.5.
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2.7 Detection of Electromechanical Interaction - Noise Analysis

A fundamental aspect for the success of this thesis is whether or not the sensitivity of the

SQUID is sufficient to detect the mechanical motion of the string-resonator. To answer this

question we compare the flux changes expected from the mechanical motion with the typical

noise performance of the SQUID.

In Sec. 2.5 we have shown that the effective flux change in the SQUID loop is given by

δΦ = Bzβlδx. According to Eq. (2.6) the rms displacement δx of the string-resonator in a

thermal state n̄m, is given by:

δx = xzpf ·
√

2n̄m + 1 . (2.60)

At 100 mK a mechanical string-resonator with length l = 60µm, Ωm/2π = 3.44 MHz and

xzpf = 58 fm is occupied by n̄m = 605 phonons resulting in the rms noise amplitude δx = 2 pm.

At Bz = 1 mT the strings thermal motion results in a flux change of δΦ = 38µΦ0. The total

flux change is distributed over the Lorentzian mechanical response spectrum. We estimate the

necessary flux sensitivity δΦ/(Γm/2π)1/2 ≈ 12µΦ0/Hz1/2, assuming Γm/(2π) = 10 Hz.

The flux resolution of low temperature dc-SQUIDs is known to be close to the quantum limit

[67]. In Ref. [68] it has been shown that sensitivities of 0.01µΦ0/Hz1/2 are theoretically possible.

This implies that the sensitivity of a state of the art SQUID is sufficient to resolve the mechanical

motion in our device. In the year 2008 it has indeed been demonstrated experimentally in

Ref. [30] that detection of motion of a string-resonator embedded into a dc-SQUID is possible.

The device which is used in the reference is similar to ours, reporting a flux resolution of

10µΦ0/Hz1/2.

We can sum up that the flux modulation induced by the mechanical string-resonator in our

device is close to the resolution limits of typical flux detectors presented in literature. If our

SQUID provides similar performance, a detection of the mechanical motion is challenging but

should be in principle possible.

In the following we are going to analyse the noise sources being present in our setup. Hereby

one has to distinguish between white noise and spectral noise. White noise arises from thermal

fluctuations in the SQUID loop as well as in the electronics which are used to amplify the signal.

It contributes equally to all frequencies. Spectral noise can arise from background magnetic

fields emitted e.g. by hand-held mobile devices. Generally speaking we are able to detect the

mechanical motion of our string-resonator if the resulting spectral signal is bigger than the sum

of all noise contributions. Additionally the sensitivity of the SQUID must be sufficient to resolve

the signal.

We start the discussion with the sensitivity of the SQUIDs.

The dc-SQUIDs discussed in Refs. [30, 68] are operated in the voltage state, i.e. they are

biased by a current I > 2Ic. In contrast, our device is operated in the zero voltage state. In

the following we are going to discuss the differences between the voltage and the zero voltage state.

In the voltage state the SQUID produces an output voltage that depends on the externally

applied magnetic flux [47]. A small change of magnetic flux results in a change of voltage, which
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can be read out. The performance of the SQUID is determined by the flux-to-voltage transfer

function [47]:

HV =
∣∣∣∣( ∂V

∂Φext

)∣∣∣∣ , (2.61)

which relates the power spectral densities of voltage and magnetic flux [47]:

SΦΦ(Ω) = Svv(Ω)
H2

V
. (2.62)

The sensitivity increases with HV, i.e. small flux changes result in large voltage changes if HV is

large. For dc-SQUIDs in the voltage state the flux-to-voltage transfer function is proportional

to the product IcRn and best performance can be achieved by choosing the parameters of the

SQUID such that βL ' 1 and βc ' 1 [47].

In a typical setup the voltage modulation is amplified and then detected at room tempera-

ture. In the supplementary material of Ref. [31] for example, it is stated that for their setup

HV = 1.7 µV/µΦ0 and they record a voltage noise floor of
√
SVV = 4.1 µV/Hz1/2 after the am-

plifiers. According to Eq. (2.61) this results in a spectral flux sensitivity of SΦΦ = 5.8 µΦ0/Hz1/2.

In the zero voltage state the current through the SQUID is smaller than 2Ic. The SQUID does not

produce an output voltage. Limitations for the magnetic field resolution in the superconducting

state are rarely discussed in the literature and are going to be analysed in the following.

In our device a change of flux produces a frequency shift of the FTR. Therefore we introduce

the flux-to-frequency transfer function

HΦ =
∣∣∣∣( ∂ω

∂Φext

)∣∣∣∣ , (2.63)

which relates the power spectral densities of magnetic flux and frequency:

SΦΦ(Ω) = Sωω(Ω)
H2

Φ
(2.64)

The transfer function equals the slope of the FTR and therefore the flux sensitivity is limited by

Ic, αI and βL. The transfer function is connected to those parameters as we have seen in Sec.

2.3.

Let us now discuss different sources of noise which are present in our setup. First, the SQUID

itself can be a source of noise. In literature [48], in principle two types of noise are considered as

the main contribution in SQUIDs: thermal noise and 1/f noise. As the mechanical modes of

interest are in the order of MHz, the 1/f noise is negligible in our case.

Thermal noise generally speaking leads to fluctuations of the current around its mean value. It

is gaussian distributed and contributes equally to all frequencies (white noise). According to the

Nyquist theorem the junction resistance produces a noise voltage of [48]:

Sv(f) = 4kBTR . (2.65)
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The resistance is considered as noisy element and according to Refs. [48, 69] the resulting

voltage across the SQUID and the current noise around the SQUID are partially correlated. For

practical dc-SQUIDs, especially high Tc, operated in the voltage state, this is a big issue and

imposes limits upon the inductance of the SQUID loop. In order to avoid the suppression of

macroscopic quantum interference the SQUID inductance should be significantly smaller than

LF = (Φ0/2π)2/kBT . At 4 K this condition is easily met if the loop inductance is in the order

of a few pH.

According to the theory presented in Refs. [48, 69], the thermal noise contributions are only

relevant in the resistive voltage state. In particular, fluctuations of the current which flows

across the SQUID do not result in flux noise if the SQUID is in the zero voltage state. Only

circulating currents could limit the sensitivity, as they directly create flux in the SQUID loop.

We assume that for βL � 1 circulating currents are suppressed.

To sum up, the fact that our device is entirely operated in the zero voltage state could imply an

increase in sensitivity compared to the operation of an equivalent device in the voltage state.

Second, environmental background noise which threads the SQUID loop can be a source of noise.

In Ref. [70] it has been shown that natural and man-made terrestrial noise in the MHz regime is

not negligible. To avoid unwanted environmental noise, the sample chamber should be properly

shielded. Furthermore, the intended experiments involve applying an external magnetic field by

a superconducting coil. Fluctuations of the magnetic field result in flux noise in the SQUID loop.

The coil however acts as a low pass filter and fluctuations in the MHz regime become negligible.

Third, the amplifier and the read out electronics can be a source of noise. One can analyse

this source of noise by tuning the FTR to the sweet spot, where the flux-to-frequency transfer

function is zero. In this state the SQUID is switched off and the setup is not sensitive to the

two sources of noise mentioned above.

In the following we are going to introduce two methods of quantifying the noise.

In our system, magentic flux fluctuations of any sort (noise and signal) at a frequency ωfluct
result in fluctuations of the FTR resonance frequency. They are detected using a homodyne

detection scheme and appear in the measured power spectral density as peaks at ±ωfluct. White

noise, being frequency independent, consequently increases the noise floor of the measured power

spectral density.

The measured power spectrum of the mechanical sidebands is connected to the frequency

fluctuation spectrum by [41]:

Spp(Ω) = 2K(Ω)
Ω2 Sωω(Ω) = 2K(Ω)H2

Ω2 SΦΦ(Ω) , (2.66)

where K(Ω) is the MW transfer function [41] introduced in Sec. 2.4.1:

K(Ωmod) = 2 · ENBW · Smod
pp · Ω2

mod
Ω2

dev
. (2.67)

31



Chapter 2 Theoretical Description

At Ωmod, K(Ωmod) can be determined experimentally employing a calibration tone with a known

frequency modulation depth Ωdev. The amplitude of the measured sideband peak Smod
PP allows

the calibration as explained in Ref [61]. With knowledge of both transfer functions one can

calibrate the flux sensitivity of the setup. The transfer function can be plugged into Eq. (2.66)

and yields the calibrated flux noise for (Ω ≈ Ωmod):

SΦΦ(Ω) = Ω2
dev

4ENBW ·H2
Snoise

pp
Smod

pp
, (2.68)

where Snoise
pp is the noise floor of the measured power spectrum and Smod

pp the amplitude of the

sideband peak introduced by the injected modulation.

Another method of quantifying the flux noise is to analyse how the linewidth of the FTR

depends on the flux-to-frequency transfer function H. At working points with H = 0, the FTR

is not sensitive to flux modulations. At working points with H , 0, the resonance frequency

ωr fluctuates with flux noise leading to a linewidth broadening in time averaged measurements.

Consequently one can analyse the sensitivity of the SQUID by comparing the linewidth of the

FTR at H = 0 and H , 0.

With this method however, one can not determine at which frequency the fluctuation occurs.

As long as the fluctuation of the magnetic flux is significantly faster then the measurement time,

any noise in the frequency spectrum contributes to the linewidth broadening. It is therefore

challenging to give the appropriate value in typical units of Φ0/Hz1/2 and requires further studies.

From a general point of view we summarize that resolution limits can arise from:

• the read out electronics, in particular the noise floor of amplifiers between sample and

detector, also considered as imprecision noise.

• the sensitivity of the SQUID which is defined by the flux-to-frequency transfer function

and noise sources in the SQUID itself.

• environmental background noise which threads the SQUID loop.

All in all our setup is well optimized and comparable with state of the art experiments reported

in literature.
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Sample Layout, Fabrication and

Experimental Setups

In this chapter we are going to present the sample layout of our nanomechanical hybrid system, the

fabrication procedure which we have developed during this masters thesis and the experimental

setups which have been used to characterize the fabricated samples. We start with the discussion

of the sample layout.

3.1 Sample Layout

An overview of the final sample layout with all its components is shown in Fig. 3.1. In the

following we give an introduction to the sample layout, then we explain each component as well

as the parameters in detail.

On the edges of the chip, we have two RF contacts which are connected by a straight coplanar

waveguide. We will refer to this structure as ’transmission-line’ or ’feed-line’. By attaching bond

wires to these contacts we can later connect the transmission-line to an external MW source and

send microwaves through the chip.

Next to the feed-line we place six CPW λ/4 MW resonators which are capacitively coupled to

the feed-line and have different lengths, hence different frequencies. We terminate 4 of the MW

resonators with an aluminium SQUID. One arm of each SQUID loop is underetched, so that

these arms are free to vibrate and form the mechanical string-resonators.

Furthermore, eight gold contact-pads for precharacterisation of SQUIDs and a test pattern of

mechanical string-resonators are situated at one side of the chip.

We deposit alignment markers at the corners of the chip. With the help of these markers we

align the sample with nanometre precision in each fabrication step.

In the following we describe the components in detail.

3.1.1 Transmission-Line and MW Resonators

In Fig 3.2 a) we depict an overview of the the transmission-line and the MW resonators. The

central conductor of the transmission-line has a width of 18 µm and a gap to the groundplane of
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Figure 3.1: Overview of the sample layout with all components on the 6× 10 mm2 silicon substrate.

12 µm which results in an impedance of Z0 ≈ 50Ω. The λ/4 CPW MW resonators are aligned

along the transmission line and for clarity we associate the MW resonators with names. Starting

in the bottom line on the left hand side we call the first resonator FTR1 the second one FTR2,

the third one FTR3. The fourth and the fifth resonator are named MWR2 and MWR1. In

the upper half of the layout there is one resonator which is named FTR4 (compare Fig. 3.2

a)). In Fig. 3.2 b) we depict exemplary a zoom into MW resonator FTR1. For all the MW

resonators the width of the central conductor is 10 µm and the gap to the ground plane is 8 µm
corresponding to an impedance of Z0 ≈ 50Ω as well. The gap between the central conductor of

each MW resonator and the transmission-line is designed to be 45 µm. The MW resonators differ

in length resulting in resonance frequencies ranging from 4 GHz to 8 GHz. We have fabricated

samples with two different versions of the layout, where in the second version the lengths of the

MW resonators have been changed according to the outcomes of the first layout.

Four of the MW resonators (FTR1, FTR2, FTR3 and FTR4) have an embedded SQUID at

their current anti-node and are therefore flux tunable. The other two MW resonators do not

contain a SQUID and are used to determine the dielectric coefficient εeff of the substrate.

For additional flux pumping in the squid loop FTR2, FTR3 and FTR4 are equipped with an

antenna.

The lengths of all MW resonators as defined in the layouts are given in Tab. 3.1. We write down

the resonance frequency of the bare resonators as given by equation (2.8) assuming εeff = 6.45
[40]. For those resonators which have an embedded SQUID we have considered that the length

of the resonators is elongated by 114µm (length of the squid loop + contact striplines), the

effect of the SQUID inductance is not considered in ω0
r . Depending on the critical currents of the

SQUIDs, the measured resonance frequencies of FTR1 to FTR4 will differ from ω0
r as predicted

by Eq. (2.35) due to the additional SQUID inductance.
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a)

b) c) d)

1 mm

200 μm

40 μm

2 μm

FTR1 FTR2

FTR4

FTR3 MWR2
MWR1

Figure 3.2: Aluminium structures that are going to be deposited on the substrate. From a) to d) detail

level increases with a) the whole sample b) a single microwave resonator, c) a single SQUID

including two Josephson junctions and two arms that build the SQUID loop, d) detailed zoom

into the shadow evaporation mask for Josephson junctions.

35



Chapter 3 Sample Layout, Fabrication and Experimental Setups

layout #1 layout #2
MW resonator lr (mm) ω0

r /2π (GHz) lr (mm) ω0
r /2π (GHz)

FTR1 4.221 6.991 4.191 7.046
FTR2 3.883 7.604 4.027 7.333
FTR3 3.573 8.264 3.719 7.940
FTR4 4.219 6.999 4.367 6.762

MWR1 5.380 5.485 7.384 4.000
MWR2 3.741 7.894 3.741 7.894

Table 3.1: Design parameters and calculated resonance frequencies of the 6 MW resonators on the chip. Two

layouts have been used during this thesis. In the first column of each layout we give the length lr of the

MW resonators as defined in the layout. In the second column we calculate the resonance frequency

ω0
r /2π of the bare resonators as given by Eq. (2.8) for εeff = 6.45. For resonators FTR1 to FTR4 an

elongation of the resonator length by 114µm due to the length of the SQUID loop and the contact

striplines is taken into account. Frequency shifts due to the SQUID inductance are not taken into

account.

3.1.2 SQUIDs and Mechanical String-Resonators

As mentioned above, SQUIDs are embedded into FTR1, FTR2, FTR3 and FTR4 at the current

anti-node, as depicted in Fig. 3.2 b) and c). Furthermore we have duplicated these SQUIDs and

connected them to contact pads outside of the MW circuit for dc-measurements. We depict an

overview of the sample where all SQUIDs are indicated and associated with unique names in

Fig. 3.3.

Sq1 Sq2 Sq3

Sq4
Sq5 Sq6 Sq7 Sq8

Figure 3.3: Overview of the sample layout. All SQUIDs are indicated by green rectangles and associ-

ated with unique names. The SQUIDs (Sq1,...,Sq4) are embedded into the MW resonators

(FTR1,...,FTR4) respectively. The SQUIDs (Sq5,...,Sq8) are duplicates of (Sq1,...,Sq4) outside

of the MW circuit, used for dc-measurements.
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Important parameters of SQUIDs are the length of the strings which define the length of the

SQUID loop lloop, also called SQUID arms and the distance between the SQUID arms, which

defines the width of the SQUID loop wloop. These parameters define the SQUID loop-area

Aloop = lloop · wloop and so, the amount of magnetic flux that is caught by the SQUID loop.

Parameters of the SQUIDs vary from Sq1 to Sq4 and are shown in Tab. 3.2.

Additionally, one has to define the parameters of the Josephson junctions in the SQUIDs. By

setting the junction width one controls the junction area and finally the critical current that

can flow through the junction. The width of the junctions is wJJ = 2 µm in layout #1 and

wJJ = 0.5 µm in layout #2. The length of the junctions is defined by the shadow evaporation

process and is LJJ ≈ 235 nm. On each SQUID, both Josephson junctions except for one case are

identical in terms of the design parameters. Only in Sq4 we have realized an asymmetric SQUID

with αI = 1/3 where the left junction has a design width of 333 nm and the right one of 666 nm.

Last but not least, we give the parameters of the mechanical string-resonators, which are

the length lstring, the width wstring and the thickness tstring. As explained at the beginning

of this chapter, the string-resonators are realised by underetching one arm of each SQUID

loop. Consequently, the length of the string-resonator equals the length of the SQUID loop

(lstring = lloop). We discussed the influence of the nanostring parameters on the electromechanical

coupling in detail in section 2.5. Although it is possible to fabricate free standing doubly clamped

mechanical string-resonators with lengths of 80 µm, we restrict ourselves to l < 60 µm in order

to keep βL small. The thickness of the string-resonators is defined by the thickness of the

evaporated aluminium layer and is fixed to tstring = 110 nm. Parameters of the strings, the

resulting loop area, the loop inductance and the βL parameter are given for all SQUIDs in

Tab 3.2. The fabrication of nanostrings is a demanding task and the yield is only good if all

SQUID wstring (nm) lloop (µm) wloop (µm) Aloop
(
µm2) Lloop (pH) βL

Sq1 80 40 1.7 68 304 0.31
Sq2 100 25 2 50 165 0.16
Sq3 150 15 2 30 77 0.08
Sq4 80 60 2 120 448 0.45

Table 3.2: Parameters of the SQUIDs including mechanical string-resonators. The length of the string-resonator

defines the length and the area of the SQUID loop. In order to keep βL small, the string length is

limited by l < 60 µm. The loop inductance is calculated according to Eqs. (2.32) and (2.33) for the

given parameters. For the calculation of βL we have assumed a typical critical current of Ic = 1 µA.

parameters in the fabrication process are optimized. Releasing the mechanical system is the last

step in the fabrication procedure and if an embedded string-resonator breaks this destroys the

corresponding FTR. Therefore in the progress of finding best fabrication parameters one needs

sufficiantly many nanostrings to have good statistics about the yield. We have added an array

of 3× 7 test patterns to the layout, whereas each pattern contains ten nanostrings with lengths

ranging from 10 µm to 100 µm. One of these test patterns is schematically displayed in Fig. 3.4

a) next to microscope pictures of the fabricated structures in Fig. 3.4 b).
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50 µm

100 µm

10 µm

a) b)

Figure 3.4: Test pattern to optimize the fabrication process of double clamped nanostrings. In panel a)

the pattern is schematically displayed. The strings have lengths ranging from 10 µm to 100 µm
in 10 µm steps. In panel b) a microscope picture of the fabricated structure is shown.

3.2 Fabrication

The samples investigated in this thesis are fabricated on a silicon substrate. Even though

the fabrication procedures for all the components are well established at the Walther-Meißner-

Institut, we had to face the demanding challenges of each component individually. We developed

a fabrication procedure such that fabrication steps are not in conflict with each other.

We start the fabrication procedure by cleaning a commercial highly resistive 6× 10 mm2 silicon

substrate in an ultrasonic bath (Martin Walther Ultraschalltechnik: Powersonic). In two

fabrication steps, the components defined in Sec. 3.1 will be deposited onto the substrate by

using a thin film evaporation technique. The two steps differ in the choice of material. While in

the first step the deposited components are made out of gold, in the second step all aluminium

components are deposited.

After the deposition, the mechanical string-resonators are released by using an isotropic etching

process.

In the following we describe the fabrication in detail. For further information all fabrication

parameters can be found in the Appendix.

3.2.1 Gold Deposition (Alignment Markers and Contact Pads)

In the first step we fabricate the alignment markers and the contact pads. We coat the chip

with photoresist (Allresist AR-P 617.08) and pattern the resist using a NanoBeam Limited nB5

Electron Beam Lithography System. After exposure, the resist is developed in Allresist Ar600-56

for 60 s and then in isopropanol for 120 s. The development is stopped by rinsing the sample

with destilled H2O. As we use a positive photoresist, the development removes the resist where

it was exposed to the electron beam. Hence the substrate is covered with an evaporation mask.
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In an evaporation chamber we deposit a 4 nm layer of titanium as surfacer and 26 nm of gold on

the substrate under ultra high vacuum conditions. With the thin layer of titanium we increase

the adhesion of gold on silicon. After evaporation we apply a lift-off process. By putting the

sample into aceton and heating it to 70◦C, we dissolve the photoresist and thus remove the

evaporation mask together with the excess material.

3.2.2 Aluminium Deposition (MW Circuit, SQUIDs, String-Resonators)

After completion of the alignment markers and the contact pads we continue by depositing the

electronic circuit elements in one single fabrication step. This includes the transmission-line,

the microwave resonators with embedded SQUIDs and the mechanical string-resonators. As

explained in section 2.5 one of the key factors in this thesis is the quality of the MW resonators.

In Ref. [71] it has been shown that aluminium MW resonators with internal Q factors above a

million can be fabricated. In contrast to previous work where niobium MW resonators were used

here we use aluminium to avoid dominant loss channels at the SQUID-resonator interface [43].

Also the mechanical string-resonators are fabricated in a pure aluminium process in contrast

to previous work where Al-SiN string-resonators have been used. As the mechanical quality

and frequency scales with the tensile stress of the string and σAl < σAl-SiN [40] this seems

contra intuitive. Though we benefit from a simplified fabrication procedure and better electrical

quality. Further when going to mK temperatures the stress is enhanced due to the high thermal

expansion ratio of Al on Si as explained in Sec. 2.1. It was recently shown that the quality of

such resonators exceeds 100000 at mK temperatures [72].

The fabrication procedure of aluminium deposition is similar to the procedure of gold deposition

described in Sec. 3.2.1. The aluminium is deposited onto the substrate which is coated by

a photoresist mask in an evaporation chamber under ultra high vacuum conditions. As the

step involves the fabrication of Josephson junctions, we need to apply a shadow evaporation

technique. This technique has been studied in detail in [40, 65, 73, 74]. In the following we want

to sketch the process of shadow evaporation without going deep into detail.

Two aluminium layers with a thin insulating oxide layer in between are evaporated under different

angles. The first Al layer has a thickness of 40 nm, the second layer has a thickness of 70 nm
and creates an overlap over the first layer.

In Fig. 3.2 d) we show a close-up of the evaporation mask for Josephson junctions in top view.

The depicted pattern is written into a double layer system of positive resists using electron beam

lithography. The bottom layer consists of very sensitive positive photoresist (Allresist AR-P

617.08), the top layer consists of four times less sensitive positive photoresist (Allresist AR-P

679.02). First, one writes the actual shape of the junction, which is coloured grey in Fig. 3.2

d), with a high exposure dose. The high dose guaranties that both layers become soluble to

the photoresist developer. Then the area which is coloured green in Fig. 3.2 d) is written with

a small exposure dose which is only 20% of the first dose. The second dose is optimized such

that it makes the bottom layer soluble to the photoresist developer but the top layer remains

insoluble. When developed, a free standing bridge above an undercut is created.

By evaporating two layers of aluminium under different angles (±17◦) nanoscale overlapping
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Photoresist AR-P 679.02
Silicon substrate

Aluminium
Oxyde Josephson Junction

275 nm

First Evaporation (+17°) Second Evaporation (-17°)

680 nm

Figure 3.5: Schematic drawing of the shadow evaporation process used to create a Josephson junction.

On the left (right) hand side the first evaporation step under an angle of +17◦ (−17◦) is

depicted. In red we show the insulating Al2O3 layer which separates the aluminium layers.

The Josephson junction is indicated by a black circle. The overlap area between the aluminium

layers is called Josephson junction area.

structures can be created. But before evaporating the second layer which creates the overlap,

the first layer is exposed to oxygen so that a thin insulating Al2O3 layer is embedded in between

the two aluminium layers. In Fig. 3.5 we depict the shadow evaporation process geometrically.

The shadow cast of the free standing resist bridge creates a gap in both current conducting

aluminium layers. As the two layers are evaporated under different angles the gaps are situated

at different positions which implies that the current in one layer has to change over to the other

layer. The oxidized interface between the two aluminium layers where the transition takes place

can be associated as Josephson junction and is marked by a black circle in Fig. 3.5.

To sum up, the presence of Josephson junctions demands for the shadow evaporation technique

on a double layer resist. We evaporate all current conducting structures in one fabrication step

expecting a significant increase in electrical quality factors compared to [40] where the MW

resonators consist of niobium and loss channels exist at the Al-Nb interface [43].

After the evaporation, we apply a lift-off process which removes the evaporation mask and all

the excess material. The desired structures remain on the chip.

In Fig. 3.6 we show a microscope picture of FTR1 and FTR2 after the lift off.

In order to create a tensile stress in the aluminium nano string the sample is annealed at 350 ◦C
in vacuum for 30 minutes [41] after the deposition.
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500 μm

Figure 3.6: Microscope picture of FTR1 and FTR2 on sample IM7-4 after the lift-off process

3.2.3 Release of the Mechanical System

In the last step we release the mechanical string-resonators by underetching one arm of the

SQUID loop in a reactive ion etching process (RIE). Two etching recipes have been used. One

includes a high acceleration voltage and offers anisotropic etching deep into the substrate, the

other one has no acceleration voltage at all, is therefore isotropic and enables us to underetch

the aluminium string. From recent work [40] we expected that both processes, the isotropic and

the anisotropic one, would be necessary to fabricate a free standing mechanical string-resonator.

However, we found out, that the isotropic etching process etches sufficiently deep when applied

for a longer period of time. Etching times of 50 minutes showed very good results. By avoiding

the anisotropic etching process, one circumvents high acceleration voltages in the etching chamber

and so one reduces the risk of destroying the Josephson junctions due to electrostatic discharge.

Before the etching, we coat the sample with a mask of photoresist that exposes the nanostrings

to the etching while the rest of the sample is protected.

After the actual etching we have to remove the photoresist from the sample. Due to the fact that

the mechanical string-resonators are now underetched, they are very fragile and can stick to the

bordering walls due to surface tension. The removal of the photoresist is done as in the previous

steps by putting the sample into aceton at 70 ◦C. To avoid residues of photoresist around the

nanostring the sample is then rinsed several times with aceton and then with isopropanol. Due

to the fragility of the nano strings, the sample cannot be dried with a nitrogen blow. When

the liquid vaporizes forces act on the string-resonator due to surface tension. The collapse of

nanostructures in the drying process has been studied for example in [75] and can be avoided by

reducing the surface tension during the drying process. A suitable approach is to use supercritcal

carbon dioxide. Beyond the critical point liquid and vapour states become indistinguishable

and the carbon dioxide is in a fourth, supercritical fluid state which has intermediate properties

between liquid and gas. In this state an interface between liquid and gas does not exist, which

implies that the surface tension equals zero [76]. We exploit this technique by transferring the

wet sample into a bath of pure ethanol and then to a fully automatic drying machine called
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critical point dryer (Leica EM CPD300). One must take care that the sample is always wetted

after removal of the photoresist. The drying then takes place in the critical point dryer as

follows:

The CPD replaces the ethanol by CO2 in several cycles of flooding and gas out phases. The

temperature and the pressure are increased to bring the CO2 into the supercritical phase. At

sufficiently high temperature the pressure is then reduced by exhausting the gas. As soon as

room pressure is reached, the chamber can be opened and the dry sample can be taken out.

To sum up, by circumventing the critical point in the phase diagram, liquid CO2 can be vaporized

without going through a phase transition and so the surface tension in the drying process is zero,

following no forces act on the nanomechnical system leading to a high yield in fabrication.

In Fig. 3.7 we show scanning electron microscope pictures of the aluminium structures after the

release of the mechanical string-resonators. In panels a) and b) the underetched test pattern of

string-resonators, in panel c) a zoom into the Josephson junctions and in panel d) the complete

SQUID where one arm of the SQUID loop is underetched and forms a string-resonator is shown.

a) c)

b)

d)

2 µm

10 µm

Figure 3.7: Scanning electron microscope pictures of aluminium structures after releasing the mechanical

system. In panel a) and b) the underetched test pattern of string-resonators, in panel c) a

zoom into the Josephson junctions and in panel d) a complete SQUID where one arm of the

SQUID loop is underetched and forms a mechanical string-resonator is shown
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3.3 Experimental Setups

For the characterization of the fabricated samples, optical experiments at room temperature, as

well as electronic setups at mK temperatures have been used.

In the following we are going to present the experimental setups of the optical interferometer

and three cryostats with different performance goals which have been used during this thesis.

3.3.1 Optical Interferometry at Room Temperature

HeNe laser

beam 
splitter 
90:10

detector

light source
(white)

beam 
splitter
50:50

lens lens

CCD camera

lens

polarizing 
beam splitter

vacuum chamber

objective
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notch

λ/4 plate

λ/2 
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shutter

polarization
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Figure 3.8: Overview of the optical interferometer used to precharacterize nanomechanical strings at room

temperature. The sample is mounted in the vacuum chamber, on a piezoactuator which excites

mechanical motion of the naostrings. The motion of the nanostrings is readout by detecting

the intensity of the reflected laser beam as explained in the text. The positioning of the laser

spot on the sample can be observed in-situ via a CCD camera.

For precharacterization of nanomechanical strings an optical Fabry-Pérot interferometer was

used. An overview of the setup including all components is depicted in Fig. 3.8. For detailed

information on the setup and the working principle of the interferometer please refer to Ref. [40].

In the following we give a brief introduction to the instrument and the measurement method.

The sample is mounted onto a piezoactuator and placed in a vacuum chamber which has optical

access through a glass window. The piezoactuator is driven by the output voltage Udrive of a

vector-network-analyser (VNA). The motion of the piezoactuator excites motion of the string-

resonators when the resonance condition is met. From a laser source, a beam is guided to the

sample and focused by an objective resulting in a laser spot of ≈ 2 µm in diameter. The laser
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beam is reflected by the sample and guided to a detector by a polarizing beam splitter. The

intensity of the reflected beam is modulated by the vibrations of the mechanical string-resonator

due to interference effects. The resulting photo voltage at the detector is fed back into the VNA

as input voltage Uin.

In general a VNA records the ratio of outgoing power to incoming power |S21|2 = Pin/Pout
where S21 = Uin/Uout is the complex scattering parameter. Here the output power drives the

piezo actuator and is considered as Pdrive. During the measurement of one amplitude spectrum,

the drive power is constant and the squared amplitude of the scattering parameter is directly

proportional to the input power at the VNA: |S21|2 · Pdrive = Pin.

As the mechanical amplitude of the string-resonator is proportional to the photovoltage Uin [34]:

x = ccalib · Uin , (3.1)

we can fit the squared mechanical amplitude to the measured power spectrum:

x2 = c2
calibU

2
in = c2

calib|S21|2Pdrive = c̃|S21|2 . (3.2)

In Sec. 2.1 we derived the mechanical amplitude spectrum in Eq. (2.3). Further, the squared

amplitude including a complex background is given by:

x(Ω)2 = x2
0

∣∣∣∣∣ Γm

i (Ωm − Ω) + Γm
2

+ ic1

∣∣∣∣∣
2

+ c2 . (3.3)

By fitting Eq. (3.3) to the measured response spectrum of a string-resonator we can extract its

characteristics, including the mechanical resonance frequency Ωm, the linewidth of the resonance

peak Γm and following the quality factor Qm.

By applying this optical spectroscopy method we are able to identify immediately if a string-

resonator is broken or sticks to the substrate.

3.3.2 500 mK Cryostat

The 500 mK cryostat is used to precharacterize SQUIDs in four-terminal sensing. The sample

stick of the cryostat contains 8 pairs of twisted dc cables which enable us to measure 4 independent

SQUIDs in one cooldown. Additionally we have mounted a superconducting coil on top of the

sample holder in order to study the SQUIDs response to externally applied magnetic field.

For the measurements we need to reach the mK regime, so cooling with 4He evaporation which

only reaches a temperature of typically 1.3 K is not sufficient [77]. The cryostat used here reaches

a temperature of 500 mK by 3He evaporation cooling. The sample is placed inside of a closed

pot which is filled with 3He. The 3He pot is pre-cooled by liquid 4He to 4.2 K, then it is isolated

from the bath. With a Joule-Thomson-cooler the temperature in the pot is reduced to 1.5 K and

the 3He condenses. Slowly the liquefied 3He evaporates and cooles the sample stage further until

it reaches its base temperature of 500 mK. For further information on the working principle

please refer to Ref. [77].
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With the help of this cryostat we can check if the critcal current of the fabricated SQUIDs

matches the expected value.

3.3.3 20 mK Cryostat (”Kermit” and ”Triton”)

For characterization of the MW circuits we used two cryostats which allow the connection of

MW lines to the sample. They are called ”Kermit” and ”Triton” and can reach temperatures of

about 20 mK. Both cryostats are dilution fridges based on the principle that a 4He/3He-mixture

undergoes a spontaneous phase separation at ≈ 800 mK. A forced phase transition from the

concentrated 3He phase to the diluted phase in the mixing chamber absorbs the mixing heat

from the environment [77]. The base temperature of the cryostats is limited by heat channels like

MW cables which act as thermal conductor from room temperature into the fridge. Additionally

during the measurement the cryostats are heated by the power of the measurement signal.

Typical temperatures during the experiments were around 100 mK.

While ”Kermit” must be pre-cooled with liquid nitrogen and liquid helium and the gas han-

dling which controls the 4He/3He mixture must be operated by hand, the ”Triton” is a fully

automatized cryogen free fridge where the 4He/3He mixture is precooled by commercial pulse

tube coolers. The latter one runs very stable and is suitable for long term measurements. It is

typically operated for longer than 2 weeks what makes quick sample exchange difficult.

For a quick analysis of a new sample we therefore typically use the ”Kermit” fridge which has a

cycle time of a few days. During this thesis, we exchanged the mixing chamber of the ”Kermit”

cryostat which had a leak. The ”Triton” cryostat was out of order for several months due to

renovation work at the lab.

The microwave wiring inside of the cryostats is depicted schematically for ”Triton” including all

MW components in Fig. 3.9. The wiring in ”Kermit” is similar and not depicted.

In ”Triton” the sample is placed in the sample chamber at the 50 mK stage. It is shielded from

external magnetic fields by µ-metal and superconducting shields. The transmission line of the

sample is connected to the input and output lines. The antennas of the sample are connected to

the pump line for additional magnetic flux pumping. The input lines lead a MW signal from

room temperature to the sample at the 50 mK stage, so in order to avoid thermal noise at the

sample the signal is attenuated at each temperature stage. For ”Triton” the signal attenuation

has been calibrated in Ref. [72]. Considering attenuators along the input line and the attenuation

due to losses in the MW cables one finds a total attenuation of 53.5 dB. In ”Kermit” the signal

attenuation along the input is line bigger and the total attenuation is about 70 dB.

The output signal passes through circulators which avoid the intrusion of thermal noise on the

output line and is amplified by a HEMT amplifier (LNF-LNC4 8A) which adds thermal noise of

2 K at the 4 K stage.

Additionally, the setup contains several dc-cables which are used for temperature sensors at each

temperature stage and for a superconducting coil which is mounted on top of the sample box in

order to apply magnetic field to the sample.

The wiring outside of the cryogenic differs from experiment to experiment. For the characteriza-

tion of FTRs one needs a current source in order to apply magnetic fields and a VNA which

records the power transmission spectrum through the sample. The VNA has been connected
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to the input and output lines of the cryostat depicted in Fig. 3.10 by MW cables (TrueBlue:

262-0248-1000 and 90-221-5MTR). The current source which has been used to apply the current

to the superconducting coil was a YOKOGAWA GS200. For the detection of electromechanical

interaction we apply the methods of single tone and two-tone spectroscopy with the MW wiring

depicted in Fig. 3.10.
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Figure 3.9: Schematic overview of MW wiring in the ”Triton” cryostat. Temperature decreases from

top to bottom. The sample is connected from input to output line to perform transmission

measurements. Additionally two antennas of the sample are connected to a pump line for

magnetic flux pumping. To avoid thermal noise, the input lines are attenuated, while the

output signal passes through circulators and is amplified by a HEMT amplifier before reaching

room temperature again. The compensation line was not used during this thesis but is shown

for completeness.
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Figure 3.10: MW wiring outside of the cryogenic environment for the detection of electromechanical interaction.

The setups for single tone and two tone spectroscopy are shown in panels a) and b) respectively.

Picture taken from Ref. [41].
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Characterization of the

Nanomechanical Hybrid Sample

In this chapter we present experimental results obtained on electro-mechanical hybrid samples

which we have fabricated according to Sec. 3.1. The samples consist of three main components.

These are mechanical string-resonators, superconducting MW resonators and SQUIDs. In order

to realize the inductive coupling all three components must be functional and matched up to each

other. We show measurements on the individual parts as well as on the embedded system. With

the results from precharacterizations, the parameters of the system have been optimized. We

successfully fabricated a final device where all necessary components are functional. Detection

of the inductive coupling however remains open.

4.1 Precharacterization of Mechanical String-Resonators at Room

Temperature

First, the mechanical string-resonators on sample IM5-2 are characterized at room temperature

using optical interferometry as depicted in Sec. 3.3.1.

We have shown in Sec. 3.3.1 that the power spectrum recorded by the VNA is directly propor-

tional to the squared amplitude spectrum of the mechanical string-resonator. To determine the

figures of merit for our inductive coupling, i.e. the resonance frequency Ωm and the mechanical

linewidth Γm, we do not require to calibrate the amplitude of the mechanical motion. However,

we demonstrate the calibration procedure exemplarily for one string using the duffing non-

linearity, as described in Refs. [34, 40]. The calibrated data will reveal the absolute displacement

of the string resonator.

We have recorded the power transmission spectra of several string-resonators with lengths

ranging from 15µm to 100µm. By fitting the amplitude spectra with Eqs. (3.2) and (3.3) we

extract Ωm and Γm for each string, as we have shown this in Fig. 4.1 a) exemplarily for a string

of lstring = 25µm. The characteristic values of all strings are displayed in Tab. 4.1. The values

in the upper part of the table correspond to strings which are situated in a test array next to

the actual electrical circuit. They have been used to optimize the fabrication process during this
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thesis. Additionally they are characterized to determine σAl. The values in the lower part of

the table correspond to strings which are embedded into SQUIDs for further measurements via

inductive coupling. We note here that the fabrication of string-resonators inside of the SQUID

geometry is much more challenging due to the constraints in space. Furthermore, during the

electron beam lithography the surrounding structures influence the embedded strings due to

proximity effects. The quality factors range from 3700 to 10500. Unfortunately two of the

position on
lstring (µm) ΩRT

m /2π (MHz) Γm/2π (Hz) Qmsample IM5-2

test array

20 7.0277 1880 3700
30 4.4523 620 7200
40 3.2499 385 8400
50 2.5793 246 10500
60 2.1541 253 8500
70 1.8077 287 6300
80 1.5359 336 4600
90 1.3625 254 5400
100 1.2039 175 6900

embedded into
FTR3 15 8.4427 22000 158
FTR2 25 5.2672 554 9500
FTR1 40 3.5102 50000 168

Table 4.1: Resonance frequency, linewidth and quality factor of double clamped string resonators on sample IM5-2.

The values are extracted from transmission spectra measured at room temperature at a drive power of

−18 dBm. The upper part of the table corresponds to strings which are situated in a test array next

to the actual electrical circuit (compare Fig. 3.4). The lower part of the table corresponds to strings

which are embedded into SQUIDs and can be further utilized for measurements on inductive coupling.

One of them shows a very small linewidth and following excellent quality while the other two are worse.

embedded strings have low quality factors. We assume that due to the small area of the etching

windows, remains of photoresist from the etching mask damp the mechanical motion.

However, the sample IM5-2 has three vibrating embedded string-resonators and will be further

characterized.

We plot the resonance frequency over the length of the string-resonators in Fig. 4.1 b) and fit

the data with Eq. (2.1) in order to extract the pre-stress σAl at room temperature yielding

σAl = (187± 5) MPa.

In Fig. 4.1 b) we observe a small deviation from the fit for long strings. We conclude that these

strings have less stress then the short ones.

Now we calibrate the actual amplitude of the strings motion x0 to the measured photovoltage

Uin. Therefore we analyse the duffing behaviour of one string-resonator. We choose the string of

length l = 25µm which is embedded into FTR2 and shows a quality factor of 9500.

At high drive powers, the response spectrum of the string-resonator becomes non-linear and

the maximum shifts to higher frequencies with a sharp cut off, taking the shape of a shark fin.

Spectra of the string for different drive powers are depicted in Fig. 4.2 a). The critical amplitude
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Figure 4.1: Mechanical properties of double clamped string-resonators on sample IM5-2 and sample IM7-2. a)

Power transmission spectrum of a 25µm long string-resonator at a drive power of −18 dBm. The

Lorentzian fit according to Eq. (3.3) yields Ωm/(2π) = 5.2668 MHz and Γm/(2π) = 554 Hz. b) Double

logarithmic plot of resonance frequency vs. length for several string-resonators on two different samples

with lengths ranging from 15µm to 100µm. The fit according to Eq. (2.1) yields σAl = (187± 5) MPa
for sample IM5-2 and σAl = (200± 5) MPa for sample IM7-2.

of the motion at the cut off frequency is connected to the frequency shift as shown in Refs.

[34, 40]:

x2
c = 8

3
Ωmmeff
α

(Ωeff − Ωm) , (4.1)

with α = meffπ
4EAl/(4l4ρAl) the duffing parameter.

We replace the critical amplitude by x2
c = U2

c · c2
calib and solve for the calibration constant:

ccalib =
(

U2
c

Ωeff − Ωm

3α
8Ωmmeff

)−1/2

. (4.2)

The slope U2
c /(Ωeff − Ωm) = 1.457± 0.066 · 10−9 V2/Hz can be determined by plotting the

critical voltage over the cut-off frequency as shown in Fig. 4.2 b). Inserting all values into Eq.

(4.2) results in ccalib = 2.442 nm/mV.

With the calibration constant we calibrate the measured amplitude spectra and show the actual

displacement of the string-resonator in nanometer on the right vertical axis of Fig. 4.2 a).

We see in Fig 4.2 a) that by applying moderate drive powers slightly below the onset of the

non-linearity, the string-resonator can be excited to amplitudes around 2 nm which corresponds

to 40 000 zero point fluctuations. As the flux modulation scales with the displacement of the

string-resonators, it could be significantly increased by mounting a piezo actuator into the

cryogenic environment.
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Figure 4.2: Analysis of an embedded string-resonator of length lstring = 25µm in the non-linear duffing regime for

several drive powers ranging from −6 dBm to 4 dBm. a) With increasing drive power the amplitude

spectra become non-linear and take the form of a shark fin. The amplitude of the strings motion is

calibrated as explained in the main text. b) Squared critical voltage of each shark fin plotted over

the cut-off frequency. A linear fit yields the slope which can be inserted into Eq. (4.2) in order to

determine the calibration constant which relates voltage and amplitude.

From an experimental perspective, Ωm is temperature dependent. The optical measurements

of Ωm presented above are performed at room temperature and are not possible in cryogenic

environments. Therefore in the following we estimate ΩmK
m at mK temperature.

When exposed to a temperature change dT a material expands or contracts due to thermal

expansion. The amount is given by the temperature dependent thermal expansion coefficient

α(T ) of the material. Here, however, the nanostring is fixed to the substrate at both clamping

points resembling a boundary condition. If the nanostring contracts stronger than the substrate,

stress is induced in the nanostring. According to Ref. [78] the stress in an aluminium thin film

on a silicon substrate can be resolved into an intrinsic component σAl and a thermal component

σth:

σ = σAl + σth . (4.3)

We assume that the derivations from Ref. [78] are equally valid for continuous thin films and

geometrically shaped structures.

Then, in our case the intrinsic stress is the measured stress of the double clamped aluminium

string-resonator at room temperature which has been induced in the system by the annealing.

The thermal stress for an infinitesimal change in temperature is given by [78]:

dσth = EAl
1− νAl

(αAl(T )− αSi(T )) dT , (4.4)

with EAl = 70 GPa [33] the Young’s Modulus of aluminium and νAl = 0.345 [78] the Poisson’s

ratio of aluminium.

Integrating this equation over the range of temperature change yields the thermal stress σth

σth(T ) = EAl
1− νAl

(∆lAl
lAl
− ∆lSi

lSi

)
, (4.5)
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4.1 Precharacterization of Mechanical String-Resonators at Room
Temperature

where
∫ T

293 αi(T ′)dT ′ = ∆li/li the relative change of length for both materials was introduced.

We note that Eq. (4.5) is particularly independent of the length of the string-resonator.

Furthermore we considered the string-resonator due to its dimensions (long and thin) as a one

dimensional object. Following, geometric contributions as the exact shape of the string design

do not contribute in Eq. (4.5).

Thermal expansion at low temperatures has been studied in literature [79]. We present the

temperature dependent expansion coefficients of aluminium and silicon and the resulting thermal

stress in Fig. 4.3:
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Figure 4.3: a) temperature dependent thermal expansion coefficients α(T ) of aluminium and silicon and

b) Thermal stress of a doubly clamped aluminium string-resonator on a silicon substrate when

cooled from room temperature to a few mK, according to Eq. (4.5). The thermal expansion

coefficients αi(T ) and the resulting relative changes of length ∆li/li for both materials are

taken from Ref. [79].

The additional stress induced by cooling the sample from room temperature to mK temperatures

is:

σth = EAl
1− νAl

(∆lAl
lAl
− ∆lSi

lSi

)
= 70 GPa

1− 0.345 · 3.93× 10−3 = 420 MPa . (4.6)

In Ref. [41] the thermal stress for an equivalent string-resonator has been determined ex-

perimentally to be σth = 407 MPa. The calculation agrees well with the experimental result

from Ref. [41] and allows us to estimate ΩmK
m with Eq. (2.1) by assuming a total stress

σmK
Al = σRT

Al + σth = 607 MPa. We show the estimates in Tab. 4.2.
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Chapter 4 Characterization of the Nanomechanical Hybrid Sample

length (µm) ΩRT
m /2π (MHz) ΩmK

m /2π (MHz)

15 8.4427 15.8
25 5.2672 9.5
40 3.5102 5.9

Table 4.2: The resonance frequencies of embedded string-resonators have been determined at room temperature

with an optical interferometer. When the sample is cooled down to mK temperatures additional

stress is induced due to thermal contraction as explained above. The resonance frequency at mK

temperatures is calculated with Eq. (2.1) for an estimated total stress of σmK
Al = 607 MPa.

4.2 Precharacterization of SQUIDs

10 µm

2 µm2 µm 520 nm

235 nm

a)

b) c)

Figure 4.4: Scanning electron microscope picture of a fabricated aluminium SQUID on a silicon substrate. From

panel a) to c) the detail level increases. a) Overview of the complete SQUID including the SQUID

loop and the Josephson junctions. b) Josephson junctions at the ends of the SQUID loop arms.

Both aluminium layers from the shadow evaporation process are visible. c) Detailed zoom into one

Josephson junction. Hight and width of the junction area are indicated.

Besides mechanical string-resonators, we have precharacterized the behaviour of SQUIDs. When

embedded into a MW resonator they act as a non-linear tunable inductance and define the

flux-tunability of the FTR. In Sec. 2.3 we have highlighted the important parameters which

need to be optimized in order to realize measurements on inductive coupling. In particular, the

critical current is the most important parameter as it defines the frequency tuning and hence

the coupling strength.

In Fig. 4.4 we show a scanning electron microscope picture of a SQUID with increasing detail

level from panel a) to panel c).

In this section we analyse the parameters of the SQUIDs (Sq5,...,Sq8) on different samples in

the 500 mK cryostat in dc-configuration.

We will present an overview of the critical currents on three samples in Tab. 4.3 and a detailed
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4.2 Precharacterization of SQUIDs

analysis of all parameters for Sq5, Sq6 and Sq7 on sample IM3-4 in Tab. 4.4.

The properties of our SQUIDs are measured by recording U-I characteristics with four-terminal

sensing technique. The SQUID is biased with a current from a current source and we measure

the voltage drop across it. We show exemplary measurement data of a U-I characteristic for a

SQUID of string length lstring = 25µm on sample IM3-4 in Fig. 4.5 a).

Starting from zero current, the SQUID is in the superconducting ”zero voltage” state. At the

maximum supercurrent Im
s the SQUID switches into the normal conducting ”voltage” state with

a gap voltage Ug and a normal resistance Rn. Where Eg = eUg corresponds to the necessary

energy to break up cooper pairs. When reducing the current back to zero one observes a

hysteretic behaviour. The SQUID switches back into the ”zero voltage” state at a retrapping

current Ir < Im
s , which shows that the SQUID is underdamped (βc > 1). In Sec. 2.3 we have

a) b)
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Figure 4.5: Examplary measurement data obtained by characterization of SQUIDs in four-terminal sensing. In

panel a) we show the U-I characteristic of a single SQUID. Arrows indicate the sweep direction of

the bias current. At the maximum supercurrent Im
s , the SQUID switches into the ”voltage” state.

Hysteretic behaviour indicates that the Josephson junctions are underdamped. From the data we

extract the gap voltage Ug and the normal resistance Rn. In panel b) we show the magnetic flux

dependence of the maximum supercurrent for three different SQUIDs on sample IM3-4 with the same

junction area but different loop areas. Fitting Eq. (2.26) to the data yields the critical current Ic as

well as the asymmetry factor αI.

derived that the maximum supercurrent through a SQUID is flux dependent. Recording the flux

dependence of our SQUIDs was done by applying external magnetic flux via a coil. At each

flux point the maximum supercurrent was extracted. This behaviour is shown in Fig. 4.5 b)

exemplarily for three different SQUIDs of sample IM3-4. By fitting the data with Eq. (2.26)

we determine the critical current of a single Josephson junction Ic as well as the asymmetry

parameter αI. We note that both parameters βL and αI reduce the modulation depth of the

maximum supercurrent. Whereas in literature it is usually assumed that either αI or βL is

negligible, here both quantities are significant and self consistent numerical simulations for each

flux point would be necessary in order to obtain both parameters simultaneously [48].

We can however use the experimental data to give an upper limit for both quantities by deter-

mining one under the assumption that the other one is negligible, and vice versa.
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Chapter 4 Characterization of the Nanomechanical Hybrid Sample

By fitting Eq. (2.26) to Fig. 4.5 b) we have already determined αI for βL = 0. Additionally we

determine βL from the modulation depth ∆Im
s = (Im

s (0)− Im
s (Φ0/2)) by neglecting the influence

of αI as shown in Ref. [48].

Both results are presented in Tab. 4.4 and compared to the theoretic value of βL calculated

from Ic and Lloop.

The performance goal for our SQUIDs is a high critical current with βL � 1. The loop in-

ductances calculated in Sec. 3.2.2 suggest that critical currents around Ic = 2µA optimize all

SQUIDs on the sample. Fabrication procedures from previous work [40, 74] have shown that

critical current densities in the order of Ic/AJJ ≈ 350 A/cm2 are typically achieved, resulting in a

necessary Josephson junction width of wJJ = 2µm. After fabrication of the first samples however,

it turned out that under present fabrication conditions the critical current density is higher.

We have observed critical current densities of Ic/AJJ = 977 A/cm2, Ic/AJJ = 606 A/cm2 and

Ic/AJJ = 755 A/cm2 on three different samples. We therefore have reduced the critical current

by reducing the width of the Josephson junctions. We show an overview of the measurement

results in Tab. 4.3. We note that on sample ST3 only Sq7 and on sample IM3-1 only Sq5 were

functional. These SQUIDs have different loop inductances, so we can not compare them with

respect to the βL parameter. Therefore we assume that all SQUIDs on each of these two samples

have the same critical current and calculate βL in Tab. 4.3 for Sq8. This SQUID has the the

biggest loop inductance and gives an upper limit to the acceptable critical current.

sample-SQUID wJJ (µm) AJJ (µm2) Ic (µA) Jc (A/cm2) βL
ST3-Sq7 2 0.55 5 977 2.23
IM3-1-Sq5 2 0.55 3.1 606 1.39
IM3-4-Sq(5,6,7) 0.5 0.143 1.08 ± 0.12 755 ± 84 0.48

Table 4.3: Parameters of SQUIDs on three different samples. The width of the Josephson junctions wJJ and the

resulting junction area AJJ are design parameters, the critical current is experimentally determined

from U-I characteristics as explained in the main text. Under present fabrication conditions the critical

current density is higher than expected from previous work and fluctuates in between different samples.

We successfully reduced the critical current to Ic = 1µA by reducing the Josephson junction area on

sample IM3-4. βL is calculated for Sq8 on each sample by using the experimentally determined value

of Ic.

Although all samples have been fabricated with the same fabrication parameters, the critical

current density fluctuates in between different samples by ±25 %. At a critical current of

Ic = 1 µA, the screening parameter βL is smaller than 0.5 for all SQUIDs. Therefore the junction

width of sample IM3-4 seems to be reasonable and we chose to fabricate future samples just like

that. With the reduction of the junction width, the yield on sample IM3-4 has been increased

to 3 out of 4 compared to a yield of 1 out of 4 on samples ST3 and IM3-1. For sample IM3-4

we give the averaged value of Ic with standard deviation in Tab. 4.3. Further details on the

individual SQUIDs are given in Tab. 4.4.

In the following, we explain how the values presented in Tab. 4.4 have been determined.
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4.2 Precharacterization of SQUIDs

SQUID Rn (Ω) Ic (µA) Ug (µV) CJJ (fF) LJJ (pH) βc αI βL βanalytic
L

Sq5 128 1.09 350 46 150 2.57 ≤ 0.29 ≤ 0.35 0.33
Sq6 99 1.16 335 81 137 2.92 ≤ 0.05 ≤ 0.15 0.19
Sq7 100 0.99 310 58 160 1.80 ≤ 0.10 ≤ 0.22 0.08

Table 4.4: Detailed analysis of three SQUIDs on sample IM3-4. All presented values except for βanalytic
L are

determined experimentally from dc-measurements as shown exemplarily in Fig. 4.5. All SQUIDs

are designed for the same Josephson junction area of AJJ = 0.143µm2 but the SQUIDs differ in

loop design. We present the normal resistance Rn, the critical current Ic, the gap voltage Ug, the

asymmetry parameter αI and the screening parameter βL. For comparison βanalytic
L is calculated using

the analytically determined value of Lloop from Tab. 3.2 and the experimentally determined values of

Ic. The capacitance and inductance of the Josephson junctions and the Stewart-McCumber parameter

βc are calculated using equations presented in Sec. 2.3.

The normal resistance Rn, the critical current Ic, the retrapping current Ir and the gap voltage

Ug can be directly extracted from the U-I-characteristic presented examplarily in Fig. 4.5. The

βC parameter is calculated according to the right hand side of Eq. (2.21). We calculate the

capacity of the Josephson junction by transforming Eq. (2.21) into: CJJ = βcΦ0/(2πIcR
2
n). The

Josephson inductance LJJ is calculated according to Eq. (2.29). αI and βL are estimated from

the fit in Fig. 4.5 as explained in the text above and βanalytic
L is calculated according to Eq.

(2.31).

Now we analyse the results presented in Tab. 4.4.

Even though the SQUIDs are equal in junction area, we observe a small fluctuation in Ic of

±11 %. The gap voltage Ug is a material parameter and independent of the SQUID design. The

measured values are in good agreement with the literature value Ug = 340µV [80].

The capacity of the Josephson junctions is comparable to the total capacity of the MW resonators

(CJJ/Cr ≈ 10 %), however, when embedded into the MW resonator we do not expect an influence

on the resonance frequency, as the electrical field gradient at the position of the SQUID is very

low (current anti-node). We use CJJ and the area of the Josephsopn junctions to estimate the

thickness of the insulating Al2O3 layer by approximating the junction as a plate capacitor. With

the permittivity εAl2O3 = 9.3 [81] the thickness is dAl2O3 = ε0εAl2O3AJJ/CJJ ≈ 2 Å.

Last but not least, the analytic value of βL is within or very close to the upper bound which is

set by the experimentally determined value, so the values of Lloop, calculated according to Eqs.

(2.32) and (2.33) seem reasonable.

To sum up, we have found optimal fabrication parameters for the SQUIDs which can be embed-

ded into our MW resonators. We have reduced the critical current to Ic = 1µA which ensures

βL < 0.5 for all SQUIDs. The experimentally determined values of βL are consistent with the

analytic values, which proves that the calculated loop inductances are reasonable. In the next

section we are going to show the performance of SQUIDs embedded into MW resonators
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Chapter 4 Characterization of the Nanomechanical Hybrid Sample

4.3 Characterization of Flux Tunable Resonators

The last key components in our system are the MW resonators. They act as a cavity for

electromagnetic signals and enable the interaction with the mechanics. In the following we

are going to analyse their characteristics on three different samples. Samples IM2-4 and IM2-

3 have been fabricated with layout #1, simultaneously with exactly the same parameters

and are therefore well comparable. Sample IM5-2 has been fabricated later with layout #2 in-

cluding improvements, e.g. a reduced Josephson junction size as discussed in the previous section.

Resonance Frequency, Linewidth and Q-factor

We characterize the MW resonators by recording power transmission spectra through the trans-

mission line via a VNA. Dips in the spectra correspond to the resonance frequencies of the

resonators as explained in Sec. 2.2. A typical power transmission spectrum is depicted in Fig.

4.6.
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Figure 4.6: Power transmission spectrum of sample IM2-3 in the range between 5.3 and 8.0 GHz. Capacitively

coupled MW resonators cause a dip in the spectrum when the frequency of the probe tone matches

the resonance frequency of a resonator. Resonance frequencies of all 6 resonators are indicated by red

arrows.

In order to provide an overview for the following discussions, we present the resonance frequencies

of all measured resonators in Tab. 4.6.

In Chap. 3 we designed 6 MW resonators with different lengths and frequencies according to Eq.

(2.8) by assuming an effective dielectric constant εeff = (εSi + εvac)/2 = 6.45, with εSi = 11.9 [82]
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4.3 Characterization of Flux Tunable Resonators

and εvac = 1.

In the first step, we analyse the resonance frequencies of bare MW resonators (without SQUID)

and determine εeff experimentally as this sets the backbone of our system. We compare the

resonance frequencies of MWR1 and MWR2 on three different samples to the theoretically

expected values in Tab. 4.5.

resonator sample layout lr,design (mm) ω0
r,design/2π (GHz) ω0

r,meas/2π (GHz)

MWR1
IM2-3 #1 5.380 5.485 5.415
IM2-4 #1 5.380 5.485 5.397
IM5-2 #2 7.384 4.00 3.995

MWR2
IM2-3 #1 3.741 7.894 7.844
IM2-4 #1 3.741 7.894 7.848
IM5-2 #2 3.741 7.894 7.850

Table 4.5: Comparison of theory and experiment. The lengths of MWR1 and MWR2, on layout #1 and #2 as

well as the expected resonance frequencies have been defined in Chap. 3 and are reproduced here to

simplify reading. We compare the expected to the measured frequencies on three different samples.

For the calculation of ω0
r,design in Chap. 3 an effective dielectric constant εeff = 6.45 has been assumed.

The results are discussed in the main text.

The resonances of MWR1 and MWR2 appear approximately at the calculated positions. We

emphasise that the length of MWR1 differs between layout #1 and #2. The design of MWR2 is

identical on both layouts.

On layout #1 we observe for MWR1 a deviation between theory and experiment of ≈ 80 MHz.

This deviation is reproducible on samples IM2-3 and IM2-4. On layout #2 the measured

resonance frequency of MWR1 matches the theory perfectly.

The measured frequency of MWR2 deviates from the theory by ≈ 45 MHz on all three samples.

The reproducibility of the differences between theory and experiment show, that the deviations

arise from uncertainties in the design of the resonator length. A deviation of 1µm on a length

scale of 3 mm already results in a frequency change of 2 MHz.

Nevertheless we recalibrate the effective dielectric constant εeff for our samples by fitting the

measured data from all three samples with Eq. (2.8). The fit yields εeff = (6.54± 0.02), which

is slightly larger than the theoretic value of εeff = 6.45. All in all we have shown that we

can predict the resonance frequencies of our MW resonators without applying extensive finite

element simulation programs. For the following we use the recalibrated εeff and assume that the

calculated frequencies of (FTR1,...,FTR4) have a similar precision as shown above for MWR1

and MWR2. The biggest deviation between theory and experiment for the values presented in

Tab. 4.5 is ∆f/f = 5 h.

Furthermore we mention that εSi(T ) is temperature dependent. In Ref. [64] a significant temper-

ature dependence of the resonance frequency has been reported. The measurements presented

in this section are all taken at the same temperature of T ≈ 100 mK� Tc. We therefore do not

expect to observe effects of changing temperature in our measurement data.

In the next step, we analyse the quality factors of the resonators. Therefore we have recorded
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Chapter 4 Characterization of the Nanomechanical Hybrid Sample

power transmission spectra of each resonator around the resonance. We fit the data with

Eq. (2.12), extract κ and calculate the corresponding quality factors at a probe power of

Pprobe = −110 dBm. We show exemplarily the power transmission spectrum of FTR1 on sample

IM2-4 including the fit according to Eq. (2.12) in Fig. 4.7. Results for all measured resonators

are presented in Tab 4.6.
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Figure 4.7: Power transmission spectrum of of FTR1 on sample IM2-4 including the fit according to Eq. (2.12).

The values of κ presented in Tab. 4.6 correspond to the FWHM of the Lorentzian dip as indicated in

the figure.

Quality factors of the resonators vary in a broad range with the best being at about Q = 11000
and the worst at Q = 1500 (c.f. Tab. 4.6). However, the necessary condition of the resolved

sideband regime Ωmk
m > κ is fulfilled for typical mechanical frequencies in the MHz regime.

Tunability of FTRs

We check if the FTRs are tunable by applying external magnetic flux. We drive a dc-current

through a superconducting coil which is mounted on top of the sample box and create a homo-

geneous magnetic field perpendicular to the sample plane.

The yield of tunable resonators was 0 out of 4 on sample IM2-4 and 1 out of 3 on samples

IM2-3 and IM5-2. On both of the two latter samples, we note a lift-off problem in the SQUID

loop of FTR4. So these designed FTRs are broken in the sense that the SQUID arms are

shorted, omitting the operation of the SQUID. The other ones however show no observable dam-

age and should be tunable. In the following we discuss possible explanations for the non tunability.
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MWR1 FTR1 FTR2 FTR3 FTR4 MWR2
ωr/2π (GHz)

IM2-4 5.397 6.547 - 7.908 6.581 7.849
IM2-3 5.415 6.545 7.206 7.915 6.528 7.844
IM5-2 3.995 6.750 7.060 7.600 6.405 7.850

Q/1000
IM2-4 5.44 3.19 - 3.21 2.06 4.92
IM2-3 10.99 10.31 2.33 2.52 3.57 4.31
IM5-2 2.10 4.43 3.64 1.9 2.52 1.65

κ/2π (MHz)

IM2-4 0.99 2.05 - 2.46 3.19 1.59
IM2-3 0.49 0.63 3.09 3.14 1.82 1.82
IM5-2 1.90 1.52 1.94 4.0 2.54 4.76

Table 4.6: Resonance frequencies, quality factors and linewidths of all measured resonators on three different

samples. Detailed values of κint and κext are given in the appendix.

• The superconducting coil which generates the external magnetic field could be broken

• The electrical connection between MW resonator and SQUID could be damaged

• The SQUID loop could be broken, especially the SQUID arm which is underetched and

forms the mechanical resonator

• The Josephson junctions could be damaged (short-cut around the junction or impurities

in the insulating layer)

During the first cooldown, where none of the resonators was tunable, we checked whether or not

the coil was broken, by ramping up the coil current to strong magnetic fields. We observed the

characteristic linewidth broadening of the resonators at high magnetic field and concluded that

the coil was functional and the resonators indeed did not respond to the magnetic field.

The fact that the resonators are visible in the transmission spectrum suggests, that the electrical

connection from the end of the resonators to the SQUID arms, through the Josephson junctions

and onto the ground plane is functional. Otherwise the boundary conditions would shift the

frequency to 2ωr. If one of the SQUID arms was broken, this would remove the condition of

flux quantization in the SQUID loop and all the current would flow through a single Josephson

junction. Investigation of the samples with a scanning electron microscope (SEM) however

revealed that all SQUID arms remained in the designed geometry. Furthermore, we can check

with the SEM whether or not the junction area looks as depicted in Fig. 4.4 and if there are any

short-cuts around the junctions due to remains of aluminium from the lift-off process or broken

resist bridges before the aluminium evaporation. The actual thickness of the insulating layer

is however not visible, impurities where the insulation may be broken can not be spotted by

microscopy and remain as possible issue.

Additionally, the junctions can be destroyed by electrical discharges when applying high electrical

fields (e.g. in the etching process or in the SEM). On the contrary, the Josephson junctions of
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sample IM2-3 as well as all samples presented in Sec. 4.2 have been investigated with the SEM

before the measurements. The fact that many SQUIDs on these samples worked, shows that the

Josephson junctions are not destroyed when exposed to an electron beam with 10 keV.

We gain further insight by analysing the resonance frequencies of the FTRs. To facilitate reading

we reproduce the resonance frequencies ω0
r of all FTRs from Tab. 3.1 and compare them to the

measured resonance frequencies from Tab. 4.6) in Tab. 4.7. We remind the reader that in ω0
r the

influence of the SQUID inductance is not taken into account. The resonance shift δω from ω0
r to

the measured ωr allows calibration of the SQUID inductance by transforming Eq. 2.35 into

Lsq = Lrδωr
ωr

, (4.7)

with δωr = ω0
r,design − ωr,meas.

sample resonator ω0
r,design/2π (GHz) ωr,meas/2π (GHz) δωr (MHz)

IM2-4

FTR1 6.991 6.547 444
FTR2 7.604 - -
FTR3 8.264 7.908 356
FTR4 6.999 6.581 418

IM2-3

FTR1 6.991 6.545 446
FTR2 7.604 7.206 398
FTR3 8.264 7.915 349
FTR4 6.999 6.528 471

IM5-2

FTR1 7.046 6.750 296
FTR2 7.333 7.060 273
FTR3 7.940 7.600 340
FTR4 6.762 6.405 357

Table 4.7: Influence of the SQUID inductance on the resonance frequencies of all FTRs. ω0
r,design is the designed

frequency without the SQUID inductance. ωr,meas is the measured resonance frequency including the

SQUID inductance. The frequency shift δωr allows calibration of the SQUID inductance as shown in

Eq. (4.7)

Due to the influence of the SQUID inductance all resonance frequencies of FTRs have shifted

to lower frequencies compared to the bare MW resonator (ωr < ω0
r ). The SQUID inductance

consists of the Josephson inductance LJJ as well as the loop inductance Lloop = Lgeom
loop + Lkin

loop.

We determine the total SQUID inductance experimentally for all SQUIDs with Eq. (4.7) and

compare the results in Tab. 4.8 to the expected values according to the design.

Interestingly the total SQUID inductance is much smaller than expected from the theory. We

analyse the results in the following:

• The SQUID inductance yields a clear dependence on the geometric loop inductance. For

Sq3 the measured values of Lsq,meas match perfectly to the designed Lgeom
loop,design. With

increasing loop size in Sq2, Sq1 and Sq4 also the measured value of Lsq,meas increases.

• For some reason, the kinetic loop inductance and the Josephson inductance are not
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observable in this measurement. In particular, the Josephson junctions on sample IM2-3

are by a factor of 4 bigger than on sample IM5-2, which should result in a reduction of

the critical current and hence an increase in the Josephson inductance by the same factor.

The measured inductances on both samples however, do not show a difference.

sample SQUID Lsq,meas (pH) Lgeom
loop,design (pH) Lkin

loop,design (pH) LJJ,design (pH)

IM2-4

Sq1 45 63 241 40
Sq2 - 41 124 40
Sq3 26 24 52 40
Sq4 42 92 355 40

IM2-3

Sq1 45 63 241 40
Sq2 34 41 124 40
Sq3 25 24 52 40
Sq4 48 92 355 40

IM5-2

Sq1 28 63 241 160
Sq2 23 41 124 160
Sq3 26 24 52 160
Sq4 39 92 355 160

Table 4.8: The total SQUID inductance of all measured SQUIDs is determined experimentally according to

Eq. (4.7) and compared to the design values of the loop inductance and the Josephson inductance.

Interestingly the SQUID inductance is much smaller than expected from the theory and yields a

clear dependence on the geometric loop inductance. The kinetic loop inductance and the Josephson

inductance are not observable in this measurement. Lgeom
loop,design, L

kin
loop,design and LJJ,design are calculated

according to Eqs. (2.33), (2.32) and (2.29) respectively.

At this point the reader might conclude that the Josephson inductance is not observable because

the junctions are broken, but things become complicated as Sq1 in FTR1 on sample IM2-3

and Sq3 in FTR3 on sample IM5-2 are indeed functional. When applying magnetic field the

resonance frequencies of these FTRs tune and hence there must be a finite Josephson inductance

included in the measured total SQUID inductance.

We sum up that the measured total SQUID inductance is smaller than expected and the

comparison to the theory suggest that Lsq,meas depends on the geometry of the SQUID loop.

As Lsq = Lloop + LJJ, the Josephson inductance of the functional SQUIDs therefore must be

very small. According to Eq. (2.29) a small Josephson inductance implies large critical currents

which is contradictive to the dc-precharacterizations shown in Sec. 4.2.

We have to consider two possibilities:

• On the one hand, it could be possible that the assumed equivalent circuit diagram shown

in Fig. 2.7 is not sufficient to describe our system consisting of geometric-, kinetic- and

Josephson inductances. Possibly one has to find more complex equations to describe the

system properly.

• On the other hand, the measured frequency shift δωr is in the order of a few 100 MHz for

all FTRs and corresponds without doubt to a small SQUID inductance. We therefore also
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should consider the possibility that the Josephson inductances are small and the critical

currents are high.

At this point we want to guide the readers attention to the design of the wires which form

the SQUID loop. In the final device one arm of the SQUID loop acts as mechanical string-

resonator and for symmetry reasons the other arm has the same dimensions. The race for strong

electromechanical coupling has pushed the design to very thin and light strings in the order of

100 nm, 1 pg (compare Tab. 3.2). When two superconducting materials are connected by a thin

wire with spatial dimensions below the coherence length (ξAl
BCS = 170 nm in aluminium [83]), the

thin wire acts as a weak link [84] and quantum effects similar to those observed in Josephson

tunnel junctions appear [85]. In literature these thin and short wires are called nano-bridges

and show much higher critical currents than tunnel junctions [86]. In Ref. [87] characteristic

properties of nanobridges have also been observed in long Pb wires with lengths up to 20 µm
(ξPb

BCS = 90.5 nm in lead [88]). In Ref. [87] it is also mentioned that only a small part of the

samples (5%) have good pronounced Josephson effects.

Consequently we consider the possibility that the thin wires in the SQUID loop act as additional

Josephson junctions and interfere with the tunnel junctions or even dominate the system. On

sample IM5-2 only the SQUID with the thickest and shortest SQUID arms (wstring = 150 nm,

lstring = 15 µm ) was tunable.

For further projects we propose that width and thickness of the string-resonators should not

approach a substantial fraction of the coherence length in the chosen material.

As the coupling strength is inverse proportional to the mass g0 ∝ 1/m this restraint would

reduce the achievable coupling strength.

Having discussed possible reasons for the non-tunability of FTRs, we now analyse the character-

istics of those FTRs which are tunable.

In order to characterize the behaviour of a FTR we record the power transmission spectrum

around the resonance frequency and sweep the magnetic field. The sample IM2-3 has been

characterized in the ”Triton” setup as shown in Sec. 3.3.3. Results for FTR1 are shown in Fig.

4.8.

We analyse Fig. 4.8 and note that in the depicted frequency range two resonators are visible:

FTR1 and FTR4. FTR4 is not tunable and appears in the spectrum at a constant frequency

of ωFTR4
r = 6.528. FTR1 tunes with externally applied magnetic field in a frequency range

between 6.48 GHz and 6.545 GHz resulting in a relative modulation depth of ∆ω/ωr = 0.01. At

the lowest point of the tuning range the frequency jumps back up due to additional flux in the

SQUID loop, induced by screening currents. In order to investigate electromechanical coupling

we have to tune the resonator to a steep flux point in the lower part of the tuning range. At

such a point our system was unstable, repeatedly flux jumps occurred.

Nevertheless we calculate the slope dωr/dΦ = 2π · 0.75 GHz/Φ0 at the steepest point which

was reachable. The FTRs shown in previous work [40] are two orders of magnitude steeper.

This shows that the strong hysteretic behaviour is a real show-stopper on the way to strong

electromechanical coupling. For further samples we reduced the Josephson junction area as

explained in Sec. 4.2. This should reduce the screening parameter βL and prevent such flux
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Figure 4.8: Magnetic field dependence of FTR1 on sample IM2-3. In the depicted frequency range two resonators

are visible: FTR1 and FTR4. FTR4 is not tunable and appears in the spectrum at a constant

frequency of ωFTR4
r = 6.528. FTR1 tunes with externally applied magnetic field in a small frequency

range of ∆ω = 65 MHz. At 6.48 GHz, FTR1 jumps back to a higher frequency due to the influence of

finite βL. The two resonators FTR1 and FTR4 are weakly coupled via the transmission line. When

FTR1 tunes through the resonance frequency of FTR4 we observe an anticrossing.

jumps.

We show a detailed analysis of the critical current and the SQUID inductance in Tab. 4.9.

As the superconducting coil which was used in order to create the magnetic field has not been

calibrated in previous experiments, we have calibrated the proportionality between applied

current and resulting magnetic field from the measurement data. Usually one records several

periods of the tuning. The distance between two minima equals Φ0 and allows the calibration

of the magnetic field with the SQUID loop area known. As one can see in Fig. 4.8, the FTR

presented here shows hysteretic behaviour and so the spacing between the minima is reduced to

an unknown value. Therefore we have calibrated the coil by extrapolating the tuning of FTR1

according to Eq. (2.35) beyond the flux jumps. The resulting calibration constant for the coil in

the Triton setup is γ = 15 µT/mA. This value should be verified in other experiments in the

future.

The second tunable FTR which we have measured is situated on sample IM5-2. This sample

has been measured in the ”Kermit” setup. The superconducting coil used in this setup has been

calibrated in Ref. [40] to be γ = 44.19 µT/mA. Nevertheless the magnetic field at the position
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of the SQUIDs can deviate in our setup from this value as we are using a different sample box.

We show the magnetic field dependence of FTR3 on sample IM5-2 in Fig. 4.9 a) and b), where

panel b) is a zoom into the region around the half integer flux quantum. In panels c) and

d) we evaluate the total linewidth κ and the external coupling κext as a function of the applied flux.

By reducing the Josephson junction size, here we were able to record nearly a full period without

flux jumps. Outside of the depicted area flux jumps occurred, so again we were not able to

record several periods for the calibration. We calibrate the coil at Φext = Φ0/2 by assuming

that the amount of current applied to the coil to tune the resonator to its minimum equals the

magnetic field B = (Φ0/2)/Aloop. The resulting calibration constant is γ = 55 µT/mA.
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Figure 4.9: Magnetic field dependence of FTR3 on sample IM5-2. The resonator tunes with externally applied

magnetic field in a frequency range of ∆ω = 320 MHz. No flux jumps occurred in the presented region.

In panel a) we depict an overview of the tuning for externally applied flux in the range between 0 and

0.8 Φext/Φ0. In panel b) we show a zoom into the region around the half integer flux quantum which

is indicated with a red rectangle in panel a). In panels c) and d) we evaluate the total linewidth κ

and the external coupling κext as a function of the applied flux for the plots presented in a) and b)

respectively.

When analysing Fig. 4.9 we see that the resonator is tunable in a frequency range between

7.28 GHz and 7.6 GHz. The close-up depicted in Fig. 4.9 b) proves that at the minimum, there
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is a smooth transition and not a flux jump. The relative modulation depth ∆ω/ωr = 0.05 is very

small. In Sec. 2.3 we have derived that for totally symmetric Josephson junctions the relative

modulation depth is 1 and with increasing asymmetry the modulation is suppressed. We have

also seen in Eq. (2.39), that the influence of the asymmetry scales with the critical current.

The SQUID which is embedded into FTR3 has been designed to be completely symmetric with

critical currents of Ic = 1 µA. Pictures taken with the SEM reveal that both Josephson junctions

have indeed very similar junction areas and also the SQUID arms are symmetric. We measured

the size of both junction areas and find αI < 0.1. We use Eq. (2.39) to estimate the critical

current of the SQUID. Therefore we solve Eq. (2.39) for Ic and insert, the measured relative

modulation depth ∆ω/ωr = 0.05, the estimated asymmetry parameter αI < 0.1, the resonator

inductance Lr = 0.72 nH from Tab. 4.9 and the geometric loop inductance Lloop = 24 pH from

Tab. 4.8, and get: Ic > 37.4 µA.

We further notice that the shape of the tuning is flat over a broad range of the applied flux.

Around the half integer flux quantum the resonator tunes down steeply. In Fig. 2.8 we have

plotted the expected shape of the tuning for different values of Ic. A comparison of the experi-

mental results shown above with the expectation also strongly suggests that the critical current

in FTR3 is high.

We will fit the shape of the FTR with Eq. (2.35) in Fig. 4.10 and indeed we will find, that the

asymmetry is αI = 0.03 and the critical current is Ic = 153 µA.

To sum up, both, the estimation from the modulation depth and the fit of the tuning shape

agree for FTR3 on sample IM5-2 on a small asymmetry and a high critical current. On this

sample, the presented SQUID in FTR3 is the only one which is functional. Therefore we can

not confirm this result with a second measurement. Contacting this SQUID in dc-configuration

as shown in Sec. 4.2 was also not possible due to the small width of coplanar waveguides. For

typical Josephson tunnel junctions the value of Ic is very high. Furthermore it matches the

design parameter of Ic = 1 µA not at all. This result speaks strongly for the assumption that

the thin SQUID arms act as a weak link and provide the Josephson inductance instead of the

tunnel junction.

At this point one has to ask the question whether or not the model we have introduced in Sec.

2.3 describes the flux tunable resonators properly. We clarify this question by applying our

model to data which has been published in Ref. [40] and compare the results.

The data from the reference contains two FTRs which have been designed for a critical current

of Ic = 0.5 µA. The SQUID arms have a width of 250 nm and thickness of 110 nm. We present

an overview of the data together with the FTRs which we have measured in this thesis in Fig.

4.10. Black lines are the corresponding fits according to Eq. (2.35) for each FTR.

The agreement between fit and data is excellent for all FTRs. We present the corresponding

fitparameters in Tab. 4.9. The critical currents obtained by the fit for Res1 and Res2 are in

good agreement with the values given in Ref. [40]. We conclude that Eq. (2.35) is valid and the

critical currents in our FTRs are indeed very high.

The figure of merit for further experiments however is the slope dωr/dΦ at the steepest point of
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Figure 4.10: Comparison of FTRs from Ref [40] with the FTRs characterized in this thesis. All FTRs are fitted

with Eq. (2.35). The agreement between fit and data is excellent for all FTRs. Although the design

and the fabrication the Josephson tunnel junctions fabricated in this thesis and the ones published

in [40] is very similar, the shape of the tuning curves differs strongly. The values of Ic for FTR1 and

FTR3 are two orders of magnitude larger than the ones of Res1 and Res2.

ω0
r /2π (GHz) Ic (µA) Lr (nH) Lloop (pH) αI d(ωr/2π)/dΦ (GHz/Φ0)

FTR1 6.94 88.7 0.7 40 0.15 0.75
FTR3 7.88 153.3 0.72 25 0.03 14.4
Res1 6.20 0.62 2.70 4 0.14 14.3
Res2 7.40 0.42 0.99 21 0.36 5.8

Table 4.9: Overview of the fit parameters for the FTRs shown in Fig. 4.10. ω0
r is a design parameter and was

therefore fixed at the given value. The critical currents obtained for Res1 and Res2 are in good

agreement with the values given in Ref. [40]. The slopes have been evaluated at the steepest point of

each FTR in the depicted frequency range.

the accessible tuning range. We have determined the slopes by calculating the derivatives of the

fits for all FTRs and present the results in Tab. 4.9. We note that Res1 and Res2 have been

evaluated at ωr/2π = 4 GHz. In Ref. [40] it is mentioned that Res1 and Res2 can be tuned to

lower frequencies than depicted in the overview scan, however the continuous measurement data

of Ref. [40] ends at 4 GHz. In Ref. [40] a slope of 60 GHz/Φ0 at 3.3 GHz has been found by

recording the slope in a small frequency range and a small flux range. In such a zoom the slope

can be easily extracted with a linear fit. The reported slope of 60 GHz/Φ0 is a real experimental
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value, however, we can not include the data into the overview in Fig. 4.10 as the datasets are

independent and can not be matched with respect to the magnetic flux.

We can extrapolate the fit in Fig. 4.10 to lower frequencies, but as the minimum of the tuning has

not been determined in Ref. [40], the values of αI and thus the slope at lower frequencies differ

significantly for different start values in the fitting routine. The reported slope of 60 GHz/Φ0 at

3.3 GHz was only reproducible by assuming that αI = 0. In that case the agreement between fit

and data was worse. Therefore we have evaluated the slope at 4 GHz.

Although the relative frequency modulation of FTR3 is small, the slope is comparable to the one of

Res1. The steepest point is at a flux value of 0.494 Φ0 with a slope of dωr/dΦ = 2π ·14.4 GHz/Φ0.

We plug this value into Eq. (2.52) and determine the coupling strength which can be achieved

with this FTR:
g0
2π = 14.4 GHz/Φ0 · 1 mT · β · 15 µm · 43 fm = 2.9 kHz (4.8)

This value is smaller than the maximum coupling strength we estimated in Chap. 2. This is due

to the fact that the slope of the FTR is not as steep as expected and the string is a factor of 4

shorter. The FTRs with longer string-resonators did not show any frequency tuning.

In Sec. 2.7 we have seen that the hybrid system with a string length of l = 60 µm results in an ef-

fective flux change of δΦ = 38 µΦ0 when excited thermally at 100 mK. The short string-resonator

beeing present here, creates less flux modulation and is additionally excited by less phonons

(n̄m ∝ 1/Ωm), resulting in an effective flux change of δΦ = 3.6 µΦ0. Furthermore we have seen in

Sec. 2.7 that the total flux change is distributed over the linewidth of the mechanical resonator.

With the low quality factor of FTR3 reported in Tab. 4.1, the linewidth is broader than the

typically assumed Γm = 10 Hz at mK temperatures and followingly the necessary flux resolution

in units of Φ0/Hz1/2 is very challenging.

To get insight into the flux sensitivity of our SQUID, we analyse how the linewidth of FTR3

depends on the flux-to-frequency transfer function.

In Fig. 4.9 c) and d), we show the magnetic flux dependence of κ and κext for c) the whole

flux range and d) a zoom around the half integer flux quantum. While for κ no significant

flux dependence can be observed, for κext we observe an increase of ∆κext/2π ≈ 300 kHz in the

region where the flux-to-frequency transfer function is maximal.

With this transfer function H we translate the frequency fluctuation δω into a flux fluctuation

δΦ and find:

δΦ = δωr
H

= 300 kHz
14.4 GHz · Φ0 = 20.8 µΦ0 (4.9)

The flux fluctuations which induced the observed linewidth broadening can be considered as

noise background. With the noise being a factor of 3 bigger than the expected signal, a detection

is very challenging. To state whether or not we will be able to detect the flux modulation of

δΦ = 3.6 µΦ0 we would need more information about the spectral composition of the background

noise.

The fact that κext showed an increase in linewidth and κ did not, suggests that the intrinsic

linewidth of the MW resonator is a limitation to the flux sensitivity. In the case of a broad reso-

nance spectrum (as given here), small fluctuations are not visible. This result again emphasises
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the need of high-Q MW resonators.

We summarize the results which we have gained in this section:

• The analysis of the resonance frequencies of FTRs on three different samples has revealed

that the Josephson tunnel junctions are not responsible for the frequency shift (ωr <

ω0
r ). Instead the frequency shift appears most likely due to the geometric inductance

of the SQUID loop. The Josephson inductance in functional flux tunable resonators is

consequently very small, resulting in high critical currents.

• The relative frequency modulation ∆ω/ωr = 0.05 of FTR3 on sample IM5-2 suggests that

Ic > 37.4 µA, which agrees with the results obtained by fitting the shape of the tuning.

• Comparison of our FTRs with the ones published in Ref. [40] has shown that Eq. 2.35 is

valid and that Ic is indeed two orders of magnitudes higher in our samples. A reduction of

the Josephson junction size has not reduced the observable critical current in the FTRs.

The observed Ic is much bigger than typically achieved with Josephson tunnel junctions. We

conlcude that the SQUID is dominated by an additional Josephson inductance introduced

by the thin SQUID arms, acting as a weak link.

In an equivalent circuit diagram the tunnel junction and the weak link junction would

be connected in each SQUID arm in series configuration. Therefore the expected total

inductance would be the sum Ltotal = Ltunnel + Llink or in other words, one would always

expect to observe the junction with the lowest Ic.

Contradictive to this consideration, the measurements of the SQUID inductance have not

shown the existance of a Josephson tunnel inductance. As the functionality of a SQUID is

based on quantum interference, one could assume that the additional Josephson junction

interferes with the others and creates a more complex dependency, which needs to be

solved theoretically in order to understand it properly.

Regarding the weak link, we mention, that the described effects typically appear when the

dimensions of the superconductor are strongly confined to a few nm. Our strings with the

smallest dimension being 80 nm are still rather large. However we assume that at some

point along the string-resonator there might be some defect or impurity which can act as

a spatial or electrical bottleneck.

• Contrary to the observations of high Ic in the MW regime, in a dc-configuration the

observed critical currents are in the order of a few µA and correspond to the expectation

of a normal Josephson tunnel junction.

• The maximum slope of FTR3 is dωr/dΦ = 2π ·14.4 GHz/Φ0 and the corresponding coupling

strength is g0/2π = 2.9 kHz. The effective flux modulation induced by the motion of the

15 µm long string resonator in a thermally excited state is in the order of δΦ = 3.6 µΦ0.

Tunable non-linearity

Another interesting characteristic of a FTR is its non-linearity. In analogy to the non-linearity of

mechanical string-resonators discussed in Sec. 4.1, also a MW resonator shows duffing behaviour
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when excited at high amplitudes, as then higher order terms become relevant. In FTRs this

behaviour is enhanced by the additional non-linear inductance of the SQUIDs. Thus, by analysing

the duffing behaviour, one can draw conclusions about the SQUID parameters.

In Ref. [89] the equation of motion of a duffing FTR has been derived from the Lagrangian

of the MW resonator + SQUID system. In analogy to mechanical resonators we refer to the

parameter in front of the cubic contribution as duffing parameter [89]:

βd = 4π2

3~
C ′

L′
U , (4.10)

with C ′ = Cr + CJJ, 1/L′ = 1/Lr + 1/LJJ and U the Kerr-non-linearity.

In Ref. [89] it has been shown that a small non-linearity corresponds to high critical currents, as

LJJ ∝ 1/Ic.

From the equation of motion one can derive the transcendental equation of the duffing oscillator

[89]. By solving this equation one finds a relation between the maximum amplitude and the

frequency shift (ωeff − ωr):

A2
max = 4C ′

3βd
(ωeff − ωr) , (4.11)

with Amax the maximum amplitude at the cut-off frequency. We note that in an LC-circuit the

physical quantity which is related to the amplitude is the electrical charge or the amount of

current. The resonators are characterized in transmission measurements. When the resonance

condition is met, the resonator absorbs power from the transmission-line and emits power due

to internal and external losses. In a steady state this results in a finite number of electrical

excitations in the resonator given by Eq. (2.13). For the following we consider the absorbed

power Pabs = (1− |S21|2) · Pdrive as the uncalibrated squared amplitude (Pabs ∝ I2).

In order to quantify the duffing behaviour of FTR3 on sample IM5-2 we have performed power

sweeps with drive powers at the sample input ranging from −100 dBm to −70 dBm at the sweet

spot and at three working points with increasing resonator slope. At the sweet spot, no duffing

behaviour was observable in the given power range. At an applied flux of Φext/Φ0 = 0.34 we

observed the onset of the duffing behaviour at the critical drive power of Pc = −75 dBm. With

increasing applied flux, the onset of the duffing shifted to lower drive power as shown in Tab.

4.10.

In Fig 4.11 a) and b) we show the duffing curves at the working points ωr/2π = 7.548 GHz and

ωr/2π = 7.290 GHz for several drive powers.

By plotting the uncalibrated squared amplitude over the frequency shift we can extract the

uncalibrated duffing parameter according to Eq. (4.11) for each working point. The data

including linear fits is shown in Fig. 4.11 c) and d).

At the working points of 7.592 GHz and 7.548 GHz βd is negative, which corresponds to a shift of

ωr towards lower frequencies and a softening of the spring constant in the mechanical analogue.

At the working point of 7.29 GHz however, the duffing behaviour is reversed. We observe a

shift of ωr towards higher frequencies which corresponds to a hardening of the spring constant

and a positive duffing parameter βd. We plot the behaviour of 1/βd over the applied flux in
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ωr
2π (GHz) Φext

Φ0
dωr
dΦ

(
GHz
Φ0

)
d2ωr
dΦ2

(
GHz2

Φ2
0

)
Pc (dBm) 1

βd

7.600 0 0 0 >-70 –
7.592 0.340 -0.1 -1.4 -75 −1.6 · 10−24

7.548 0.450 -1.3 -43 -85 −3.7 · 10−25

7.290 0.497 -9.8 +2264 -97 +3.8 · 10−26

Table 4.10: Analysis of the non-linearity at different working points in the whole tuning range of FTR3. At the

sweetspot no non-linearities have been observed. Application of higher drive powers was not possible

due to heating effects in the cryostat. At the other working points the onset of the non-linear duffing

effect has been observed at the critical drive power Pc. With increasing applied flux the non-linearity

increases and the critical drive power decreases. At the last working point the second derivative and

the non-linearity change sign.
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Figure 4.11: non-linear frequency response of FTR3 for several drive powers at two different working points a)

ωr/2π = 7.548 GHz and b) ωr/2π = 7.290 GHz. Interestingly the change of 1/βd from negative to

positive values results in a flip of the duffing behaviour. In panel c) and d) the uncalibrated squared

amplitude is plotted over the frequency shift for the measurements depicted in a) and b) respectively.

Fig. 4.12 d). For comparison we show the shape of the tuning curve ωr(Φ) as well as the first

derivative dωr/dΦ and the second derivative d2ωr/dΦ2 in Fig. 4.12 c), b) and a) respectively. We

observe that for a flux bias of Φext/Φ0 = 0.5 the value of 1/βd approaches zero and a transition

into the positive regime occurs. Simultaneously the second derivative changes sign from negative
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values to positive values. In order to provide a reliable interpretation of the behaviour, more

measurement data would be necessary. Nevertheless we try to understand the physical concepts.

From a physical point of view we compare the duffing behaviour of mechanical and electrical

resonators. In the case of the mechanical resonator the amplitude corresponds directly to the

displacement of the string and it is evident that strong excitations modify the effective length of

the string and hence increase both, the stress and the restoring force. This results in a hardening

of the spring constant and hence an increase in frequency.

In the case of the electrical LC-resonator, we have stated above that the amplitude corresponds

to the amount of charge or current. For high amplitudes, the capacitors are occupied with many

charges. As the spatial dimensions of our resonators are small, effects of charge accumulations

decrease the restoring force which results in a decrease of the spring constant and hence a

decrease in frequency. The direction of the frequency shift is therefore determined by the

fundamental physics. The experimental observation of a duffing reversal seems contradictive,

however we can understand the behaviour by taking into account the non-linear Josephson

inductance. By embedding a SQUID into the MW resonator we have bound the resonance

frequency to the magnetic flux in the SQUID loop. Now clearly, a change of frequency due to

the duffing effect results in a change of flux in the SQUID loop. The flux tunable resonator

therefore has to perform work against the flux quantization. The higher the slope of the tuning

shape, the less flux dΦ must be generated to perform a frequency shift dω: dω = HdΦ, with H

the frequency-to-flux transfer function. This explains that for zero applied flux where H = 0 the

duffing behaviour is suppressed and with increasing slope the duffing behaviour increases. It

seems physically reasonable that the duffing behaviour flips into the direction where the transfer

function increases. We have indicated the direction of the duffing in Fig. 4.12 with red arrows.

Additionally we mention that the working point which showed a positive duffing parameter is

very close to the minimum of the tuning range. We remind the reader that the non-linearity of

the Josephson inductance is due to the 1/
√

cos2(x) + α2
I sin2(x) term. Thus close to the half

integer flux quantum the sin(x) term dominates the non-linearity instead of the cos(x) term,

which corresponds to a change in parity and could also be a reason for change in duffing.

We summarize the results from the duffing analysis.

Although we applied strong drive powers of −70 dBm, FTR3 showed no non-linear effects over a

broad range of flux bias from the sweet spot to Φext/Φ0 = 0.34.

At this flux bias, the contribution of the non-linear term in the Josephson inductance should

already be significant. As the inductance scales with 1/Ic we conclude that a high critical

current suppresses the non-linearity. This argument also holds for the shape of the frequency-flux

dependence shown in Fig. 4.9.

The observed onset of duffing behaviour in FTR3 at the flux bias of Φext/Φ0 = 0.34 occurs at

a critical drive power of Pc = −75 dBm, which corresponds to an average photon number of

n̄r ≈ 125 000.

We have observed that the non-linearity is in-situ tunable. At flux bias close to Φext/Φ0 = 0.5
the critical photon number is reduced to n̄r ≈ 820.
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Figure 4.12: Duffing behaviour of FTR3 over a broad range of applied magnetic flux. In panels c), b) and a)

we show the the shape of the resonator tuning ωr(Φext), the first derivative dωr/dΦ and the second

derivative d2ωr/dΦ2 respectively. In panel d) we show the inverse duffing parameter 1/βd. For

Φext/Φ0 = 0.5 the value of 1/βd approaches zero. In the measurement the values of 1/βd and

d2ωr/dΦ2 change from the negative into the positive regime which results in a reversal of the duffing

behaviour.
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4.4 Two Tone Spectroscopy

Although the flux modulation induced by the mechanical string-resonator in FTR3 on sample

IM5-2 is probably below the resolution limit, we have applied the technique of two tone spec-

troscopy introduced in Sec. 2.4.2.

Therefore we have tuned FTR3 to the steepest working point at ωr/2π = 7.35 GHz. The setup

includes a VNA and a MW source as depicted in Fig. 3.10 b). From the MW source we apply

a strong drive tone with a given detuning ∆ = ωd − ωr from the cavity resonance. With the

VNA we probe the transmission through the sample. If electromechanical interaction is present

we expect, referring to the theory on two tone spectroscopy introduced in Sec. 2.4.2, a peak

or dip feature in the resonance spectrum of the resonator at a detuning of ∆ = ±Ωm. As the

corresponding effects of EMIT and EMIA are based on interference effects, it depends on the

strength of the drive and the probe power whether one observes a peak or a dip.

When we sweep the drive tone, the feature in the resonator should move as well, preserving the

distance of Ωm between drive tone and feature.

During the measurements we have increased the strength of the drive tone at the sample input to

Pdrive = −78 dBm. The probe tone was at a constant value of Pprobe = −93 dBm. The number

of photons in the resonator is the sum of ndrive and nprobe and depends on the detuning of the

drive tone. Interestingly, even for small detunings, we did not observe duffing behaviour. This

strongly supports the conclusions drawn in Sec. 4.3. The working point at ωr = 7.35 GHz, where

the measurements, presented here, are taken, is the steepest point in the tuning range. The first

derivative takes an extremum and the second derivative is zero. This could be exactly the point

where the duffing behaviour flips and eventually vanishes.

When reducing the detuning to very small values, the resonance spectrum of the FTR suddenly

vanished completely. We concluded that the phonon number reached a critical value. It could

eventually be possible that the current in the resonator exceeded the critical current and the

SQUID switched into the voltage state. In the following we focus on the detuning range around

∆ ≈ ±Ωm and present measurement results.

We started our measurements in the red-sideband regime with ∆ = −Ωm. In this regime the

electromechanical interaction effectively cools the mechanical motion. This reduces the amplitude

of the string-resonator, hence the flux modulation, what makes the detection difficult. We were

not able to observe any interaction on the red-sideband.

On the blue-sideband however, the mechanical motion is amplified by the interaction mechanism

and the flux modulation is increased. In Sec. 4.1 we estimated the mechanical frequency of

the string in FTR3 at mK temperatures to be ΩmK
m /2π = 15.8 MHz. Indeed we have observed

features that could origin from electromechanical interaction at detunings of ∆ = 12.85 MHz
and ∆ = 14 MHz.

At a detuning of ∆ = 12.85 MHz two additional peaks appeared in the resonance spectrum. The

results are depicted in comparison to the expectation from theory in Fig. 4.13.

The observed peaks did not occur reproducibly at a constant frequency instead they appeared
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randomly inside the resonance spectrum. When moving the drive tone, the peaks did not show

a clear dependence on the detuning. When reducing the detuning to values ∆ < Ωm, where no

electromechanical interaction should be present, more of these features appeared in the spectrum.

The theory plot corresponds to Eq. (2.47) with the actual parameters of FTR3: κ/2π = 4 MHz,

κext/2π = 0.5 MHz, ωr/2π = 7.3533 MHz, g0/2π = 2.9 kHz. We assume ΓmK
m /2π = 200 Hz and

∆ = ΩmK
m + 360 kHz which results in a small displacement of the peak from the centre of the

resonance dip.
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Figure 4.13: Comparison between theory in panel a) and experiment in panel b) of the power transmission

spectrum of FTR3 in the presence of a strong drive tone at a detuning of ∆ = 12.85 MHz. The

experimentally observed peaks were not reproducible at the shown positions and did not shift through

the resonance dip when the drive tone was swept.

Comparing the experiment to the theory, we see, that the theoretically predicted shape of the

peak resembles the observed experimental result. In the experiment we observe two peaks which

can be attributed to the fact that the in-plane and the out-of-plane mode of the mechanical

string-resonator vibrate at slightly different frequencies. Due to the fact that the peaks did not

76



4.4 Two Tone Spectroscopy

appear reproducibly at a given position, defined by ∆, and that they did not move with ∆, we

can not conclude that the observation corresponds to the electromechanical interaction.

Furthermore we show in Fig. 4.14 frequency sweeps of the drive tone around the perfect detuning.

In panel a) the experimental result, in panel b) the prediction from theory is shown.

The power transmission spectrum has been recorded with 10 times higher frequency resolution

than the measurement shown in Fig. 4.13, resulting in measurement times of 100s per drive

frequency. Surprisingly in this measurement the resonance dip shows a strong increase in

linewidth to κ ≈ 8 MHz compared to measurement above where κ ≈ 4 MHz has been observed.

However, the shape of the resonance is still symmetric and duffing behaviour is not present.

In a small region between ∆ = 13.75 MHz and ∆ = 14.1 MHz, the depth of the resonance dip

increases and the linewidth decreases. This behaviour could correspond to the phenomenon of

electromechanically induced absorption explained in Sec. 2.4.2. In Fig. 4.14 each cut along the

vertical axis corresponds to a power spectrum as depicted in Fig. 4.13. When moving the drive

tone, we expect that the dip feature moves through the resonance as shown in Fig. 4.14 b).

The theory plot corresponds to Eq. (2.47) where both, ωdrive and ωprobe were swept, resulting

in the 2D-plot. The parameters correspond to the actual parameters of FTR3: κ/2π = 4 MHz,

κext/2π = 0.5 MHz, ωr/2π = 7.3533 MHz, g0/2π = 2.9 kHz. We assume ΓmK
m /2π = 200 Hz and

ΩmK
m = 13.5 MHz.

Comparing theory and experiment one sees, that the dip-feature which we observed, did not

move through the resonance and is much broader than expected. The broadness of the observed

feature would suggest a high coupling strength, however in that case we would expect a splitting

of the resonator mode as shown in Fig. 2.12 b). Analogously to the measurement shown above,

here as well we can not conclude that the observed feature is due to electromechanical interaction.

Due to the fact that the feature did not move with the drive tone, and that we do not observe

a splitting of the resonator mode, experiment and theory can not be matched. It is especially

difficult to find appropriate parameters which could reproduce the experimental result.

We summarize that the observation of electromechanic interaction remains challenging. Although

the data suggests that there is some interaction, the shown measurements are not reproducible

and we are not able to quantify the interaction.
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Figure 4.14: Comparison between theory and experiment of the power transmission spectrum of FTR3 in the

presence of a strong drive tone. Experimental data is depicted in panel a), theory in panel b)

The drive tone is swept in a range of 2 MHz around the perfect detuning ∆ = ΩmK
m . In a small

region between ∆ = 13.75 MHz and ∆ = 14.1 MHz the depth of the resonance dip increases and the

linewidth decreases. The shown behaviour was not reproducible.
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Chapter 5

Summary and Outlook

In this thesis we have investigated the fundamental light-matter interaction between the mechan-

ical motion of a string-resonator and a superconducting flux tunable MW resonator. The nature

of the interaction mechanism is inductive. It is enabled in an electromechanical hybrid device

consisting of a high quality MW resonator with an embedded dc-SQUID and an ultra high quality

double clamped aluminium string-resonator, where the displacement of the string-resonator

couples to the MW resonator by changing the area of the SQUID loop. We were able to fabricate

a fully functional device. We characterized all components experimentally and determined the

expected coupling strength according to the theory derived in Chapter 2. Further we applied

the method of two tone spectroscopy which aims to quantify the electromechanical interaction.

First experimental results suggest that electromechanical interaction could be present in our

sample, however the results were not reproducible and a quantification of the coupling strength

is still pending.

In the theoretical part of this thesis we gained, compared to previous work, deeper insight

into the magnetic field dependence of FTRs and we were able to explain the experimentally

observed behaviour with these new results. We calculated and compared the coupling strength

for embedded string resonators and magnetic force microscopy cantilevers. We discussed the

parameter space to optimize the coupling strength and fabricated hybrid devices accordingly. We

analysed different types of noise sources being present in our setup, compared the magnetic flux

sensitivity to state of the art devices reported in literature and finally proposed an experimental

method to determine the noise floor in single-tone measurements using the frequency-noise

calibration technique. Precise knowledge about the noise floor is especially important for further

experiments to determine whether the restrictions in sensitivity are due to imprecision- or

backaction noise.

In the experimental part we presented a procedure to fabricate the hybrid device based on

an all-aluminium process. Compared to previous work, where niobium MW resonators have

been used, the fabrication process has been simplified and we avoided lossy Al-Nb interfaces.

Furthermore we showed successful release of the mechanical system using an isotropic etching

process which avoids high acceleration voltages and reduces the risk of destroying the Josephson

junctions. As the final device was fully functional, we proved that the individual fabrication
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steps are not in conflict with each other.

Additionally we precharacterized mechanical string-resonators with an optical interferometer at

room temperature. The best resonators have quality factors of 10 000. From results presented in

previous work we expect that they increase when cooling the sample to mK temperatures. We

calibrated the amplitude of the mechanical motion by analysing the duffing behaviour. We found

that by using a piezo actuator the string-resonator can be excited to displacements of 2 nm,

which corresponds to 40 000 zero point fluctuations. For future experiments we therefore propose

to mount the sample on top of a piezo actuator, which allows excitation of higher amplitudes of

the mechanical motion resulting in larger flux changes.

In dc-measurements we characterized the fabricated SQUIDs and successfully reduced the critical

current of the Josephson junctions from 4 µA to 1 µA. The dc-measurements have shown that

the important parameters of the SQUIDs i.e. βL and αI are low and the SQUID therefore should

be well suited for an integration into MW resonators resulting in high tunability.

The analysis of superconducting MW resonators by power transmission spectroscopy showed

that we can tailor the resonance frequencies without applying extensive numerical simulations

and we found out that the best fabricated MW resonators have quality factors of 10 000. For all

combinations of mechanical string-resonators and MW resonators with different frequencies the

resolved sideband condition (Ωm > κ) was easily met.

Measurements of MW resonators with embedded SQUIDs however revealed unexpected results.

First of all the yield of working FTRs was low. On the final device only the FTR with thickest

and shortest SQUID loop wires was flux tunable. Additionally the experimentally observed

flux dependence of working FTRs did not match the SQUID parameters obtained in the dc-

measurement. The shape as well as the modulation depth of the observed curve was characteristic

for small Josephson inductances, i.e. large critical currents. Analysis of the non-linearity of an

FTR and comparison of the SQUID inductance on different samples has revealed the same result.

We have demonstrated that our theoretic model is correct by applying it to data published in

previous work [40] and concluded that the thin string-resonators with dimensions well below the

coherence length of superconducting aluminium act as a weak link between MW resonator and

ground plane. In literature [84–87] it has been shown that such a weak link can act as Josephson

junction and we therefore discussed the possibility that it interferes with the tunnel junctions

and possibly dominates the system.

For further sample generations we propose to increase the width of the string-resonators to

200 nm. Although this implies an increase of the mass, hence a decrease of the zero point

fluctuation and the vacuum coupling strength, we consider it as the necessary step to maintain

the flux tunability of FTRs. Despite the small tuning range of the operational FTR on the

final device, it yielded a steep resonator slope of dωr/dΦ = 14.4 GHz/Φ0. Together with the

results from the characterizations of the individual components we calculated the expected

coupling strength for the functional device g0/2π = 2.9 kHz (dωr/dΦ = 14.4 GHz/Φ0, Bz = 1 mT,

l = 15 µm, xzpf = 43 fm).

By performing two-tone spectroscopy we aimed to demonstrate that electromechanical interaction

is present in our sample. On the blue sideband, where the mechanical motion is amplified by the

drive tone, we observed peak like features in the power transmission spectrum of the FTR which

are comparable to the theoretic expectation. However they did not occur reproducibly at the
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same frequency and did not move with the detuning of the drive tone as expected. Furthermore

we performed a frequency sweep of the drive tone in a range of 2 MHz around the perfect

detuning and observed an increase in depth and an decrease in linewidth of the resonance dip in

the power transmission spectrum of the FTR which could correspond to the phenomenon called

”EMIA”. The feature occurred at ∆ ≈ 13.8 MHz, where we expected the mechanical resonance.

However the feature did not move through the resonance dip of the FTR and was broader than

expected. Additionally it was not reproducible in the available measurement time. We sum up

that although the measurement data suggests that an electromechanical interaction is present in

our sample, reproducible measurements are still pending.

Nevertheless we are confident that with the achievements made in this thesis, strong induc-

tive coupling between flux tunable MW resonators and mechanical string-resonators can be

demonstrated with the next generations of samples. As the coupling strength and hence the

mechanically induced flux modulation scales with the externally applied magnetic field we suggest

for further experiments to change from the out-of-plane direction to the in-plane direction of

the SQUID loop. Thus, one can circumvent the limitation of the low critical field of thin film

aluminium and increase the fundamental coupling strength as well as the magnetic flux modula-

tion. This will bring along a significant simplification of detection and softens the demanding

requirements regarding the flux resolution of the SQUID.

The resulting hybrid device will be usable with outstanding versatility. Due to the switchability

of the coupling strength, the coupled string resonator is a candidate for quantum information

processing. By switching the coupling off after the state transfer, the quantum mechanical state

can exhibit long coherence times due to the high quality of the mechanical motion. Furthermore

the device could act as a sensor for vibration in new experimental setups at the frontier of

testing the quantum nature of macroscopic objects [9]. It could possibly reach the sensitivity of a

quantum limited detector (S
1/2
xx = 20 fm/Hz1/2) [60]. The device is small enough to be integrated

directly into the sample chamber of experiments and would allow an in-situ observation of

vibrations at the sample position.
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Appendix

Standard Fabrication Procedure

Cleaning of new Si wafers

Commercial 6× 10 mm2 Si wafers are coated with a protective layer which has to be removed.

1. Clean the silicon chip twice with aceton at 70 ◦C in an ultrasonic bath (Martin Walther

Ultraschalltechnik: Powersonic) at level 9 for 2 minutes.

2. Rinse the silicon chip with isopropanol

3. Dry the silicon chip with the nitrogen pistol

Gold Deposition

Photoresist spin coating

1. Prebake the silicon chip at 200 ◦C

2. Clean surface with the nitrogen pistol

3. Deposit two drops of photoresist (AR-P 617.08) from a disposable pipette

4. Run process #10 (2min at 2000rpm) at the spin coater

5. Bake for 10 minutes at 160 ◦C

Electron beam lithography

We write the pattern into the photoresist using the NanoBeam Limited nB5 Electron Beam

Lithography System. The sample is mounted into the sample holder, then the system is controlled

remotely with the control software. The layout is defined in a patternfile the exposure dose is

defined in a job file. Multiple layers with different exposure doses can be written in one run. For

alignment markers and contact pads we use a dose of 6.50.

Please note that one can also control the current of the electron beam by choosing the appropriate
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database. Small beam current has better resolution but is slower. For the alignment markers

and contact pads we use 10 nA

Development of photresist

After exposure to the electron beam the photoresist is developed in Allresist Ar600-56.

1. 60 s in Ar600-56

2. 120 s in isopropanol at room temperature

3. stop development by rinsing with H2O

4. dry sample with nitrogen pistol

Evaporation

For evaporation of gold the sample with the evaporation mask on top is mounted into the sample

holder. The sample holder is brought into the evaporation chamber. The following parameters

are used for evaporation:

1. 4 nm titanium as surfacer at a rate of 1 Å/s without tilt

2. 26 nm gold at a rate of 1 Å/s without tilt

Lift-Off

After evaporation the mask and the excess material needs to be removed. Therefore the

photoresist is dissolved in aceton at 70 ◦C. After 15 min we use a disposable pipette to create

flux. The excess material detaches from the sample together with the photoresist.

Aluminium Deposition

Photoresist spin coating

For the aluminium structures we need a double layer resist:

1. Prebake the silicon chip at 200 ◦C

2. Clean surface with the nitrogen pistol

3. Deposit two drops of photoresist (AR-P 617.08) from a disposable pipette

4. Run process #10 (2min at 2000rpm) at the spin coater

5. Bake for 10 minutes at 160 ◦C

6. Clean surface with the nitrogen pistol

7. Deposit two drops of photoresist (AR-P 679.02) from a disposable pipette
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8. Run process #10 (2min at 2000rpm) at the spin coater

9. Bake for 10 minutes at 160 ◦C

Electron beam lithography

In the following we give the parameters of the aluminium structures:

1. Transmission line, MW resonators, ground plane and antennas

dose = 4.95

2. SQUID structure without SQUID arms

dose = 7.50

3. Undercut for Josephson Junctions

dose = 1.50

4. Nanomechanical beams including SQUID arms

dose = 9.00

We use a small beam current of ≈ 2 nA for josephson junctions and nanomechanical beams and

≈ 10 nA for the transmission line, MW resonators, ground plane and antennas.

Development of photresist

After exposure to the electron beam the double layer photoresist is developed in Allresist

Ar600-56.

1. 45 s in Ar600-56

2. 120 s in isopropanol at 4 ◦C

3. stop development by rinsing with H2O

4. dry sample with nitrogen pistol

Evaporation

1. 40 nm aluminium at a rate of 10 Å/s under a tilt of +17◦

2. oxidation for 3000 s at valve position 45% and a flow of 5 sccm

3. 70 nm aluminium at a rate of 10 Å/s under a tilt of −17◦

Lift-Off

After evaporation the mask and the excess material needs to be removed. Therefore the

photoresist is dissolved in aceton at 70 ◦C. After 15 min we use a disposable pipette to create

flux. The excess material detaches from the sample together with the photoresist.
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Annealing

To create tensile stress in the mechanical string-resonators the aluminium layer is annealed in

an oven at 350 ◦C for 30 min in vacuum.

Etching process to release the mechanical string-resonators

To release the mechanical string-resonators the sample which is coated by a mask patterned with

etching windows is brought into the etching chamber of the reactive ion etching system Oxford

Instruments Plasmalab 80 Plus (RIE). The sample is etched isotropically with the following

parameters:

time 50 min
SF6 gas flow 50 sccm
chamber pressure 50 mTorr
strike pressure 60 mTorr
DC bias minimum 10 kV

ramp rate 5 V

RF generator forward power 5 W
ICP forward power 0 W

Critical point drying after release of the mechanical string-resonators

After removal of the photresist which has protected the sample during the etching process the

sample is dried in the critical point dryer (Leica EM CPD300). Following parameters are used:

CO2IN Exchange Gas OUT

Stirring Speed Delay Speed Cycles Heat Speed

off slow 120 s 1 25 slow slow 100%
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Internal and External Quality-Factors of All MW Resonators

MWR1 FTR1 FTR2 FTR3 FTR4 MWR2
ωr/2π (GHz)

IM2-4 5.397 6.547 - 7.908 6.581 7.849
IM2-3 5.415 6.545 7.206 7.915 6.528 7.844
IM5-2 3.995 6.750 7.060 7.600 6.405 7.850

Q/1000
IM2-4 5.44 3.19 - 3.21 2.06 4.92
IM2-3 10.99 10.31 2.33 2.52 3.57 4.31
IM5-2 2.10 4.43 3.64 1.9 2.52 1.65

Qint/1000
IM2-4 12.74 9.72 - 14.43 4.81 8.20
IM2-3 15.70 52.7 5.57 2.84 12.63 15.14
IM5-2 3.59 7.01 4.60 2.11 2.99 1.94

Qext/1000
IM2-4 9.50 4.74 - 4.14 3.61 12.32
IM2-3 36.75 12.81 4.01 22.68 4.99 6.01
IM5-2 5.01 12.07 17.48 12.66 16.27 12.31

κ/2π (MHz)

IM2-4 0.99 2.05 - 2.46 3.19 1.59
IM2-3 0.49 0.63 3.09 3.14 1.82 1.82
IM5-2 1.90 1.52 1.94 4.00 2.54 4.76

κint/2π (MHz)

IM2-4 0.42 0.67 - 0.55 1.37 0.96
IM2-3 0.35 0.12 1.29 2.79 0.52 0.52
IM5-2 1.11 0.96 1.53 3.60 2.14 4.04

κext/2π (MHz)

IM2-4 0.57 1.38 - 1.91 1.82 0.64
IM2-3 0.15 0.51 1.79 0.35 1.31 1.31
IM5-2 0.79 0.56 0.40 0.60 0.39 0.64

Table A.1: Internal, external and total quality factors and linewidths of all measured resonators on three different

samples.
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