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Chapter 1

Introduction

Over the last decades, a broad variety of controllable quantum systems was established ranging
from single atoms [1, 2] and ensembles of atoms [3, 4] over macroscopic systems like supercon-
ducting qubits [5, 6] and mechanical oscillators [7, 8, 9] to large-scale detectors like LIGO [10].
Each platform offers unique advantages. For example, single nuclear spins in solids can exhibit
hour-long coherence times [11], superconducting qubits are a promising candidate for scaling the
number of interacting quantum systems [12, 13] and rare-earth dopants in solids emit photons in
the telecommunication band where fiber losses are minimal [14, 15]. Therefore, combinations of
different quantum systems promise exciting physics which pave the way for future applications
in quantum computing, simulation and sensing. A few years ago, a physical system known
since the late 1800s [16] and widely used in electronic devices as filters since the 1960s [17, 18]
experienced its “quantum” renaissance [19]: surface acoustic waves (SAWs). These acoustic waves
propagate along the surface of a solid and can be created in a controlled way on piezoelectric
substrates. As opposed to other mechanical systems like nanobeams, levitating spheres [20] and
mechanical drums [21], SAWs are not stationary but travel with the speed of sound on the
order of a few kilometers per second. Therefore, spatially separated quantum systems can be
coupled with SAWs. Due to the inherent coupling of mechanical motion to electromagnetic fields
provided by the piezoelectric substrate, SAW-based systems are ideally suited to interface the
research fields of acoustics and electrodynamics. Analogously to the field of circuit quantum
electrodynamics (cQED) [22, 23, 24], where superconducting qubits are coupled with microwaves,
circuit quantum acoustodynamics (cQAD) [25, 26, 27, 28, 29, 30] was born exploiting SAWs
instead of photons as information carriers. As the propagation velocity (O

(
103 m/s

)
) is around

five orders of magnitude lower than the speed of light (O
(
108 m/s

)
), this coupling allows for

the investigation of new physical regimes inaccessible by conventional coupling via photons. For
instance, quantum systems can be manipulated during the propagation of the SAW, enabling
quantum shift registers. As the wavelength of SAWs for GHz-frequencies is in the sub-micron
range, giant artifical atoms - where the atom dimensions are much larger than the wavelength of
the emitted excitation carrier - can be realized [31, 32, 33], opening the door to non-Markovian
quantum experiments [34].

In this thesis, we tackle the challenge of on-chip coupling of superconducting qubits to surface
acoustic wave devices. A piezoelectric substrate is essential for the creation of SAWs, but forms
a strong loss channel for qubits and superconducting circuits as the electromagnetic energy in
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the quantum system can be spontaneously converted to mechanical strain. Therefore, cQAD
experiments use weak piezoelectric materials [27, 29] or flip chip settings to combine a low-loss
qubit substrate and piezoelectric SAW substrate [28, 30]. These solutions have limitations in
qubit coherence and scalability, respectively. Our ansatz to cQAD is to realize an on-chip consoli-
dation of a low-loss substrate for superconducting qubits and microwave resonators and strong
piezoelectric materials with maximum electromagnetic-to-mechanical conversion for the efficient
generation and readout of SAWs. To this end, we choose to investigate a multi-layer system
comprised of thin-film lithium niobate on silicon. Lithium niobate (LNO) is a well established
bulk material, has a strong piezoelectric coupling [18] and is also used in the optics community as
material for photonic waveguides [35, 36]. Special wafer orientations, such as the used 128◦-Y-X
cut, have been found to exhibit high SAW generation [37]. On the other hand, silicon is a
well-known substrate for microwave as well as CMOS technology and is a standard substrate
used for cQED experiments.
We start with a basic survey of piezoelectricity, surface acoustic waves and the physics of coupled
quantum systems in the form of qubits and quantum harmonic oscillators. Subsequently, the
concepts, designs and fabrication of the three implemented systems - superconducting qubits,
superconducting microwave resonators and SAW resonators - are discussed.
We design, fabricate and measure samples for cQED and SAW experiments respectively, inves-
tigating a newly introduced fabrication process for superconducting qubits and the acoustic
properties of a lithium niobate thin-film.
Lastly, we conclude the thesis with a brief summary and an outlook on future work in order to
realize the combination of cQED and SAW devices on a single chip.



Chapter 2

Theoretical Concepts

The realization of circuit quantum acoustodynamic (cQAD) experiments requires the coupling
of circuit quantum electrodynamics (cQED) elements such as superconducting qubits and
superconducting resonators with acoustic resonators. In this field of physics, electromagnetic
waves are coupled with acoustic waves, which can be elegantly accomplished using the concept of
piezoelectricity (see sec. 2.1), which appropriately desigend allows to excite surface acoustic waves
(see sec. 2.2). In sec. 2.3, we will give a brief overview of the physics describing the interaction of
a coupled qubit and resonator. We introduce the Jaynes-Cummings model, which describes the
interaction of a qubit with a single mode of a resonator [23].After the introduction of the model,
we will discuss three specific quantum systems used in the context of quantum acoustic devices:
(i) superconducting transmon qubits (sec. 2.4), (ii) superconducting microwave resonators (sec.
2.5) and (iii) surface acoustic wave resonators (sec. 2.6). While (i) & (ii) are established building
blocks for superconducting quantum circuits [12, 38, 39], surface acoustic wave resonators have
predominantly been studied in the context of delay lines and bandpass frequency filters [40]. More
recently, a new interest in surface acoustic wave devices has evolved for their use in quantum
acoustodynamics, where they are used as phonon based components integrated into quantum
circuits [30, 25]. Therefore, we will present a short overview concerning superconducting qubits
and resonators and a more comprehensive description of surface acoustic wave devices.

2.1 Strain and Stress in Solids

For cQAD experiments, surface acoustic waves (SAWs) on piezoelectric materials are used as
information carrier between superconducting qubits. These waves travel along the surface of a
solid and, in contrast to bulk acoustic waves, penetrate into the solid only on the order of a
wavelength. While piezoelectric substrates are more relevant in experiments, analytic solutions
for SAWs are often only available for isotropic materials. Hence, we start with a brief introduction
of strain and stress in isotropic materials (sec. 2.1.1). The obtained equations of motion for the
lattice atoms can be used to derive surface acoustic wave solutions. Subsequently, we introduce
the concept of piezoelectricy and modify the equations of motion for piezoelectric materials (sec.
2.1.2). In this section, we closely follow the treatment of SAWs in Chapter 2 of Ref. [18].

2.1.1 Isotropic Materials

Forces acting on a rigid crystal cause the crystal atoms to be displaced from their equilibrium
position. Typically these forces are expressed in terms of stress T and the distortion of the atoms
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as strain S. For an atom with equilibrium position (x1, x2, x3) displaced by (u1, u2, u3), the
strain is a second order tensor defined as

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
i, j = 1,2,3. (2.1)

This definition guarantees that translational and rotational movements of the crystal as a whole
lead to no strain. The tensor is symmetric, meaning Sij = Sji.
The stress Tij is defined as the force per unit area exerted along xi acting on a surface with
normal vector xj [41]. To prevent any rotational moment caused by stresses, it can be shown
that the stress tensor also is symmetrical, i.e. Tij = Tji. Stress can either be applied from the
outside or caused by internal strains. In the linear response regime, the relation between stress
and strain is linear and the stiffness tensor cijkl is defined by

Tij =
∑

k

∑
l
cijklSkl i, j, k, l = 1,2,3. (2.2)

The stiffness tensor generally has 36 independent variables of the 81 total elements due to the
symmetry relations of Tij and Sij. Furthermore, it can be shown that the first and second pair of
indices of the stiffness tensor can be interchanged, i.e. cijkl = cklij, leaving only 21 independent
entries.
Using Newton’s second law, the equation of motion (EOM) for atoms around their equilibrium
position is

ρ
∂2ui
∂t2

=
∑

j

∂Tij
∂xj

, (2.3)

where ρ is the material mass density and i, j = 1,2,3.

2.1.2 Piezoelectric Materials

Piezoelectricity is the property of some anisotropic materials to produce electric fields when
exposed to elastic stress and vice versa. This can happen due to the lack of a symmetry center in
the materials. Fig. 2.1 shows a simple structure of ions without an inversion center. In equilibrium,
the center of both charge types are identical and there is no polarization (panel a)). However,
an applied force (panel b)) shifts ions by a displacement u and consequently the charge centers
relative to each other. Note, that the displacement is different for each ion as illustrated in fig.
2.1b), where ions of the same kind undergo different displacements from their equilibrium state
(dashed circles). This creates a finite polarization P and therefore an electric displacement D.
The total electric displacement inside the material is then given by the electric field ~E and the
piezoelectric contribution due to the strain and can be expressed as [41]

Di =
∑

j
εSijEj +

∑
j

∑
k
eijkSjk, (2.4)

where εSij is the electrical permittivity tensor for constant strain. The piezoelectric tensor eijk
connects electric and elastic fields and is symmetric in the last two indices eijk = eikj due to the
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Figure 2.1: Illustration of the ion arrangement in a piezoelectric material. a) Equilibrium state with
aligning charge centers. b) Force is applied along a polar axis compressing the cell. The
following displacement of the ions leads to a relative shift of the charge centers and creates a
finite polarization. The inverse effect with an applied electric field creates a contraction or
elongation of the cell due to different displacement directions of the differently charged ions.

symmetry of Sij.

For the inverse piezoelectric effect, an electric field E is applied leading to an electric dis-
placement Di = εijEj. The electric displacement favors a different motional displacement for the
charged ions which leads to a contraction or elongation of the crystal along the axis of the applied
field. Usually, this contribution is denoted as an additional term in the stress of the material by

Tij =
∑

k

∑
l
cE

ijklSkl −
∑

k
ekijEk. (2.5)

Similarly to above, the superscript in cE
ijkl denotes a constant electric field. Usually, the quasi-static

approximation is used to express electrical fields by a potential Φ [18]

Ei = − ∂Φ
∂xi

. (2.6)

This approximation is legitimate as phonons propagate with the speed of sound (≈ 1× 103 m/s)
while electromagnetic fields propagate as electromagnetic waves with a reduced speed of light in
the material (c ≈ 1× 108 m/s).
These more complex relations also lead to a modification of the EOM. Assuming the piezoelectric
material to be an insulator (div ~D = 0), one can obtain the following relations [18]:

ρ
∂2ui
∂t2

=
∑

j

∑
k

[
ekij

∂2Φ
∂xj∂xk

+
∑

l
cEijkl

∂2uk
∂xj∂xl

]
, (2.7)

0 =
∑

i

∑
j

[
εSij

∂2Φ
∂xi∂xj

−
∑

k
eijk

∂2uj
∂xi∂xk

]
. (2.8)

Eq. 2.7 is a modified version of eq. 2.3 with an additional contribution of the piezoelectric tensor
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ekij. Spatial variations of the electric potential Φ induce an additional acceleration of the lattice
atoms. Eq. 2.8 is a consequence of the assumption of an insulating material (div ~D = 0) and
eq. 2.4. As there are no free charges, variations in the electric field can only be induced by the
displacement of lattice atoms in the piezoelectric material and the consequent effective electric
displacement. Eqs. 2.7 and 2.8 give four relations between the lattice displacement ui and the
electric potential Φ [18]. With appropriate boundary conditions, this gives a distinct solution for
Φ and (u1,u2,u3), however these equations have to be evaluated numerically in most piezoelectric
cases [18].
A very important measure for the strength of a piezoelectric material is the piezoelectric coupling
coefficient K2 [42]

K2 = e2
33

εS33c
E
33
. (2.9)

The coupling coefficient quantifies the efficiency with which mechanical strain is converted to
electric fields and vice versa. K2 is calculated by the piezoelectric, permittivity and stiffness tensor
values along the surface normal and is therefore strongly dependent on the crystal orientation.

2.2 Surface Acoustic Waves

Surface accoustic waves (SAWs) are mechanical confined to an interface, i.e. the surface of a
substrate. Their penetration depth into the substrate is on the order of one wavelength. The
phenomenon was first reported by Lord Rayleigh in 1885 [16]. The surface acoustic wave solution
that he discovered is therefore also known as the Rayleigh wave. Since the EOM for piezoelectric
materials are usually not analytically solvable [43, 18], we will discuss the analytic solution for
SAWs on isotropic (i.e. non-piezoelectric) materials to get an understanding of the fundamental
principles in a simple picture. A short qualitative description of SAWs in anisotropic materials
will be given afterward.

2.2.1 SAWs in Isotropic Materials

Figure 2.2a) shows a bulk crystal on which SAWs propagate as indicated by lattice displacements.
We define a coordinate system with x1 being the propagation direction and x3 the surface normal.
With this definition, the Rayleigh wave is uniform along x2, and the displacement only takes
place in the sagittal plane spanned by x1 and x3. The Rayleigh wave is the solution of eq. 2.3 for
an infinite half-space, meaning the isotropic material expands infinitely in x1 and x2, and into
the negative x3 direction. For x3 > 0, we assume vacuum. This leads to the boundary conditions
T13 = T23 = T33 = 0 at x3 = 0 since there can be no stress at the free surface of the substrate
[43, 18, 45]. To solve eq. 2.3 with these boundary conditions, the Rayleigh wave is constructed
out of two partial waves [18], a plane longitudinal wave with phase velocity vl and a plane shear
wave (w.r.t. the sagittal plane) with vt. The respective strains S11, S33 and S13 are illustrated, all
displacements decay in the negative x3 direction. This is a necessary condition for a confinement
confinement to the surface. Therefore, it can be shown that the phase velocity of the Rayleigh
wave vR has to obey [18]

vR < vt. (2.10)
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Figure 2.2: a) Schematic representation of a Rayleigh wave. Rayleigh waves propagate along x1 and have
no deflection along x2, the movement is confined in the sagittal plane spanned by x1 and x3.
The strain S11 and S33 parallel/orthogonal to the wave vector ~kSAW decays in negative x3

direction. Positive and negative strain of the shear vertical strain S13 is illustrated in blue and
red. Figure adapted from [44]. b) Displacement of particles for a Rayleigh wave in dependence
of the depth in fused quartz with vl/vt ≈ 1.48. u1 and u3 have a 90◦ phase shift leading to an
elliptical movement. See text for further explanation. Figure adapted from [18].

Note, that this implies vR < vl since vt < vl. This gives an upper bound for the speed of Rayleigh
waves depending on the material. vR can be shown to be the solution of [18]

(
2− v2

v2
t

)2
= 4

√
1− v2

v2
t

√
1− v2

v2
l
. (2.11)

There is only one real-valued solution fulfilling v2 < v2
t . With the now known vR, it is possible to

calculate the displacements of the material as a function of the depth −x3 [18]. Fig. 2.2b) shows
the displacement amplitudes u1 and u3 depending on the depth in the substrate −x3 which is
normalized by the Rayleigh wavelength λR = 2πvR/ω, where ω is the angular frequency of the
propagating wave. Exemplarily, at each given depth −x3 and a fixed position x1 the lattice atoms
perform a motion given by

~u = Re
[
(u1~x1 + iu3~x3)eiωt

]
. (2.12)

The phase shift of 90◦ between u1 and u3 leads to an elliptical motion. At −x3 ≈ 0.2λR, the sign
of u1 and therefore also the direction of rotation changes. Both motions decay quickly within one
wavelength.
The exact displacements at a fixed moment in time are visualized in fig. 2.3. The dots indicate
particles in equilibrium while the lines show the displacement when subjected to a Rayleigh wave
for a fixed moment in time. Following a line of particles downwards into the substrate, the decay
of the motional amplitude is clearly visible. A picture of particle motion in time can be obtained
by following a line of particles horizontally in opposite direction of the propagation1. The motion
close to the surface is retrograde while the motion deeper in the substrate is prograde.

1The rotation takes place following ~u ∝ exp[k(x1 − vRt)], so moving backwards in space gives the same picture
as moving forwards in time.
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Displaced
surface

λR

λR

Propagation
direction

Particle
trajectory

Particle
trajectory

Figure 2.4 Instantaneous displacements for Rayleigh-wave propagation in isotropic material.Figure 2.3: Displacements of particels (dots) subjected to a Rayleigh wave at a given moment in time.
The rotation is retrograde at the surface and prograde deeper down in the substrate. Figure
from [18].

2.2.2 SAWs in Piezoelectric Materials

Surface wave solutions of equations 2.7 and 2.8 are generally complicated and require numerical
calculations. In most cases, there are one or more SAW solutions for piezoelectric materials
[18], however we are interested in the piezoelectric Rayleigh wave. It is a modified version of the
isotropic Rayleigh wave with respect to anisotropy and piezoelectricity. A crucial feature of SAWs
in piezoelectric materials is the different phase velocity depending on whether the substrate is
metallized or not. For metallized surfaces, the parallel electric field component E1 has to be
zero while this does not have to be the case for non-metallized substrates. For a piezoelectrically
coupled SAW, the free-space phase velocity vf is always larger than the metallized velocity vm
[18]. These phase velocities lead to an alternative definiton of the electromechanical coupling
coefficient2

K2 = 2vf − vm
vf

= 2∆v
v
. (2.13)

As for the isotropic case, the phase velocity of the Rayleigh wave must be smaller than the slowest
of the partial waves contributing to the Rayleigh wave. Furthermore, the crystal displacement
is bound to the sagittal plane. In the piezoelectric case, the wave is not strictly bound to the
sagittal plane which allows a composition of all three plane wave types of an infinite material:
longitudinal, fast shear and slow shear waves. However, the Rayleigh phase velocity is still bound
by the lowest velocity of the contributing plane waves. For the piezoelectric Rayleigh wave
solution, the displacement vector ~u is (at least almost) parallel to the sagittal plane.

2Note that this is the definition used in most of the literature, however Ref. [18] defines K2 without the factor of
2.
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a) b)

Figure 2.4: Phase velocity of SAW modes plotted against a) frequency f and b) kh with h being the
LNO film thickness. In addition to the discussed first order Rayleigh mode, Sezewa and higher
Rayleigh modes are shown. Figure taken from [46].

2.2.3 SAWs in Thin-Film Piezoelectric Materials

When investigating a stack of (piezoelectric) thin-film substrate layers on a bulk material, the
solutions for SAWs can become more complex. Since SAWs decay on the order of a wavelength
into the substrate, different scenarios can be observed. The SAW can be hosted either just in
the top thin-film layer for very short wavelengths or all material layers of the stack for very
long wavelengths. While the former case is quite similar to the discussion of a bulk piezoelectric
substrate, the latter case leads to a more complex SAW behavior as the sound velocities of the
layers involved in the propagation of the SAWS can differ. This results in a wavelength- and
therefore also frequency-dependent phase velocity of the SAW. In the experiments discussed in
sec. 5.2, we use a stack of (100)-silicon (350µm), silicon oxide (2µm) and 128◦Y-X cut lithium
niobate (500nm). Hence, we need to discuss the properties of the SAWs in ths more complex
arrangement. Fig. 2.4 shows a simulation of the SAW velocities for this stack. In panel a), the
phase velocities of different SAW solutions, including Rayleigh waves and other higher mode
solutions like Sezewa modes, on the stack are plotted as a function of their frequency, in panel b)
as a function of the lithium niobate (LNO) film thickness h and the wavevector k = 2π/λ (figure
taken from Ref. [46]). For long wavelengths, i.e. small kh, the wave penetrates deeply into the
substrate and is mainly supported by the bulk silicon (vl = 8433m/s [47]). As the wavelength is
decreased, the wave is supported mostly by the silicon oxide layer with a transversal speed of
sound vt,SiOx = 3159m/s [18]. For very short wavelengths, i.e. large kh, the SAW is hosted in the
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Figure 2.5: Energy eigenstates of a combined qubit-resonator system in the Jaynes-Cummings regime.
a) Jaynes-Cummings Ladder at δ = 0, i.e. ωr = ωq (resonant regime). Levels with the same
amount of energy quanta are degenerate and form pairs for zero coupling g (solid lines).
Finite coupling lifts the degeneracy and introduces a level-splitting scaling with

√
n (dashed

lines). b) Jaynes-Cummings Ladder for large detuning of qubit and resonator compared to
the coupling, i.e. |δ| � g (dispersive regime). For zero coupling, energy levels with an excited
qubit state are shifted by δ with respect to levels with the qubit in the ground state |g〉 (solid
lines). Finite coupling leads to a dispersive shift χ, i.e. the level separation of the oscillator
depends on the state of the two-level system (dashed lines). Shown is the case for δ > 0.
c) Frequency response of a driven harmonic oscillator. Probing the harmonic oscillator at a
fixed frequency (dashed line) leads to a different response depending on the state of the qubit.

LNO layer, approaching the transversal velocity of 128◦Y-X LNO vl,LNO = 3979m/s. Hence, a
strong frequency dependence in the SAW phase velocity is expected at the working frequencies of
the investigated device (≈ 5GHz) which has to be taken into account during the design process
of SAW devices with different working frequencies.

2.3 Coupled Quantum Systems

In this section, we will focus on the physics of a coupled quantum system consisting of a two-level
system and a quantum harmonic oscillator. The physics are described by the Jaynes-Cummings
Hamiltonian. Here, we provide a qualitative discussion of the dispersive and resonant regime.

2.3.1 The Jaynes-Cumming Hamiltonian

A quantum harmonic oscillator [48] is the quantum-mechanical equivalent of a classical harmonic
oscillator with eigenfrequency ωr and bosonic ladder operators â, â† fulfilling â†â = n̂, where n̂ is
the number operator. The ladder operators fulfill the bosonic commutation relation

[
â, â†

]
= 1.

The harmonic oscillator Hamiltonian takes the form

Ĥr/~ = ωr

(
â†â+ 1

2

)
, (2.14)
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with ~ = h/2π = 1.0546× 10−34 Js being the reduced Planck constant. All energy levels are
equally spaced by ωr and usually labeled as Fock states |n〉 according to the expectation value n
of the number operator n̂.
The two-level system is described by a Hamiltonian of the form [49]

Ĥq/~ = ωq
2 σ̂z, (2.15)

where ~ωq is the energy splitting3 of the two levels and σ̂z is the third Pauli matrix with eigen-
states |e〉 and |g〉. The corresponding eigenenergies are Ee/~ = ωq/2 and Eg/~ = −ωq/2. Fig.
2.5a) and b) show the energy levels of the sum of Hamiltonians from eqs. 2.14 and 2.15 with
solid lines [22]. If the system is degenerate (panel a)), i.e. δ = ωq − ωr = 0, pairs of energy levels
are formed by the states |g, n+ 1〉 and |e, n〉; only |g, 0〉 is a singlet unpaired. For δ 6= 0, we find
that there are no degenerate states, the branch for the two-level system state |e〉 is shifted by δ
relative to the branch of |g〉.

Up to this point in the discussion, no interaction between the harmonic oscillator and the
two-level system was considered. Such interaction can be taken into account by introducing a
dipole interaction Hamiltonian HI ∝ d̂ · Ê with coupling strength g, that couples the resonator
field amplitude Ê ∝ (â + â†) and the qubit electric dipole d̂ ∝ (σ̂+ + σ̂−). This is the dipole
approximation which is applicable if the dimension of the qubit is much smaller than the
wavelength of the coupled mode in the resonator [50]. The raising and lowering operators for the
two-level system σ̂± = (σ̂x ± σ̂y) /2 induce qubit transitions from |g〉 to |e〉 (σ̂+) and from |e〉 to
|g〉 (σ̂−), respectively.
The resulting total Hamiltonian ĤQR = Ĥr + Ĥq + ĤI is known as the quantum Rabi model

ĤQR/~ = ωrâ
†â+ ωq

2 σ̂z + g(â† + â)(σ̂+ + σ̂−). (2.16)

For better readability, we will neglect the constant energy offset ωr/2 caused by the harmonic
oscillator ground state energy from now on. In the regime where |ωq − ωr| � ωq + ωr, the
Hamiltonian can be simplified by a rotating wave approximation [51, 49] to the Jaynes-Cummings
Hamiltonian

ĤJC/~ = ωrâ
†â+ ωq

2 σ̂z + g(â†σ̂− + âσ̂+). (2.17)

This Hamiltonian can be diagonalized [22] leading to eigenstates (also known as dressed states)

|+, n〉 = cos(θn) |e, n〉+ sin(θn) |g, n+ 1〉 , (2.18)
|−, n〉 = − sin(θn) |e, n〉+ cos(θn) |g, n+ 1〉 , (2.19)

for pairs of states with the same amount of energy quanta n+ 1, and a ground state |g, 0〉. The

3We conveniently introduce ωr as the harmonic oscillator (or resonator) frequency and ωq as the qubit transition
frequency as we will use this notation in later chapters as well.
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mixing angle is defined as 2θn = arctan
(
2g
√
n+ 1/δ

)
. The corresponding eigenenergies are

E±,n/~ = ωr

(
n+ 1

2

)
± 1

2
√

4g2 (n+ 1) + δ2, (2.20)

Eg,0/~ = −ωr
2 . (2.21)

We distinguish two cases which will be discussed now: the resonant regime with δ = 0 and the
dispersive regime where δ � g.

2.3.2 Resonant Regime

In the resonant regime, i.e. δ = 0, we find θn = π/4 and therefore a maximal entanglement of the
originally degenerate states [22]. The eigenenergies of the dressed states are split by 2g

√
n+ 1

and centered around the energy level of the uncoupled states as shown in fig. 2.5a). This leads to
vacuum Rabi oscillations [49] where the initial excitation of e.g. |e, n〉 will be coherently passed
to a resonator photon |g, n+ 1〉 and back with a frequency of g

√
n+ 1/π.

2.3.3 Dispersive Regime

A consequence of the Jaynes-Cumming Hamiltonian in the dispersive regime δ � g can be seen by
transforming eq. 2.17 with Û = exp

[
g(âσ̂+ + â†σ̂−)/δ

]
and expanding the resulting Hamiltonian

up to the second order in g/δ � 1 leading to [22]

Ĥ
(2)
JC /~ = (ωr + χσ̂z) â†â+ 1

2 (ωq + χ) σ̂z. (2.22)

As the first term indicates, the resonance frequency of the harmonic oscillator is now dependent
on the state of the two-level system. Fig. 2.5b) visualizes the energy spectrum of eq. 2.22. The
resonator level spacing is decreased by χ if the qubit is in the ground state and increased by χ for
an excited qubit. This so-called dispersive shift χ is of crucial importance for readout schemes
using the resonator to determine the qubit state. This way, a non-demolition measurement
can be realized, i.e. the qubit maintains its state after the readout4 as long as the resonator
is not occupied with more than a critical photon number 〈ncrit〉 [22]. Furthermore, measuring
the frequency response of a harmonic oscillator is very precise as microwave frequency analysis
technology is established and widely and commercially available. Leaving the two-level system
in its ground state (thermal excitation needs to be suppressed), one determines the modified
resonance frequency of the oscillator ω̃r = ωr − g2/δ. When the qubit is in the exited state, the
dispersive shift alters the resonance frequency of the microwave resonator to ωr + g2/δ and hence
a measurement of the resonance frequency of the microwave resonator allows to determine the
state of the qubit. Typically, this measurement is performed by analyzing the phase or amplitude
of the microwave resonator when exciting it with a fixed frequency.
Alternatively, when rearranging eq. 2.22 we can express the effect of the qubit-resonator

4Of course, an arbitrary state |ψ〉 is collapsed onto the computational basis {|e〉 , |g〉} upon measuring, but this
determined eigenstate is maintained.
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coupling as
ĤJC/~ = ωrâ

†â+ 1
2

[
ωq + 2χ

(
â†â+ 1

2

)]
σ̂z. (2.23)

With this form, we find the qubit to undergo an AC-Stark shift of 2χ〈nph〉 caused by the mean
photon occupation 〈nph〉 of the readout resonator. Additionally, the photon number statistics of
the occupancy â†â lead to an inhomogeneous line broadening of the qubit [23]. This effect will
be used in measurements later to gain insight on the photon occupation 〈nph〉 of the resonator.

2.4 Superconducting Transmon Qubits

There are many different implementations of two-level systems. Apart from natural systems like
photon polarity, spin-1/2 particles, Rydberg atoms [52] or single trapped atoms [53], also artificial
quantum systems can serve as two-level systems. Prominent examples are quantum dots [54] or
superconducting qubits [5]. However, many artificial two-level systems are not truly two-leveled
but have multiple excited states. The challenge is to decouple a single energy transition sufficiently
from other excitations such that leakage into other states is minimized.
The transmon is a specific form of superconducting qubit which had proven to be successfull
in a multitude of projects addressing the topics of quantum computing and simulation [12, 13]
due to its long coherence times and 2D-scalability. It was introduced as a variation of a Cooper
pair box in Ref. [55]. We will discuss its physics and consequences for the Jaynes-Cummings
Hamiltonian as well as its control in the following. Afterwards, we will briefly introduce the
mathematical description of qubit dynamics when subjected to a drive pulse. For this, the
convenient Bloch sphere picture will be used. Finally, we will qualitatively discuss information
loss of the qubit state in form of energy decay and dephasing without going into detail on the
decoherence mechanisms. A detailed analysis of noise sources can be found in Ref. [56] and in
chapter 2.4 of Ref. [57]. Measurement schemes to determine the qubit lifetime T1 and decoherence
time T2 will be presented.

2.4.1 Physical Model of the Transmon Qubit

The transmission-line shunted plasma oscillation qubit (or transmon for short) consists of a
dc-SQUID shunted by a large capacitance CS to ground as shown in fig. 2.6a). A dc-SQUID is a
parallel connection of two Josephson junctions. This arrangement leads to a flux-tunability of
the Josephson energy EJ. The full transmon Hamiltonian can be shown to be [23]

ĤT = 4EC (n̂c − nc,g)2 − EJ cos
(

2π
Φ0

Φ̂
)
. (2.24)

EC = e2/2CΣ is the charging energy of the total capacitance of the shunt capacitor and the
Josephson junction CΣ = CS +CJ, Φ is the flux through the SQUID-loop (panel a) and Φ0 = h/2e
the flux quantum. We will not go into detail about the charge number operator n̂c and the offset
charge nc,g, a more detailed treatment of the transmon Hamiltonian can be found in Refs. [23,
55].

To realize the Jaynes-Cummings interaction discussed in sec. 2.3, the qubit needs to be coupled
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Figure 2.6: a) Circuit representation of a transmon qubit as a parallel circuit of two Josephson junctions
(dc-SQUID) with a non-linear inductance LJ shunted by a capacitance CS to ground. A
coupling capacitance Cg allows for controlled interaction with the rest of the circuit.
b) Schematic drawing of a transmon with a cross-shaped shunt capacitor (black). The shown
transmon type is called Xmon and allows for coupling on up to three arms of the cross
(blue). The dc-SQUID (red) connects the capacitor to ground. c) Energy scheme (red) of
the transmon in dependence of the flux threading through the dc-SQUID. The non-linear
inductance of the Josephson Junctions changes the energy splitting of higher excitation levels
by the anharmonicity α. For transmons, α is typically negative. The dashed line is a harmonic
oscillator potential for comparison.

to a harmonic oscillator. In circuit quantum electrodynamics, microwave resonators are used
for this purpose. Apart from readout, the coupled resonator can also function as a storage for
quantum states or as connection to other qubits. Therefore, multiple connections are useful.
Panel b) shows a visual representation of a transmon in the form of a Xmon as introduced by
Barends et al. in Ref. [58]. The benefit of this capacitor shape is the possibility to couple up to
three different structures to it. In blue the coupling capacitor is schematically shown, its strength
can be adjusted by changing its spatial dimensions and therefore the coupling capacitance Cg.
This is important as different applications of a coupled resonator need different couplings. The
coupling strength g is defined by [23]

g = ωr
Cg
CΣ

(
EJ

2EC

)1/4√πZr
RK

. (2.25)

In this expression, Zr is the characteristic impedance of the coupled oscillator mode (usually
50Ω) and RK = h/e2 ≈ 25.8kΩ the resistance quantum.
One of the arms, the lower one in the scheme, is used to short the capacitor to ground by a
dc-SQUID (red).

In panel c), the potential of eq. 2.24 is shown as a solid line. The dashed line is the potential
of an equivalent LC-resonator. For small flux values Φ, the transmon potential is well-described
by the harmonic oscillator. However, for increasing flux the potentials diverge, leading to non-
equidistant energy levels in the transmon case. The second excited state |f〉 is shifted downwards
by the so-called anharmonicity α of the transmon. This is a direct consequence of the non-linearity
of the Josephson inductance LJ, making the transmon a non-linear harmonic oscillator [23]. One
finds that α = −EC [55], suggesting a maximization of the charging energy to separate the
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transition frequencies as much as possible. However, the transmon would then be more susceptible
to charge noise which decreases coherence times. Koch et. al [55] noticed that this susceptance
decreases exponentially when increasing the ratio EJ/EC while the anharmonicity decreases only
polynomially. Therefore, a typical trade-off value is a ratio of EJ/EC ∼ 102 to keep a feasible
anharmonicity but decouple the transmon sufficiently from charge noise on the chip.

The flux-tunability of the Josephson inductance additionally allows for a change of the qubit
frequency (defined as the transition frequency between |g〉 and |e〉) via [55]

ωq(Φ) = ωq,0

√∣∣∣∣cos
(
π

Φ
Φ0

)∣∣∣∣. (2.26)

This can be used to tune the transmon frequency coupled to a harmonic oscillator from the
resonant to the dispersive regime and explore the Jaynes-Cummings physics discussed in sec. 2.3.
Due to its nature of being not a true two-level system, the transmon experiences a more complex
dispersive shift χ where also α needs to be taken into account [23]

χ = g2

δ

α

δ + α
. (2.27)

Note, that χ is now negative for δ > 0 since α < 0 for transmons.

2.4.2 Driven Qubit Dynamics

For any two-level system, we can describe a pure state by a superposition of the energy eigenstates
|g〉 and |e〉 as

|ψ(t)〉 = ae(t) |e〉+ ag(t) |g〉 . (2.28)

ae(t) and ag(t) are the (time-dependent) amplitude coefficients and fulfill ae(t)2 + ag(t)2 = 1 for
all times which leads to 〈ψ|ψ〉 = 1.
Transitioning to spherical coordinates, the state of a qubit can be represented by a vector

on the Bloch sphere as shown in fig. 2.7a). It is a sphere of radius one centered around the
origin of a right-handed coordinate system. Points on the sphere are described by a Bloch vector
~r = (r sin θ cosφ,r sin θ sinφ,r cos θ) with 0 ≤ θ ≤ π and 0 ≤ φ < 2π such that they are enclosed
by the qubit state vector and the z- and x-axis respectively. Any vector pointing to the surface
(r = 1) describes a pure state while vectors with a radius r < 1 describe mixed states. In the
absence of decoherence, pure states will remain pure under unitary transformations [48].
If we chose the computational basis to be the z-axis, the excited state |e〉 is defined to be at the
intersection of the sphere with the positive z-axis while the ground state |g〉 is at the intersection
with the negative z-axis. This leads to the qubit Hamiltonian as introduced in eq. 2.15. For an
arbitrary pure state we now find [49]

|ψ〉 = cos
(
θ

2

)
|e〉+ eiφ sin

(
θ

2

)
|g〉 . (2.29)

In order to change the qubit state, a coherent drive field at frequency ωd with length t can be
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Figure 2.7: a) Bloch sphere representation of the qubit state. The orthogonal energy eigenstates |e〉
and |g〉 span the z-axis. Any pure qubit state can be expressed as a superposition of these
eigenstates with two angles φ ∈ ]− π, π] (measured from the x-axis) and θ ∈ [0, π] (measured
from the z-axis). b) and c) Qubit state dynamics on the Bloch sphere for resonant drive.
Starting from |g〉, the qubit rotates around an axis ~Ω. The qubit state rotates along the plane
normal to the rotation direction that intersects the initial state, indicated by colored dashed
circles. For resonant qubit drive (b)), the rotation axis lies in the equatorial plane, hence the
qubit rotates along the full sphere circumference including the state |e〉. For non-resonant
drive (c)), the rotation axis has a finite z-value. The qubit rotation is constrained to a smaller
circle on the Bloch sphere. d) Time-dependence of the excited state population probability
Pe. For resonant drive (green), the Rabi frequency ΩR equals the drive amplitude εd and
Pe = 1 for εdt = π. For non-resonant drive (blue), the maximal amplitude of Pe is ε2d/Ω2

R, so
the qubit cannot purely populate the excited state. The oscillation frequency is ΩR, hence
detuning leads to faster oscillations.

applied to induce rotations around arbitrary axes. Applying a drive field of form

E = εd
2
(
eiωdt + e−iωdt

)
, (2.30)

with amplitude εd [50] leads to a total Hamiltonian5

Ĥd,q/~ = ωq
2 σ̂z + εd

2
(
e−iωdt + eiωdt

)
(σ̂− + σ̂+) . (2.31)

This Hamiltonian is time-dependent and does not allow for a simple solution of the Schroedinger
equation. However, switching to a rotating frame and neglecting any contributions with very
fast frequencies (rotating wave approximation [59]), we find a stationary Hamiltonian H̃ that
describes the same dynamics (see appendix A.1 for derivation)

H̃d,q/~ = 1
2 (−∆ωσ̂z + εdσ̂x) . (2.32)

Here, we introduce the detuning of the drive pulse ∆ω = ωd − ωq. The Hamiltonian in the
rotating frame can be diagonalized easily and leads to the solution of the Schroedinger equation∣∣∣ψ̃(t)

〉
= cos

(
θ

2

)
eiΩRt/2

∣∣∣ψ̃−〉+ sin
(
θ

2

)
e−iΩRt/2

∣∣∣ψ̃+

〉
. (2.33)

5We choose εd ∈ R for the sake of simplicity. A treatment with a complex amplitude would follow the same path.
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In this expression, we introduced ΩR =
√
ε2d + ∆ω2 as the Rabi frequency as well as the new

eigenstates of the diagonalized Hamiltonian in the rotating wave approximation∣∣∣ψ̃+

〉
= cos

(
θ

2

)
|e〉+ sin

(
θ

2

)
|g〉 , (2.34)∣∣∣ψ̃−〉 = − sin

(
θ

2

)
|e〉+ cos

(
θ

2

)
|g〉 . (2.35)

Ultimately, the probability to find the qubit in the excited state Pe(t) =
∣∣∣〈e∣∣∣ψ̃(t)

〉∣∣∣2 is given by

Pe(t) = ε2d
Ω2

R
sin2

(
ΩRt

2

)
. (2.36)

The amplitude of the oscillating population probability of a driven qubit is governed by the
detuning ∆ω = ωd − ωq of the drive pulse. For zero detuning, the Rabi frequency is given by
the amplitude of the driving field ΩR = εd. Therefore, the probability of finding the qubit in the
excited state |e〉 alternates periodically between 0 and 1. In general, the dynamics of the qubit
state vector ~r on the Bloch sphere is described by the Bloch equations [60] (see appendix A.1 for
derivation)

d
dt~r = ~Ω × ~r, (2.37)

with the rotation axis vector ~Ω = (εd, 0,−∆ω). As initial state at t = 0, we assume the ground
state g. This leads to a trajectory plane of the qubit state vector that is orthogonal to ~Ω and
contains the initial state |g〉 (dashed circles in fig. 2.7a) and b)). Consequently, the qubit state
vector |e〉 can be reached if and only if the detuning is zero, i.e. ∆ω = 0. For any finite detuning,
there is always a non-zero probability of finding the qubit in the ground state.

The corresponding dynamics from eq. 2.37 are schematically shown in panel b) of fig. 2.7. The
rotation axis ~Ω (orange) of the state vector lies in the horizontal plane of the Bloch sphere along
the x-axis. The state vector therefore rotates in a plane spanned by the z- and y-axis, containing
both basis state vectors |e〉 and |g〉 from fig. 2.7a).
For non-zero detuning, there is no point in time where the qubit fully occupies |e〉. This is due to
ΩR > εd for ∆ω 6= 0 in eq. 2.36. The rotation axis now has a finite z-contribution [61] which
limits the state vector (blue) in its oscillations along z as depicted in fig. 2.7c). The shown case
is for ∆ω = εd where the maximum probability to find the qubit in the excited state is Pe = 1/2
when occupying the state (|e〉 ± i |g〉)/

√
2.

Panel d) of fig. 2.7 shows the corresponding time evolution of Pe for the cases b) (green) and
c) (blue). Additionally to the reduced amplitude of the oscillation, the detuned drive leads to
a faster oscillation compared to a resonant drive since ΩR > εd. We can define two important
pulse lengths: The π/2-pulse rotates the qubit state around 90◦ on the Bloch sphere, bringing it
from |g〉 or |e〉 to the equatorial plane or vice versa. The pulse has to fulfill ΩRτπ/2 = π/2. The
π-pulse, however, inverts the qubit state by rotating it around 180◦. It has a pulse length of
ΩRτπ = π and has to be resonant, ∆ω = 0. Otherwise, a complete inversion of the population
can not be achieved as the oscillation trajectory plane would not include the orthogonal state on
the Bloch sphere (see fig. 2.7a) and b)).
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2.4.3 Qubit Readout

In order to determine the qubit state, we use non-demolition measurements via a readout
resonator. The qubit-resonator system is operated in the dispersive regime as discussed in sec.
2.3.3. Due to the finite coupling g, the qubit state alters the resonator frequency according to
eq. 2.22 and fig. 2.5c). Additionally, the operation in the dispersive regime allows a distinct
excitation of the qubit or resonator respectively as their resonance frequencies are far detuned,
i.e. |ωq − ωr| � 0. Therefore, two different microwave pulses are used for the qubit excitation and
readout via the resonator: a drive frequency ωd ≈ ωq and a resonator probe frequency ωp = ωr
as shown in fig. 2.8a). As discussed in the section for qubit measurement sequences, the qubit
is driven off-resonant for some measurements. The resonator is always probed on resonance,
deviations in the resonator response give knowledge on the qubit state via the dispersive shift.

2.4.4 Qubit Decay and Dephasing

A qubit will decay to its ground state |g〉 on a characteristic timescale T1 as indicated in 2.8b)
due to interaction with the environment [23]. On the other hand, the phase information of a qubit
is lost on a timescale Tφ (see fig. 2.8c)) without a change in the energy, i.e. the z-component
of the Bloch vector stays constant. These qubit life- and dephasing times limit the duration in
which the qubit can be coherently manipulated. Since pure qubit dephasing, i.e. the loss of phase
information φ loss of the energy information θ, cannot be observed as qubit energy decay is
always present, both decay mechanisms are combined in the decoherence time [23]

1
T2

= 1
Tφ

+ 1
2T1

. (2.38)

This is the characteristic time scale on which information about the qubit state is lost. Longer
and more complex drive schemes therefore require high coherence times. Since the qubit lifetime
and dephasing time add up reciprocally, both have to be considerably long. Presently, long
coherence times for superconducting aluminium transmon qubits are on the order of 100µs [62,
63]. Compared to a π-pulse duration on the order of 10ns, this allows for up to 104 coherent
single qubit gates such as π- or π/2-pulses before the qubit state is lost.

In the following, we introduce measurement sequences that give insight on the qubit lifetime T1
and decoherence time T2. These measurement schemes require knowledge of the π-pulse length
τπ. To determine this pulse length, typically a Rabi measurement is conducted using the pulse
scheme as shown in fig. 2.8d). The qubit is excited on resonance for τd (red) to induce a rotation
in the Bloch sphere as discussed in sec. 2.4.2. Immediately after the drive, the qubit state is read
out (blue), e.g. by using a readout resonator coupled to the qubit operating in the dispersive
regime and measuring the resonator amplitude or phase response as introduced in sec. 2.3.3. The
drive duration, for which the signal corresponding to the excited state |e〉 is maximal, is the
π-pulse length.
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Figure 2.8: a) Microwave frequencies used for qubit drive (ωd) and readout resonator probing (ωp).
Typically, the qubit is driven close to its resonance (ωd ≈ ωq) and the resonator is probed
with its resonance frequency (ωp = ωr). In the dispersive regime, the qubit and resonator
frequencies are far detuned, such that both circuit elements can be individually addressed
with their respective microwave pulses. b) Energy decay (gradient arrow) of an arbitrary qubit
state |ψ〉 to the ground state |g〉 on a timescale T1 due to interaction with the environment.
The energy decay implies a loss of phase information as the ground state has no phase. c)
Pure dephasing (magenta arrows) of a qubit state on a timescale Tφ. For pure dephasing, no
energy is transferred. As energy decay is always present, pure dephasing cannot be observed
directly but only in combination with energy relaxation. d) Pulse schemes used to determine
the qubit π-pulse duration (driven Rabi), lifetime T1 (relaxation) and decoherence time T2

(Ramsey&spin-echo). A detailed description of the pulse schemes is given in the main text.
The red pulse shape corresponds to the resonant qubit drive pulse with a variable length τd

or fixed π- and π/2-pulse lengths, conveniently labeled as π and π/2 for better readability.
The blue pulse shape schematically shows the dispersive readout at the resonator frequency
as described in sec. 2.3.3. Schematic pulse lengths are not to scale.

2.4.4.1 Relaxation Measurement

The relaxation (or inversion recovery) measurement consists of a π-pulse followed by a waiting
time τ and readout of the qubit state (see fig. 2.8d)). During the waiting time, the qubit can
spontaneously collapse to the ground state due to interaction with the environment [23]. The
probability of measuring the excited qubit state Pe decays exponentially with time, such that we
expect

Pe(t) = exp(−τ/T1). (2.39)

The characteristic timescale for the decay T1 is called qubit lifetime and takes typical values of
10 to 100µs for transmon qubits based on aluminium [62].
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Figure 2.9: a) Qubit population Pe in dependence of the wait time τR for a Ramsey measurement. For
off-resonant drive, the population oscillates with ∆ω (black). On a timescale of T2,R, the
qubit coherence is lost and constrains Pe, an envelope is shown in red. For τR → ∞ the
excitation probability is Pe = 0.5. b) Spin-echo measurement conducted on resonance. The
total qubit rotation for τSE = 0 is 2π such that the qubit is in the ground state after the
sequence. Longer wait times lead to a non-zero probability of finding the qubit in the excited
state. The probability increases to Pe = 0.5 on a timescale of T2,SE. c) Filter functions F of
Ramsey and spin-echo sequences depending on the noise frequency ωn and wait time τ . The
filter function determines the susceptibility of each sequence to noise. Ramsey measurements
filter high-frequency noise, spin-echo measurements low-frequency noise. Pulse sequences can
be found in fig. 2.8d).

2.4.4.2 Ramsey Measurement

Apart from excitation decay, dephasing plays an important role in the coherence of a qubit. Due
to interaction with the environment, the phase information φ can be lost on a time scale of Tφ
due to phase perturbations from various noise sources. However, one cannot measure Tφ directly,
since energy decay will always be present. Therefore, different schemes are used to estimate the
combined decay and dephasing process on a timescale T2 following eq. 2.38. Historically, the
first scheme performed on qubits (in this case spin-1/2 particles) was the Ramsey sequence [64]
shown in fig. 2.8d). A π/2-pulse brings the qubit in an equal superposition of |e〉 and |g〉. After
a waiting time τ , a second π/2-pulse is applied before the qubit state is measured. During the
free evolution time, the qubit will precess around the z-axis with the detuning ∆ω = ωd − ωq
between the drive and qubit eigenfrequency. In the absence of decoherence and for zero detuning
∆ω = 0, the qubit state vector will remain stationary in the rotating frame picture, such that
the second π/2-pulse will excite the qubit to |e〉. In the case of finite detuning ∆ω 6= 0, the qubit
has rotated 180◦ around the z-axis (Lamor precession in the rotating frame) when ∆ωτR = π.
Then, the second π/2-half pulse would rotate the qubit to |g〉 again.
However, interaction with a noise bath leads to decoherence during the waiting time τR such that
the state vector will dephase and decay. Only accounting for dephasing at the moment, the qubit
state vector will spread in the xy-plane (pink arrows in fig. 2.8c)). Therefore, there is a finite
probability of finding the qubit in state |g〉 after the sequence for zero detuning. Analogously for
the case of finite detuning, the probability of finding the qubit in state |e〉 is non-zero even for
the condition ∆ωτr = π. The latter case shown in fig. 2.9a). The probability of finding the qubit
in the excited state oscillates with a detuning ∆ω, a minimum of Pe is therefore found when
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τR = π/∆ω. If τR = 0, the total applied pulse is a π-pulse such that we find Pe = 1. For τ � T1,
the qubit would relax back to the ground state due to energy decay, such that Pe = 0.5 after the
second π/2-pulse. This is indicated by the red envelope approaching 0.5 as τR →∞. Therefore,
the Ramsey decoherence time T2,R is defined as the wait time τR after which Pe has decayed to
(1 + e−1)/2.
It is to be noted that we assume an exponential time dependence of the qubit coherence
following chapter 4.4 of Ref. [57]. However, in reality the process strongly depends on the noise
spectral density acting on the qubit. Different source of noise change the decoherence behavior
quantitatively. A detailed discussion of noise channels can be found in Ref. [56] and in chapter
2.4 of Ref. [57].

2.4.4.3 Spin-Echo Measurement

A different measurement protocol to determine the coherence time T2 is a spin-echo sequence
[65] (see. fig. 2.8d)). For this protocol, a π/2 pulse excites the qubit into the horizontal plane
of the Bloch sphere before the qubit evolves for a time τSE/2. This measurement is performed
with resonant π/2 pulses, such that there will be no Lamor precession of the state vector in the
rotating frame during the waiting time, but only dephasing. A π-pulse inverts the population
of the qubit. This also inverts the dephasing effect as long as the noise source is dominated by
low frequency components which remain approximately constant over the course of the pulse
sequence [57]. After a second wait time of length τSE/2, a π/2-pulse is applied before determining
the qubit state. As for the Ramsey measurements, we expect Pe = 0.5 for τ →∞. However, for
τSE = 0, the total applied pulse is a 2π-pulse, we therefore expect the qubit to be in state |g〉, i.e.
Pe = 0. An exemplary time trace of the qubit population probability is shown in fig. 2.9b).

The critical difference between the Ramsey and spin-echo protocol becomes obvious in fig.
2.9c). Here, the filter functions FR and FSE for both sequences are shown as a function of the
noise frequency ωn and the wait time durations τR and τSE. The function formulas are given by
[66]

FR(ωn,τR) = sin2(ωnτR/2)
(ωnτR)2 , (2.40)

FSE(ωn,τSE) = sin4(ωnτSE/2)
(ωnτSE)2 . (2.41)

The filter function describes the susceptibility of the measurement to noise at frequency ωn.
Ramsey measurements are strongly influenced by low-frequency noise with ω → 0. For higher
frequencies or longer wait times the phase added by the noise source averages to zero, so the
filter function approaches zero.
A spin-echo sequence however filters slowly changing noise due to the inversion of the qubit state
after half of the wait time. This leads to a compensation of the acquired phases during both
waiting times and therefore no effective influence of the constant noise source [56]. If the noise
field fluctuates on the timescale of the wait time τSE such that ωnτSE ≈ 2π, the filtering effect is
lost. The spin-echo sequence therefore is mostly effective when dealing with 1/f -noise while the
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Ramsey sequence filters high-frequency noise. Hence, a comparison of both coherence times T2,R
and T2,SE can provide valuable insight into the frequency of the noise sources dominating the
decoherence of an investigated qubit.

2.5 Superconducting Microwave Resonators

After the discussion of transmon qubits as artificial two-level systems, we now focus on the
harmonic oscillators. When moving from cavity quantum electrodynamics to circuit quantum
electrodynamics, coplanar waveguide (CPW) resonators typically take the role of the harmonic
oscillator [22]. We will only qualitatively introduce these microwave resonators, further reading
with more details on the physics can be found in Refs. [57, 67].

Coplanar waveguide resonators (CPWR) are defined by a transmission line separated by a
gap from two ground planes as shown in fig. 2.10. Here, a λ/4-resonator (green) coupled to
a CPW transmission line (red) is shown, which is the 2D equivalent of a coaxial cable. For a
λ/4-resonator, one end of the signal line is shorted to ground (gray) while the other end has an
electrical open condition. Therefore, a standing wave can form if (2n+ 1)λ/4 = l, n ∈ N with λ
being the wavelength of the electromagnetic wave. A resonator with open conditions at both
ends of the signal line is similarly defined as a λ/2-resonator with a standing wave condition of
nλ/2 = l, n ∈ N.

2.5.1 Quality Factor and Loss Rates

An important figure of merit of a resonator is its quality factor Q. It is a measure for the average
energy lost per cycle [67]

Q = ωr
average energy stored
energy loss/second . (2.42)

With the introduction of a loss rate (or equivalently linewidth) κr, the quality factor is commonly
defined as

Q = ωr
κr
. (2.43)
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High quality factors are achieved when the loss rate is low, i.e. the resonator stores energy for a
long time compared to its eigenfrequency. However, one has to distinguish between intended loss
rates, e.g. coupling to external circuit elements denoted as κr,e, and unfavorable internal losses
κr,i. In our scheme (fig. 2.10), the external loss or coupling rate quantifies the energy transfer
between the resonator and the transmission line while the internal loss rate is attributed to all
losses to the environment. As loss rates sum up to a total linewidth κr = κr,e +κr,i, the respective
quality factors have to be added reciprocally Q−1 = Q−1

e + Q−1
i . There are different regimes

depending on the dominating loss channels [67].
In the case of κr,e > κr,i, the resonator is overcoupled to the feedline, i.e. the main channel for
energy loss is to the coupled circuit. This allows for comparably quick access to the resonator
and is favorable for readout resonators.
If κr,e < κr,i, the resonator is undercoupled such that the internal losses dominate the quality
factor. As κr,i is typically minimzed for minimal energy loss to the environment, the resonator is
weakly coupled to the transmission line in this case. A low overall linewidth κr and high quality
factor Q are important for storage resonators with long decay times ∝ κ−1

r .

2.5.2 Mean Photon Number

As any driven harmonic oscillator, a CPWR follows a Lorentzian response close to resonance (ch.
4.2.5 of Ref. [68]). This also holds for the mean photon number 〈nph〉 occupying the resonator
[69]

〈nph〉 = 2Pappl
~ω [κ2

r + 4(ω − ωr)2]Λκr,e. (2.44)

Here, Pappl is the power microwave with frequency ω at the output of the microwave signal
source, Λ the attenuation of the measurement setup to the resonator and ~ the reduced Planck
constant. With eq. 2.44, the total effective attentuation of the setup, including cable losses, can
be calibrated. The photon number occupation of a resonator is non-trivial, however it is an
important quantity for experiments in the Jaynes-Cummings regime. If 〈nph〉 exceeds a critical
value given by [69]

〈ncrit〉 = δ2

4g2 , (2.45)

the dispersive regime discussed in sec. 2.3.3 becomes invalid and the measurements can no longer
be considered as non-demolition. In the equation, δ denotes the detuning and g the coupling
strength between resonator and qubit. Therefore, a power calibration needs to be conducted to
probe the resonator within the dispersive regime.

2.6 Surface Acoustic Wave Resonators

For the transition from circuit quantum electrodynamics to quantum acoustodynamics, an
additional harmonic oscillator is introduced: the surface acoustic wave resonator (SAWR). A
SAWR consists of at least one interdigitated transducer (IDT) and two reflectors [18]. The
case for a 1-port SAWR is shown in fig. 2.11a). The IDT injects/absorbs SAWs in the cavity
formed by the two reflectors. The SAWs propagte freely along the IDT-reflector spacing ds and
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Figure 2.11: a) Scheme of a 1-port surface acoustice wave resonator (SAWR). All design lengths ds, LT

and d use the center of the involved element’s first electrode as reference points as shown
in the scheme. b) Equivalent circuit model of an interdigitated transducer consisting of an
acoustic conductance and suscpetance Ga and Ba as well as a geometric capacitance Ct

induced by the transducer fingers. c) Butterworth-van Dyke equivalent circuit of a 1-port
SAWR with a geometric capacitance in the left branch and a RLC-circuit in the right branch
covering the influence of SAWs.

are effectively confined to a cavity length LC. In this section, we will introduce IDTs for the
generation of SAWs and discuss their frequency response depending on the geometry. This is
of major importance to cover a large frequency range of creatable SAWs. Furthermore, we will
introduce gratings as Bragg reflectors for SAWs and derive their behavior. Finally, with these
elements, we will be ready to discuss the expected response of a 1-port SAWR when probing
with microwaves.

2.6.1 Interdigitated Transducers

The most common way to create SAWs are interdigitated transducers (IDTs) on a piezoelectric
substrate. There are different implementations of IDTs. The “single-electrode” transducer as
shown in fig. 2.11a) consists of metal fingers alternately connected to signal and ground of an
electrical microwave line. This defines the polarity pattern Pn = 1,0,1,0,1..., where “1” denotes a
connection of the electrode to the signal line and “0” to ground. An important design parameter
is the metallization ratio η = a/p with a being the width of the metal strips and p the pitch
of the strips. A metallization ratio of η = 0.5 simplifies the analysis of the IDT’s behavior.
More complex IDT designs exist, for example a double-electrode IDT with a polarity pattern
Pn = 1,1,0,0,1,1,0,0,.... Those show different response functions and can offer advantages like
lower reflection or improved directionality [18]. However, since the fundamental wavelength is
geometrically constrained by the repetition length of the periodic finger arrangement, single-
electrode transducer allow for the smallest wavelengths at a given structure size, which might be
limited by fabrication constraints. The fundamental wavelength of the emitted SAW of such a
single-eletrode transducer λIDT with a 50% metallization ratio is given by

λIDT = 4a. (2.46)
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For a single-electrode IDT with a η = 50%, the acoustic potential at a fixed position, e.g.
immediately outside of the transducer, is given by [18, 70]

Φa(ω) = V E(η, ω)A(ω) (2.47)

where V is the applied voltage and E(η, ω) the so-called element-factor describing the response
of a single, delta-like transducer electrode. Nt is the number of fingers in the transducer, Pn
either 0 (finger connected to ground) or 1(finger connected to signal), k = 2π/λ = ω/vp the
wavenumber, vp the phase velocity of the SAW and xn the position of the finger with respect to
the reference port. The array factor A(ω) accounts for the geometric transduction properties
of the IDT. Introducing the number of fingers Nt and analogously the amount of finger pairs
Np = bNt/2c as well as the pitch p = 2a between the array factor A(ω) is defined as

A(ω) =
Nt∑

n=1
Pne

−ikxn =
Np∑

m=1

(
e−2ikp

)m
= sin(Npkp)

sin(kp) e−ikp(Np+1). (2.48)

The first transformation of the sum uses the known values of Pn. For a uniform transducer as
seen in fig. 2.11a), they are 1 for odd and 0 for even electrode numbers. It is assumed that the
electrodes are delta-like with xn = np, therefore only summands with xm = (2m− 1)p for m ∈ N
and m counting signal-ground electrode pairs Np contribute to the sum. For a resonant IDT
response, the wavelength, i.e. spatial periodicity, has to equal the distance between two fingers
with the same polarity which is 2p. We now note two things:

• kp = ω
vp

2a = ωπ λc
2πvp

= π ω
ωc

with ωc = kcvp and kc = 2π
λc

= 2π
4a ,

• |sin(x+ nπ)| = |sin(x)| with n ∈ N.

Introducing θ = kp− π = π
(
ω
ωc
− 1
)
, we can now make use of the small angle approximation

sin(x) ≈ x for x ≈ 0. Taking the absolute value of A(ω), we find for frequencies close to the
center frequency of the IDT ωc, i.e. θ ≈ 0 the array factor to be approximated by

|A(ω)| =
∣∣∣∣sin (Np(θ + π))

sin(θ + π)

∣∣∣∣ =
∣∣∣∣sin (Npθ)

sin θ

∣∣∣∣ ≈ ∣∣∣∣sin(Npθ)
θ

∣∣∣∣
= Np

∣∣∣∣sin(Npθ)
Npθ

∣∣∣∣ . (2.49)

The response of an IDT is governed by the acoustic conductance Ga(ω). Close to resonance, it is
given by [18]

Ga(ω) ≈ Ga(ωc)
(

sin(Npθ)
Npθ

)2
∝ A2(ω). (2.50)

The acoustic conductance has multiple frequency-dependent contributions, but the array factor
A(ω) usually dominates the IDT response close to resonance. The acoustic conductance on
resonance Ga(ωc) is given by eq. 2.53. Therefore, the response of an IDT close to resonance is
proportional to a sinc2-function of the number of finger pairs and the frequency detuning. It
is exemplarily shown for a center frequency of ωc/2π = 5GHz and Np = 5 in fig. 2.12a). An
important measure is the bandwidth of the IDT spectrum. The resonance condition is given
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Figure 2.12: a) Acoustic conductance of an IDT with fc = ωc/2π = 5GHz and Np = 5. Smaller Np lead
to broader array factors and therefore a larger frequency range addressable by the IDT.
b) Element factor E(η, ω) for different metallization ratios η obtained from a quasi-static
approximation. The element factor vanishes for even harmonics of the fundamental IDT
mode and also for the third harmonic if η = 0.5. c) Acoustic potential Φa over the range of
an IDT with pitch p. The IDT electrodes are schemtically shown via rectangles, a voltage is
applied to the fingers connected to signal (grey). On resonance (black), the acoustic potenial
is maximal at the electrodes, allowing efficient SAW generation. Off-resonant (red), the
amplitude of the potential is smaller and the periodicity of the potential does not match the
IDT pitch. Therefore, SAW generation is suppressed.

by Npθ = 0, i.e. the maximum of the acoustic conductance is reached. With θ = kp − π and
k = ω/vp the center of the fundamental band is at ωc/2π = vp/4a = vp/λ. With sinc2(Nx) = 1/2
for x = 1.39/N it follows that the acoustic conductance reaches the half maximum value at
θ = π

(
ω1/2
ωc
− 1
)

= 1.39 leading to:

ω1/2

ωc
=
f1/2

fc
= 1 + 1.39

Npπ
, (2.51)

where f = ω/2π is the natural frequency. Thereby, the full-width at half-maximum (FWHM)
νIDT of an IDT with Np = 5 can be calculated as

νIDT = 2
∣∣f1/2 − fc

∣∣ ≈ 0.18fc. (2.52)

For the case of fc = 5GHz as shown in fig. 2.12a) this results in νIDT = 0.9GHz. The FWHM
scales reciprocally with the number of finger pairs so that less electrodes increase the range of
frequencies that the IDT can interact with from a geometrical point of view.

Additionally to excitations at the fundamental resonance frequency imposed by the IDT geometry,
the acoustic conductance has maxima for higher harmonics ω = nωc [18]. However, one has to
discuss the element factor of a single electrode to determine whether the IDT supports higher
harmonics. The element factor E(η, ω) is derived by a quasi-static approximation that can be
found in chapter 5 of Ref. [18], the result is shown in fig. 2.12. The strongest coupling is to the
fundamental mode, and all even harmonics vanish. This is due to the corresponding wavelength as
for even harmonics all IDT fingers would have to be on the same electric potential. However, this
would contradict the very mechanism of generating SAWs via alternating potential differences.
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Interestingly, the model predicts no coupling to the third harmonic for a 50% metallization ratio
η = 0.5. A Lamb’s integral model however predicts some coupling [71] and third harmonics have
also been measured [44]. Already slight deviations of η allow for coupling to the second mode.
The fifth harmonic is more pronounced than the third. Since the element factor scales linearly
with the electromechanical coupling coefficient K2 it is beneficial to use strong piezoelectric
materials for generating SAWs.
The resulting acoustic potential (eq. 2.47) is shown in fig. 2.12c) over the spatial extension of
a 11-finger IDT, illustrated by boxes in the figure. The applied signal is a constant voltage on
the signal electrodes (grey). On resonance (black curve), i.e. ω = ωc, the acoustic potential has
the same periodicity as the IDT and a maximal amplitude, therefore SAWs can be generated
efficiently. Off-resonance however, the amplitude of the potential is smaller and the periodicity
does not match the pitch p. Therefore, the generation of SAWs is suppressed.
The response of an IDT can also be derived via an equivalent circuit model as shown in fig.
2.11b). It consists of an acoustic conductance G(ω) and susceptance B(ω) as well as a geometrical
capacitance of the transducer Ct = WNpε∞. W is the overlap of signal and ground fingers and
ε∞ is a material parameter. Typical values for various substrates can be found in Ref. [18] in
table 4.2. It can be show that close to the fundamental resonance Ga(ω) and Ba(ω) can be
approximated as [26]

Ga(ω) ≈ Ga(ωc)
(

sin(Npθ)
Npθ

)2
, (2.53)

Ba(ω) ≈ Ga(ωc)
(

sin(2Npθ)− 2Npθ

2(Npθ)2

)
. (2.54)

The acoustic conductance Ga(ω) can be seen as the ability to convert electrical power into
mechanical waves, so the result has the same form as the model above. For the maximum acoustic
conductance Ga(ωc) ≈ 1.3K2N2

pωcWCs holds [26, 72]. Here, Cs is an equivalent dielectric constant
of the material introduced when deriving a Transmission-Line Model for SAWs in [73]. At least
for LNO, this is the same value as ε∞.

2.6.2 Gratings

Apart from IDTs to control the generation of SAWs, mirror-equivalents are needed to form a
resonator with SAWs. The concept of Bragg reflectors will be introduced here starting with
an infinitely long grating before discussing important criteria for finite gratings. The grating
consists of shorted or open parallel metal strips with a pitch p or grooves in the piezoelectric
substrate and can work as a reflector for SAWs. The basic idea of a grating as reflector is that
each individual strip of the periodic pattern reflects a little bit of the incident wave due to a
change in the mechanical environment, but the summation over all strips leads to a constructive
interference of the reflected waves if the condition p ≈ nλ/2 with n integer is met.

2.6.2.1 Infinitely long gratings

For the following derivation, we use the reflective array method following Ref. [18]. Here, waves
are described by an effective wavenumber ke propagating through the grating. Transmissions



28 Chapter 2 Theoretical Concepts

(or reflections) of each single electrode strip are added up and give rise to a grating mode with
wavenumber γ for which all transmitted (or reflected) waves interfere constructively. This method
assumes an infinite amount of equally spaced grating electrodes Ng →∞. However in practice
high reflective gratings with a total reflection coefficient of |Γ| → 1 are the closest one can get
to the theory. The method defines equaly distanced ports with pitch p between the electrodes
(dashed lines in fig. 2.13a)). The amplitude A of waves traveling towards the electrode between
two ports are labeled with i (incident), outgoing waves with t (transmitted). Using the reflective
array method, the relation between the transmitted amplitude At,2 through a single electrode
from port 1 to port 2, see fig. 2.13a), can be expressed in terms of the incident wave amplitudes
Ai,1 and Ai,2 as [18]

At,2 = Ai,1ts exp(−ikep) +Ai,2rs exp(−ikep). (2.55)

ts / 1 is the transmission coefficient for an individual strip, while rs is the corresponding reflection
coefficient fulfilling t2s + r2

s = 1. We make the assumption of ts to be real, this can always be
achieved by compensating any non-zero phase of ts with a change of the effective wavenumber.
This gives then rise to a change in the effective wave velocity ve = ω/ke in the grating. Note,
that the frequency of the wave ω stays unchanged. From this ansatz one can derive the relation
of the collective grating mode γ to the effective wavenumber ke as [18]

cos(γp) = cos(kep)
ts

. (2.56)

Equivalently to the discussion above the wavenumber can be expressed in terms of frequencies

kep = ω

ve
p = π

ω

ωc
,

where ωc = πve/p represents the center frequency at which the grating is most efficient. Due
to the different dispersion relation this does not necessarily need to coincide with the center
frequency of an IDT with the same pitch. For practical purposes, this is not critical as long the
bandwidth of the IDT is large enough to ensure overlap with the grating center frequency. For
the discussion of eq. 2.56 it is more intuitive to stay in the spatial expression in terms of ke and
γ.

For the reflective array method, the wave is only defined at the ports. This spatial discreteness
leads to Brillouin zones in the dispersion relation, equivalently to the Brillouin zones of the
phonon dispersion in bulk materials (c.f. ch. 5.2 of Ref [41]). It is therefore sufficient to look
at the solutions in the first Brillouin zone with −1 < γp/π ≤ 1. Panel b) in fig. 2.13 shows the
real and imaginary part of the grating mode wavenumber γ in the first Brillouin zones as a
function of the effective wavenumber of the traveling wave ke, which is assumed to be real in the
absence of losses. As ts / 1, eq. 2.56 yields γ ≈ ke for almost all wavenumbers ke, i.e. as long as
cos(kep)/ts ≤ 1. Therefore, the resulting mode in the grating is a travelling wave passing through
the grating. Here, the solid lines and dashed lines show the same solution but with propagation
in opposite directions. However if kep ≈ nπ with n ∈ N (see right panel in fig. 2.13b)), the
right-hand side of eq. 2.56 is larger than unity, leading to a purely imaginary γ. In this regime,
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Figure 2.13: a) Scheme of transmission and reflection nomenclature on a single electrode. Waves are
labeled as incident or transmitted. With this ansatz the waves are only defined at the ports
1 and 2. Similar to phonons in bulk materials, this discreteness in the spatial confinement
leads to Brillouin zones in the dispersion relation. b) Dispersion relation of the grating for
ts = 0.98. Off resonance grating modes are very similar to free modes, close to the resonance
kp ≈ nπ the wavenumber in the grating is imaginary and thus the wave is attenuated and
reflected. Figure b) adapted from [18].

the traveling wave is attenuated and reflected, yielding a stop band with a bandwidth ∆f of [18]

∆f
fc
≈ 2 |rs|

π
. (2.57)

fc = ωc/2π is the center frequency of the first stop band expressed as natural frequency. Stop
bands occur for any integer multiple of ωc. With the assumption of a constant effective velocity ve,
they all have the same width as given in eq. 2.57. The single electrode reflectivity rs is dependent
on the substrate, the metal, the electrical contact of the strips and the ratio of the strip height
to the wavelength λ = 2p of the wave in the grating.

2.6.2.2 Finite gratings

While the above description gives a nice understanding of the behavior of stop bands, we now
want to briefly discuss the total reflection coefficient of a finite grating with Ng ∈ N and its
expected behavior. With a P -matrix formulation (see Appendix D of Ref. [18] for details) the
reflection coefficient |Γ| can be shown to be

1
|Γ|2

= 1 +
∣∣∣∣ tsrs

∣∣∣∣2 sin2 γp

sin2Ngγp
. (2.58)

From the equation, it is obvious that the reflection coefficient cannot exceed unity. Furthermore
the sin2-functions in the formula lead to an oscillating behavior. At the center of the first stop
band, i.e. when γp = π, the reflection coefficient is given by

|Γ| ≈ tanh(Ng |rs|). (2.59)
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Figure 2.14: a) Reflection coefficient |Γ| in dependence of frequency for a single electrode reflectivity
|rs| = 1%. For high reflective gratings Ng |rs| > 2.5 the stop band is almost rectangular,
weakly reflecting gratings show a sinc-dependence. The width of the stop band is given by eq.
2.57. b) Exemplary reflection coefficient amplitude of eq. 2.63 with fr = 5GHz, Qe = 5× 104

and Qi = 2× 104. At resonance, the reflection coefficient is minimal since microwaves can
excite SAWs occupying the Fabry-Perot resonator mode. This also leads to a phase shift in
the reflection spectrum.

For Ng |rs| > 2.5 more than 99% of the wave is reflected. The frequency dependence of |Γ| in
the vicinity of a center frequency ωc/2π = 5GHz is shown in fig. 2.14a). |Γ| is calculated with
a single-strip reflection coefficient |rs| = 1% for a weakly reflecting (Ng = 100) and a strongly
reflecting (Ng = 500) grating. For the high-reflectivity grating the stop band has a rectangular
form with a width of 36MHz in accordance with eq. 2.57. Outside of the stop band the reflection
coefficient is highly dependent on the frequency and suppressed. The weakly reflecting grating
has no stop band with a uniform reflection coefficient but a broad range of frequencies with a
approximately constant |Γ|.

2.6.3 1-port SAW Resonator

2.6.3.1 SAWR as a Fabry-Perot Resonator

As opposed to CPWRs discussed in sec. 2.5 where we investigate the fundamental resonance, i.e.
the wavelength λ fulfills λ = 4L for a resonator with length L, SAWRs are operated in a regime
where λ� LC as shown in fig. 2.11a). Similar to optical cavities [74], a SAWR can host multiple
resonances with a spacing of the free-spectral range [29]

νFSR = vp/2LC. (2.60)

A non-trivial dispersion relation for the phase velocity vp can lead to a frequency-dependent FSR.
Furthermore, the effective cavity length LC is a combination of the reflector-reflector spacing d
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and the penetration depth Lp of the SAWs [19]

LC = d+ 2Lp. (2.61)

This penetration depth is a consequence of the small single-strip reflectivity as this allows the
SAW to penetrate the mirror before being completely reflected. In the limit of strong-reflecting
grating Ng |rs| � 1, the penetration depth can be shown to be [18]

Lp = a

|rs|
. (2.62)

2.6.3.2 Electrical Response of 1-port SAWRs

The 1-port resonator can be modeled by an equivalent circuit known as the Butterworth-van
Dyke circuit [18]. It is schematically shown in fig. 2.11c). The circuit consists of two branches.
The right branch accounts for the motional inductance and capacitance Lm and Cm as well as a
resistance R for non-unity grating reflections. The left branch is a simple capacitance C0, which
can be approximated by the transducer capacitance Ct [18]. From the Butterworth-van Dyke
equivalent, the scattering parameter S11 can be calculated in terms of internal and external
quality factors Qe and Qi close to a resonance fr [19]

S11(f) = (Qe −Qi)/Qe + 2iQi(f − fr)/f
(Qe +Qi)/Qe + 2iQi(f − fr)/f

. (2.63)

An exemplary spectrum with resonance frequency fr = 5GHz and quality factors Qe = 5× 104

and Qi = 2× 104 is shown in fig. 2.14b). The absolute value of the scattering parameter |S11| has
a minimum for f = fr. The spectrum can be understood qualitatively by considering the energy
coupled into the system. When the resonance criteria of the cavity are met, standing waves can
form. This requires energy from the driving microwaves. Therefore, less signal is reflected. If no
standing waves form, i.e. f 6= fr, no energy is stored in form of a resonator mode. However, the
actually measured back-scattering has an additional attenuation from the microwave cables δ,
picks up a phase θ from traveling and there might be a constant offset Ic + iQc due to microwave
power that is reflected without undergoing the transition to a SAW and back. The final formula
is then given by [75]

S11,meas(f) = δ × S11(f)eiθ + (Ic + iQc). (2.64)





Chapter 3

Design & Fabrication

In this chapter, we will detail the design and fabrication process used for the devices investigated
in this thesis. Both cQED and SAW devices are based on (nano-)structured aluminum films
created with standard thin film fabrication techniques like electron beam lithography (EBL) and
electron beam evaporation. We will only provide a broad overview of the individual process steps
and refer the reader to Ref. [57] for a detailed explanation. Step-by-step instructions along with
process parameters can be found in the appendix B.

3.1 Design

The physical properties of circuit elements such as resonance frequency, impedance and coupling
strength can be adjusted by changing the geometry of the elements. In this section, we will briefly
discuss the design parameters and the chosen values for our cQED and SAW samples.

3.1.1 cQED Sample Design

A typical layout used for cQED measurements is shown in fig. 2.10a). A coplanar waveguide
resonator (CPWR, green in the figure) is coupled to a microwave transmission line (vertical, red
in the figure) and a Xmon qubit (capacitor colored blue). The resonator is only operated in the
fundamental mode, i.e. as a λ/4 resonator. Important design parameters are the resonator and
transmission line impedance as well as the eigenfrequency of both the resonator and the qubit.
Additionally, the coupling between transmission/resonator and resonator/qubit can be adjusted
by design.

3.1.1.1 CPW Resonator Design

To avoid reflection at interfaces between different circuit elements, the impedance Z of all circuit
elements has to be matched. Typically, the common impedance is Z = 50Ω. The exact calculation
of the CPW impedance is not straight forward and will be omitted here, a detailed description
with calculations for finite substrate thicknesses can be found in Ref. [76]. In the limit of infinite
substrate thickness, the impedance equation simplifies to

Z = 30π
√
εr,eff

K(k′0)
K(k0) . (3.1)
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Figure 3.1: a) Optical micrograph of a sample section used for cQED experiments. A λ/4 coplanar
waveguide (CWP) resonator (green) is coupled to a CPW transmission line (red) and a
Xmon qubit (shunt capacitor colored blue). b) Zoom into the Xmon capacitor of panel a).
The capacitor is cross-shaped. While the left arm is capacitively coupled to the readout
resonator, the upper arm connects capacitor and ground through a dc-SQUID (not shown).
Hooks (yellow) on the capacitor arm and ground plane help to establish contact between the
single-layer metal and the subsequently fabricated dc-SQUID. The remaining capacitor arms
with length L can be used to coupled to other circuit elements. c) Cross-section of the scheme
in a) and b) along the dashed line, respectively. The signal line of the CPWR/the capacitor
of the Xmon has a width w and is embedded by two ground planes (grey) with a gap s,
the metal thickness is d. d) Electric field distribution of a superconducting CPWR (green
in a)) on silicon simulated with CST Microwave Studio. The electric fieldlines, indicated by
arrows, are present in both the surrounding vacuum on top and the substrate at the bottom
in approximately equal parts.

Here, K(k0) and K(k′0) are elliptical integrals of k0 = w/(w + 2s) and k′0 =
√

1− k2
0. The

resonator width is denominated w, the gap to the ground plane s. In this approximation, Z stays
constant for constant k0. Therefore, a fixed ratio s/w allows for different resonator widths with
approximately the same impedance. For our CPW resonators, we use w = 10µm and s = 6µm.
The transmission line is designed with w = 20µm and s = 12µm. The effective dielectric constant
εr,eff for an electromagnetic wave in the resonator is approximately [76]

εr,eff = εr + 1
2 , (3.2)

with εr being the dielectric constant of the substrate (e.g. εr = 11.9 for silicon) and the εvac = 1.
The formula can be understood by looking at the electric field distribution in fig. 2.10d).
This simulation was done with CST Microwave Studio. The field appears to be approximately
symmetrically split in a part within the substrate and a part in the surrounding vaccum. The
simulation yields an effective dielectric constant of εr,eff = 6.1 which is close to eq. 3.2.
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The effective dielectric constant together with the length l of the resonator determines its
fundamental resonance frequency

ωr = 2π c
√
εr,eff

1
4l , (3.3)

where c is the speed of light in vacuum. For the used readout resonator in sec. 5.1 with a length
around l = 4mm, a CST simulation yields a resonance frequency of ωr/2π = 7.7GHz.

The external loss rate for the current design (fig. 2.10a)) with a coupling length of 400µm, the
ring-up time can be estimated1 τ = 0.5µs.

3.1.1.2 Coupling Capacitance

Following eq. 2.25, the capacitance between the resonator and qubit Cg is the most easily
accessible design parameter to adjust the coupling strength g. Increasing the capacitance, i.e.
designing a larger overlap of the resonator with the qubit, increases the coupling strength. Finite
element simulations with CST Microwave Studio2 determine a coupling capacitance of Cg = 80fF
and a shunt capacitance CS = 200fF. Assuming a typical transmon energy ratio EJ/EC ≈ 50
[55], eq. 2.25 leads to a coupling strength of g/2π = 500MHz for a resonator at eigenfrequency
ωr/2π = 7GHz. However, for a reliable estimation of the coupling strength, the Josephson and
charging energy EJ and EC of the Josephson junctions have to be known exactly for the used
qubit. Also, CΣ = CS + CJ was assumed to be CΣ ≈ CS for the calculation due to a lack of
knowledge on the Josephson capacitance CJ. Without further measurements, an exact prediction
of the coupling strength remains inaccessible.

3.1.1.3 Xmon Capacitor

The shunt capacitance CS is an easily accessible design feature to change the effective ratio of
Josephson and charging energy EJ/EC as EC = e2/2CΣ with CΣ = CS +CJ. The X-shaped shunt
capacitance is given by [78]

CS = 8Lε0 (1 + εs)
K(k)

K
(√

1− k2
) , (3.4)

where L is the length of a capacitor arm, K the complete elliptical integral and k = w/(w + 2s)
with w as the arm width and s the gap to ground. Calculating the capacitance for our design
(L = 165µm, w = s = 24µm) yields CS = 92fF. This does not match a CST Microwave Studio
simulation which results in CS = 196fF. For future designs, this has to be investigated more
closely as knowledge of CS and the coupling capacitance Cg (also available from simulations)
allows control over the qubit-resonator coupling strength g via eq. 2.25. However, to accurately
predict the coupling strength, also the junction properties have to be known exactly. With future
samples, DC-measurements of Josephson junctions will be implemented at mK-temperatures
in order to investigate the critical current IC and the capacitance CJ [79] to determine the
Josephson and charging energy EJ and EC.

1The calculation was done with a script to be found at https://smm.misis.ru/CPW-resonator-coupling/
following Ref. [77].

2Website: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/

https://smm.misis.ru/CPW-resonator-coupling/
https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
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3.1.1.4 Josephson Junctions

For the cQED device investigated in this thesis, we use a “T-junction”-pattern [58, 78] which will
be discussed further in sec. 3.2.2. The relevant design parameter is the Josephson junction area.
For the presented data in sec. 5.1, Josephson junctions with a designed area A = 170× 170nm2

are used. With the junction area A, one can directly influence the anharmonicity α = −EC/~.
When approximating the junction as a plate capacitor with AlOx as insulator, we find EC ∝ 1/A.
Therefore, smaller junctions increase the anharmonicity and allow for qubit pulses with a larger
bandwidth while still selecting only the |g〉 → |e〉-transition. However, the transmon regime
EJ/EC � 1 should not be left. A common trade-off is EJ/EC ' 50 [55]. As mentioned previously,
future measurements should allow for more control over the system with information on EJ
and EC gained in DC-measurements. Two Josephson junctions in parallel form a dc-SQUID.
Therefore, the qubit is tunable by applying an external magnetic flux, see eq. 2.26. We design the
dc-SQUID with an effective SQUID-area of 300µm2, which has been used for past experiments
[80].

3.1.2 Surface Acoustic Wave Elements

Surface acoustic wave resonators (SAWRs) consist of two basic circuit elements: interdigitated
transducers (IDT) and Bragg reflectors. In this section, we will discuss important design param-
eters, mainly the impedance of an IDT and the optimal spacing of the reflectors for standing
wave formation in the cavity.

3.1.2.1 Interdigitated Transducers

The fundamental SAW wavelength imposed by the IDT geometry is given by eq. 2.46. We
design our samples with an electrode width of 183nm. The resulting frequency of the SAW is
f = vp/λIDT with the phase velocity vp of the substrate. Hence, we expect a center frequency
fIDT ≈ 5.2GHz on the LNO/SiOx/Si tri-stack with vp = 3800m/s (see fig. 2.4 and Ref. [46]).
This value is only given as an approximation since the velocity under metallized surfaces differs
from the free-space velocity following eq. 2.13. Additionally, a discrepancy can be seen between
experimental data and simulations in fig. 2.4. However, we design the IDT to emit SAWs in a
very broad frequency range by using only few electrode pairs, Np = 5. In eq. 2.52, we calculated
the FWHM of the IDT frequency response to 0.9GHz. To this end, the presumably narrow stop
band of the Bragg reflectors (sec. 2.6.2.2) lies within the frequency range of the IDT.

To reduce backscattered signal by impedance mismatch of the IDT to the CPW transmission
line, the impedance of the IDT has to be designed to 50Ω. Therefore, the equivalent circuit
model depicted in fig. 2.11b) is investigated.

In good approximation, the only relevant part of the admittance Y = Ga(ω) + iBa(ω) + iωCt
for impedance matching is the third summand. This can be argued by the following calculation:
At the center frequency of the IDT fIDT, the acoustic susceptance is Ba(fIDT) = 0 [18] and we
furthermore assume typical values for our designs withK2 = 5.4% [40],Np = 5, ωIDT/2π = 5GHz,
W = 250µm and Cs = 5.0pF/cm for 128◦Y-X bulk LNO3 [18], Ga(ωc) ≈ 6.9× 10−3 1/Ω (c.f. fig.

3Cs is the nomenclature following Ref. [73], in Ref. [18] this parameter is denoted as ε∞.
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a) b)

100µm 732nm

Figure 3.2: a) Optical micrograph of a 1-port SAWR as used for the experiments in this thesis. An IDT
with 5 finger pairs is centered in a cavity formed by two Bragg reflectors with 500 single
electrodes each. b) Zoom into the IDT of panel a). The electrodes are alternately connected
to signal and ground. The width of a single electrode as well as the spacing between two
electrodes is 183nm by design.

2.11a) for parameter definition). The capacitance can be calculated by elliptic integrals with eq.
22 of Ref. [81]. This leads to an admittance of Yt = iωcCt = 1.6× 10−2/Ω. The impedance Z is
defined as the inverse of the admittance, so the absolute value is given by

|Z(ωc)| =
∣∣∣∣ 1
Ga(ωc) + iωcCt

∣∣∣∣ =

49.9Ω Ga ignored,
47.2Ω Ga included.

The reason why we choose to ignore Ga(ωc) is the absence of knowledge about K2 and Cs for
our thin-film substrate. We expect the parameters to not change drastically compared to bulk
LNO and hence a non-significant influence of Ga(ωc) on the impedance. Hence, it would be
unreasonable to include the acoustic conductance Ga in the impedance calculation with guessed
parameters.

3.1.3 SAW Resonator Design

A typical 1-port SAW resonator (SAWR) is shown in fig. 3.2a) and schematically in fig. 2.11a).
It consists of an IDT and two gratings forming a cavity. All our designs use the same pitch p for
both the gratings and the IDT despite the possible slight deviation of center frequencies. Panel
b) in fig. 3.2 displays a magnified section of the IDT shown in panel a), the electrode width
a = 183nm and pitch p = 2a correspond to to a fundamental wavelength λIDT = 732nm and
center frequency fIDT = vp/λIDT ≈ 5.2GHz assuimg a phase velocity of vp ≈ 3800m/s [46]. Note
that the phase velocity is determined using a numerical simulation. The large bandwidth of the
IDT of 0.9GHz allows excitations of wide variety of frequencies in the SAWR and it is therefore
not crucial to tune the IDT frequency to the narrow stop band of the gratings (Bragg mirrors)
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b)a) c) d) e)
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Figure 3.3: Standard electron beam lithography (EBL) and evaporation process. a) The cleaned substrate
is b) spin coated with EBL resist and c) structured with electron beam exposure and chemical
development. d) A homemade electron beam evaporation system is used to cover the sample
with aluminium. e) Excess material is removed with a lift-off step.

calculated in sec. 2.6.2.2. For optimal transduction and standing wave formation, the conditions

d =
(

2n+ 1
2

)
λIDT

2 (3.5)

ds = m
λIDT

2 + a

2 (3.6)

with m, n ∈ N have to be fulfilled [75, 82]. As illustrated in fig. 2.11a), d is the distance between
the mirrors, ds the distance between the IDT and a mirror and LT the width of the whole IDT.
The distances ds, LT and d are measured from the center of the first strip of the respective
resonator or IDT. The fundamental wavelength of the IDT is λIDT = 4a with the single electrode
width a. Eq. 3.5 guarantees constructive interference of the wave after one round-trip while eq.
3.6 is experimentally found as the optimal distance between transducer and grating for maximal
coupling [82]. While eqs. 3.5 and 3.6 hold for a single electrode reflectivity rs with Im(rs) > 0,
they are a different for negative signs of the reflection coefficient [75, 82].
For the fabricated device , we use a = 183nm leading to λIDT = 732nm. Furthermore, we design
d = 399.855µm (n = 546), ds = 198.097µm (m = 541) and LT = 3.66µm. With an estimated
phase velocity of vp = 3800m/s and single electrode reflectivity |rs| = 1%, we find a center
frequency fc = 5.2GHz with FWHM νIDT = 0.9GHz (eq. 2.51), a grating stop band width
∆f = 33MHz (eq. 2.57) and a free spectral range νFSR = 4.3MHz (eqs. 2.60-2.62) of the cavity.

3.2 Fabrication

3.2.1 General Fabrication Process

Fig. 3.3a) shows the workflow of a standard EBL process. As substrates, we use commercially
available Silicon (100) wafers with ρ > 10kΩcm for cQED chips. For SAW devices, we use a stack
of silicon(350µm), silicon oxide(2µm) and lithium niobate 128◦-Y-X-cut(500nm). The substrate
is cleaned (a)) and spin coated with a positive electron beam lithography resist (b)). Afterwards,
the device layout is transferred into the resist using EBL. Subsequently, the exposed areas of the
resist are removed by immersing the sample in a suitable developer (c)). Next, Al is evaporated
onto the sample with a homemade electron beam evaporation system with a rate of 10Å/s (d)).
The excess Al and resist are removed with a lift-off step in warm acetone (e)).
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This general fabrication process is used for both cQED and SAW samples. The details on resist
stack-ups, exposure dose and development differ depending on the substrate and the fabricated
structure and will be disussed in the following.

3.2.2 cQED Device Fabrication

The fabrication of the circuit QED part of the devices, requires a precision fabrication of a
superconducting qubit and a superconducting resonator. In particular, these two circuit elements
can be categorized into resonant microwave structures based on single-layer superconductors and
Josephson junctions, which require a three-layer process. Naturally, the precision fabrication of
the two categories follow different optimization strategies, which are not necessarily compatible
with each other. First, for the single-layer microwave circuit elements, i.e. the CPW tranmission
lines, resonators, capacitors and ground planes (see fig. 3.1a)) we use the fabrication process
discussed in sec. 3.2.1. A detailed fabrication recipe can be found in appendix B.1. To mitigate
the problem of a non-continuous film at the edge of the initially deposited single layer structure,
we introduced corrogated structures at the end of the qubits, which will host the dc-SQUID in
the next step. This improved the issue of a non-continuous ruptured film of the dc-SQUID Al
layers, as multiple walls, with varying orientation on the chip increase the chance of a partially
horizontal coverage of the walls with the Al layers of the subsequent evaporation steps.
In a second step, we manufacture the dc-SQUID such that it shorts the Xmon capacitance to
ground. We use a shadow evaporation technique using Dolan bridges [83]. For this method, a
suspended resist strip (fig. 3.4a)) with widths w1 = w2 = 170nm and w2 = 170nm is used as
cover for certain areas of the substrate when evaporating Al from different angles. A fabricated
dc-SQUID is shown in fig. 3.4d) colored red. For the realization of a suspended resist bridge, we
use a double-layer resist with two different exposure doses. In particular, the lower resist has a
lower exposure dose, while the top layer resist has a higher one. In the subsequent development
process, we use two different developers to specifically remove exposed regions in the top and
bottom resist, respectively. Crucially, the developer for the lower layer does not address the top
resist.
As mentioned in sec. 3.1.1.4, we use “T-junctions” for our cQED devices [58, 78] (see fig. 3.4a))
compared to earlier work at the WMI [57, 80], where the junctions were based on a nose-type
design. The advantage of the “T-junction” is that the Josephson junction dimension solely
depends on the widths w1 and w2 of the pattern and does not rely on exact control over the
angle α for the shadow evaporation. In addition, the “T”-shape acts as a stress relief to elongate
the Dolan bridge, presumably increasing the stability [78].
Fig. 3.4a) shows schematic 3D- and top-down views of the sample during the aluminium evapo-
ration. The exposed and developed resist (orange) forms a bridge, additionally undercuts are
created along narrow structures in the pattern to ease the lift-off step. The first evaporation
(left, blue) is done with an angle of α = 55◦ with respect to the surface normal leading to an
effective shift s of the pattern on the substrate by s = h tan(α) where hb is the height of the
bottom resist layer. Typical values for the used resist system (appendix B) are hb ≈ 700nm for
the bottom resist and ht ≈ 100nm for the top resist. This results in s ≈ 1µm. Afterwards, the
Al is oxidized in-situ to create an isolating AlOx-layer. The thickness of the aluminium oxide
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Figure 3.4: Fabrication scheme for Xmon qubits with a 3-step bandage process. a) Visualization of a
Dolan-bridge shadow evaporation with oxidation. The first layer of Al is deposited under
an angle of α = 55◦ w.r.t. the substrate normal (left). Subsequently, an oxidation process
fully oxidizes the surface of the deposited Al (not shown). Lastly, a second layer of Al is
deposited parallel to the surface normal (right), forming a Josephson junction (JJ) at the
Al/AlOx/Al interface shown in yellow. The JJ dimensions solely depend on the widths w1

and w2 of the electrodes. b) Scanning electron microscope image of a Josephson junction. For
the shown junction, a lift-off error occured as the horizontal electrode of the first evaporation
step stuck to the resist and was not removed during the lift-off. c) Schematic fabrication
procedure for the creation of bandages. Left: cross-section of the substrate-metal stack after
the deposition of the dc-SQUID and EBL patterning of the bandage structure. No galvanic
contact is established between the capacitor metal (black) and the dc-SQUID (blue/red) due
to the oxidation of the capacitor in ambient conditions. Center: Argon-ion-milling is used to
physically remove the exposed oxide layer of the capacitor and dc-SQUID in the bandage
pattern. Right: An in-situ deposition of Al (magenta) provides galvanic contact between
capacitor and dc-SQUID. d) Optical micrograph of a dc-SQUID with bandages. Black spots
are resist residues which need further optimization to be completely removed. Hooks on the
capacitor have been introduced to prevent edge discontinuations.
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(green) is crucial for the critical current density characterizing the Josephson energy EJ. However,
it is hard to estimate the exact thickness due to the statistical nature of the oxidation process
[57]. Finally, a second layer of Al (red) is deposited without tilting the substrate. By carefully
choosing the right spatial dimensions of the structures, a Josephson junction is created by the
Al/AlOx/Al interface between the two deposited Al layers (yellow, lower right panel). In fig.
3.4b) a scanning electron microscope image of a Josephson junction can be seen. The size of the
junction SEM micrography in the panel b) of fig. 3.4 is 300 × 200nm2, for the measurements
presented in sec. 5.1 however we use a different junction size of 170× 170nm2 to decrease the
qubit eigenfrequency to a more beneficial value. As illustrated in the lower left panel of fig.
3.4a), an additional horizontal electrode (green) remains unconnected during the first angled
shadow evaporation. This electrode is displaced by the effective shift s ≈ 1µm with respect to
the resist structure in the top EBL resist. Therefore, an undercut of depth s would be necessary
such that the electrode can stick to the substrate. This is usually not the case in the fabricated
structures. Therefore, we try to remove the excess electrode by creating a small enough undercut
such that the electrode is evaporated onto the resist wall but not onto the substrate. During
the lift-off of the junction on display however, this electrode was not removed successfully. The
reason is probably that part of the evaporated Al covers the substrate and sticks to it during the
lift-off. This might also explain the “tilted” appearance of the electrode. To this end, we did not
manage to reproducibly remove the electrode with the current fabrication parameters, so further
optimization is needed here. The remaining electrode does not impair the basic functioning of
the qubit but might reduce the coherence.

After the definition and the realization of the single-layer circuit elements, naturally an ox-
ide layer with a thickness of 1 to 10nm forms on the aluminum, as it is exposed to ambient
conditions [84]. This prevents galvanic contact between the SQUID, which is created in the
second, multi-layer fabrication step with the previously deposited single-layer elements (fig. 3.4c),
left). Therefore, an argon-ion-milling step is incorporated into the fabricaton procedure to ensure
galvanic contact by removing the oxide layer. Instead of milling in-situ before the evaporation of
the dc-SQUID [58], we follow the approach of Dunsworth et. al [85] in order to avoid damaging
the silicon substrate during the milling process. This bandaging process is illustrated in fig. 3.4c).
In a third additional lithography, we define a bandage that connects the capacitor/ground plane
(black) from the first fabrication step with the dc-SQUID (red & blue). Subsequently, the oxide
layer is physically milled with argon ions and a bandage layer of Al is deposited (magenta).
The fabricated structure in fig. 3.4d) is the dc-SQUID of the investigated qubit in section 5.1.
The dc-SQUID shorting the capacitor to ground is colored red, the bandage providing galvanic
contact is colored magenta.
In the following, we discuss the fabricated structure and possible future optimization of the
fabrication. Especially in the bandage regions, but also close to the junctions, there is a lot of resist
residue visible. Resist residue can be a source of decoherence in superconducting qubits. This
can be overcome by descuming [86], i.e. a very weak O2 ashing process, before evaporating. Also,
further optimization of the resist stack, exposure dose and development can reduce the remaining
resist spots. Additionally, the outline of the bandage layer - especially at the top in panel d)
of fig. 3.4 - is clearly visible in a dark color. We interpret these features to show cross-linked
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resist covered with Al. The bandaging process was done in a sputter deposition chamber because
the argon-ion-gun in the evaporation system was not strong enough to remove the oxide layer.
There are two possible explanations for the cross-link: The sample could have been heated too
much during the deposition process or the undercut resist at the edge broke. We introduced an
undercut for the bandage structure to ease the lift-off. Future improvement is mainly expected
by moving the deposition process to a commercial evaporation system (PLASSYS). The machine
allows an in-situ descuming process as well as argon-ion-milling. Therefore, all deposition steps
can be done in the same system. Especially, we expect a large improvement in the bandage
quality by avoiding a sputter chamber that is also used for the deposition of AlN, a piezoelectric.

3.2.3 SAW Device Fabrication

Samples for SAW experiments are fabricated following the scheme in fig. 3.3. Additionally to the
EBL resist, a conductive resist is required when working with an insulating substrate material
such as bulk LNO. Otherwise, electrons accumulate around the point of incident during exposure
and lead to an over-exposition of the resist. In contrast, when working with thin-film LNO on
a 2µm SiOx layer on a Si substrate however, the conductivity of the bulk silicon substrate is
sufficiently large to prevent charging effects and therefore we chose a single layer positive EBL
resist PMMA/MA(33%) (AR-P 617.08). The devices are fabricated following the scheme in fig.
3.3. The detailed fabrication parameters can be found in appendix B.2.
The surface acoustic wave resonators require the fabrication of two end mirrors, which are realized
in the form of Bragg mirrors. However, the exposure dose required for the definition of these
structures has a non-trivial spatial distribution due to the effect of amount of back-scattered
electrons, which also depend on exposed areas in close proximity. This so-called proximity effect
represents a challenge for the fabrication of this mirrors, however, as we detail in sec. 3.3. The
usage of a proximity effect correction software can account for this challenge and compensate for
this effect by spatially adjusting the exposure dose.

3.3 Proximity Effect Correction with BEAMER

Electron beam lithography uses accelerated electrons to change the chemical structure of the
resist. By confining the electron beam to spot sizes of a few tens of nanometers, extremely small
structures can be fabricated. However, the so-called proximity effect has a large influence on
the achievable resolution [87]. Proximity effect (PE) is created by backscattered electrons in the
substrate. Since this backscattering can lead to electron trajectories in all directions, the PE is
responsible for exposure away from the point of beam incidence. Effectively, the exposure dose
at a certain point is therefore increased by the PE contribution from all surrounding exposed
points. This causes a dose dependence on the position in the pattern: Points surrounded by other
exposed regions are subjected to more dose than points at the edges or corners of structures.
Especially for SAW Bragg mirrors consisting of narrow strips with a length of ∼ 350µm, a width
of ∼ 200nm and similar spacing, this effect can influence the fabricated structure significantly.
Exposing the whole mirror with the same dose would therefore lead to an underexposure of
the edges in the case when the dose is optimized for a well-defined center of the mirror while
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a) b)

20µm 20µm

Figure 3.5: Optical micrograph of fabricated Bragg mirrors without (a)) and with (b)) proximity effect
correction via BEAMER and TRACER. In a), the dose was optimized for the center of the
Bragg mirror. Due to the lack of proximity exposure, the edges of the mirror are underdeveloped,
visible by the darker color of the electrodes which is most likely due to resist residues. In
the corners, the underexposition is so significant that the resist is not developed. Therefore,
the electrodes are completely removed during the lift-off. Image b) was taken for the same
layout with a proximity effect corrected electron beam lithography. Here, the exposure dose is
enhanced at the edges and corners to cope for the missing proximity effect by neighboring
structures. The effective dose is the same for all electrodes wherefore the edges and corners
are fully developed.

well-defined edges would require an overexposition of the center. An example of this issue can be
seen in fig. 3.5a). Here, the corner of the structure is heavily underexposed such that the resist is
not fully removed in the following development. Therefore, the Al cannot stick to the substrate
and is removed in the lift-off step. Furthermore, a color gradient is visible from the edges towards
the inner part of the SAW mirror. We assume that there is more resist residue at the edges due
to the decreased exposure dose.

BEAMER and TRACER are software packages by GenISys GmbH4 to account for backscatter-
ing and perform a proximity effect correction (PEC). Based on a Monte-Carlo simulation of the
electron scattering processes in the resist and substrate (see fig. 3.6a)), a point spread function
(PSF) for a specific substrate-resist stack-up is generated (panel b)). Here, the accumulated energy
deposited in the resist is expressed as a function of distance from the beam incident point. With
this information, PEC can be applied to any exposure pattern, accounting for back-scattering
and (if known) beam broadening. Areas with high density patterns receive a reduction in dose
while isolated structures will have an increased exposure dose assigned. The optimization goal
of the software is to accurately imprint the pattern in the resist. Using this software package,
we were able to improve the fabrication of SAW Bragg reflectors as shown in fig. 3.5b). The
exposure dose for regions close to the edges and corners of the structure was enhanced such that
the effective dose (including backscattering) is equal at any point in the pattern.

4Website: https://www.genisys-gmbh.com/

https://www.genisys-gmbh.com/
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Figure 3.6: a) Cross-section of a TRACER point spread function (PSF) simulation. The substrate (purple),
the resist (orange) and the acceleration voltage of the lithography system are defined by the
user. The path of incident electrons (colored lines) is then simulated with a Monte-Carlo
simulation and the effective energy deposited in the resist at each distance from the incident
point is stored. b) 2D-PSF of the shown tracer simulation. The PSF is a radial cross-section of
the deposited energy in the xy-layer at half the depth z of the resist. At the point of incident,
the energy is normalized to 100%. TRACER then calculates the relative deposited energy
with respect to the distance of the beam incident. For distances larger than 30µm, the resist
is not affected by the exposure. With this PSF, BEAMER can adapt the exposure dose for a
given pattern such that the same amount of energy is deposited anywhere in the structures.



Chapter 4

Measurement Setup

All presented measurements were performed in a commercial TRITON400 dilution refrigerator
by Oxford Instruments with a working temperature of 90mK. The measurement techniques for
cQED and SAW measurements are very similar and only differ in minor aspects. In order to avoid
unnecessary repetitions, we therefore describe the setup employed for the cQED measurements
in sec. 4.1 and then discuss the differences for the SAW setup in sec. 4.2. In order to protect the
flux-tunable transmon qubits for our cQED experiments against flux noise, we place the sample
with its packaging inside a (superconducting) aluminum shield.

4.1 cQED Measurement Setup

This section is structured as follows: we start with a discussion about the continuous wave
excitation and spectroscopy experiments in the frequency domain. Then, we continue with the
setup used for time domain measurement.

4.1.1 Frequency Domain Measurements

For the initial spectroscopy of the microwave resonator coupled to a superconducting qubit, we
employ continuous wave excitation scemes combined with microwave transmission experiments.
A schematic drawing of the whole setup is shown in fig. 4.1. As microwave spectroscopy

techniques typically employ (at least) two microwave tones, we use two separated input lines. One
input line is dedicated for the spectroscopy of the microwave resonator (blue) and a second one
to excite the qubit (magenta). The used devices are synchronized to the internal 10MHz clock
of the vector network analyzer (VNA) and connected to a local network which allows remote
control via LabView.

As discussed in sec. 2.3.3, we need to extract information about the readout resonator which
we probe with a VNA [88]. This device allows us to determine the absorption line of the
resonator and hereby its resonance frequency, linewidth and absorption properties. The nature of
the experiments requires that we minimize the amount of thermal (microwave) noise photons
interacting with the investigated device. To this end, we place microwave attenuators at the
different temperature stages of the dilution refrigerator. For the given line attenuation (see fig.
4.1) of the input line to the microwave resonator, we expect with this configuration O

(
10−2)

residual thermal noise photons at ωr/2π = 7.2GHz [89]. The nominal attenuation values shown
in fig. 4.1 sum up to −52dB. In addition, we have −9.9dB due to losses of the microwave lines1.

1This values originates from a calibration done prior to this thesis, see sec. 6.5 of Ref. [80].
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Figure 4.1: Measurement setup for cQED measurements. The sample is placed in a dilution refrigerator
operating at 90mK and connected via microwave lines to the lab environment. Different parts
of the setup are color coded. All instruments are synchronized to the internal 10MHz clock of
the VNA.

As we will see in sec. 5.1.3, the attenuation is higher than expected. After interacting with the
resonator-qubit system, the signal passes three circulators to insulate the sample from thermal
noise via the output line. Subsequently, the signal is amplified by a cryogenic HEMT-amplifier
with a gain of 42dB when operating at 4K. At room temperature, the signal is further amplified
prior entering the “receiver box", which allows to transmit the signal, as used in the continuous
wave experiments or to downconvert the signal to an intermediate frequency as discussed in sec.
4.1.2. The VNA then measures phase-sensitive information about the transmitted microwave
signal in the form of the complex scattering parameters S21.

In order to manipulate the qubit state with microwaves, we apply drive pulses via the “Qubit
Drive” path. To this end, we employ a microwave vector signal generator with a frequency range
from 10MHz to 12.75GHz which is connected to the antenna line of the inspected qubit. The
qubit state can be read out via the readout resonator which is capacitively coupled to the qubit.
For the readout, the probe signal is attenuated throughout the different temperature stages to
minimize thermal noise.

4.1.2 Time Domain Measurement

For time domain measurements, we utilize the specialized setup built by Stefan Weichselbaumer
in Ref. [90]. We will provide an overview of the setup and point out notable differences in this
section. For further technical details we refer the reader to the corresponding chapter in Ref. [90].
For a detailed description of time domain measurements with superconducting qubits, we refer
the reader to Ref. [57].

Additionally to the “Readout” and “Qubit Drive” paths, we introduce a path “Pulse Shaping”
for triggering drive and readout pulses. The core element is an arbitrary waveform generator
(AWG) with two output channels and corresponding inverse channels, indicated by bars over the
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Figure 4.2: Schematics of the receiver box for microwave down-conversion. The signal is IQ-mixed with a
local oscillator to an intermediate frequency (IF) of 62.5MHz for digitization. The bandpass
filters at the input of the RF and LO signal can be exchanged to cover the investigated
frequency regime.

label in fig. 4.1.
For the time domain experiments, we use a pulsed excitation scheme of the readout and qubit

excitation input lines. The details of the connection scheme are presented in Fig 4.1. After the
continuous wave characterization of the coupled resonator-qubit system, we have determined
the frequency of the microwave resonator ωr and the frequency of the qubit ωq. In detail, we
configure the microwave source exciting the resonator to operate in pulse-modulation mode and
set its frequency to ωr. Channel 1 of the AWG then controls the amplitude of the microwave
radiation with an on-off ratio of 80dB [91] using a TTL control signal. The inverse voltage pulse
is sent to the trigger of the digitizer card starting the acquisition if the card is armed.
To perform controlled qubit manipulation, we employ a vector source modulated by channel 2 of
the AWG. The vector source can take an IQ-signal as modulation input. Therefore, elaborate
pulse shaping with sideband mixing of a carrier signal is made possible (see Ref. [90] for details).
However, in our experiments, we set the internal local oscillator of the vector source to the desired
output frequency, e.g. ωq for resonant drive, and feed the I-channel of the modulation input with
a simple rectangular pulse with typical lengths on the order of tens to hundreds nanoseconds.
This allows us to exploit the large modulation bandwidth of the vector source to achieve much
faster rise times (1GHz bandwidth [92]) than achievable with common pulse-modulated signal
generators. A disadvantage of the modulation technique in the form we implement here is the
so-called leak through, which is resonant with the qubit and hence also has the ability to excite
or disturb it. However, the IQ-mixer in the used vector source has an on-off ratio of > 45dB, so
leaking signals can be neglected after the additional attenuation in the cryostat.
For the experiments in the time domain mode, we configure the receiver box to downconvert

the microwave signals to an intermediate frequency, which are subsequently digitized with a
fast data acquisition card. The schematic of the receiver box wiring is shown in fig. 4.2. It was
built in the scope of Ref. [90] and slightly adapted for our measurements by changing filters to
suitable frequency ranges. The pin switch at the input port of the signal path is not used in
our experiments and remains permanently closed at all times of the measurement. Following a
bandpass filter, that is chosen individually for the measurement to cover the frequency range of
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Figure 4.3: Measurement setup for SAW measurements. Our SAW one-port resonators are measured in
reflection using a circulator to seperate incoming from outgoing signals. A power combiner is
used to enable measurement of two different structures.

interest, a microwave amplifier with nominally 34dB gain increases the signal strength of the
readout tone at frequency ωr. A circulator is used to protect the amplifier from backscattered
microwaves. Subsequently, a microwave switch directs the signal to an IQ-mixer. Alternatively,
as for the frequency domain measurements, the switch can be set to output the amplified signal
directly. A strong local oscillator with 15dBm and a frequency ωLO/2π = ωr/2π − 62.5MHz,
where ωIF/2π = 62.5MHz is the so-called intermediate frequency (IF), is mixed onto the incoming
signal. This projects the in-phase (I) and quadrature (Q) information onto signals with frequencies
ωr − ωLO = ωIF and ωr + ωLO. The up-converted signal and broadband noise are suppressed
by the following lowpass and bandpass filters while the signal at ωIF is amplified by a FEMTO
DHPVA-200 Voltage-Amplifier with a variable gain from 10 to 60dB before reaching the output
ports of the box. The down-converted I- and Q-signals are fed to a Spectrum M4i.4451-x8 digitizer
card with a sampling rate of 500MSamples/s and 14 bit resolution. If the trigger channel of the
card receives a pulse by the AWG, the data acquisition starts. Since the card has the option to
record pre-trigger data, timing of the microwave signal and the recording is not crucial as long
as any potential delays remain constant. The I- and Q-signals are digitized and recorded by a
measurement computer. The data is then demodulated with ωIF using a software tool2 introduced
in Ref. [90]. The in-phase and quadrature information reveal the magnitude A =

√
I2 +Q2 and

phase φ = arg(I + iQ) of the probe signal. The interpretation of the data is discussed in sec. 5.1.

4.2 SAW Measurement Setup

Fig. 4.3 shows the setup for SAW measurements which almost identical to fig. 4.1. A different
input line is used, such that the attenuation differs from cQED experiments. We drive the

2Available at https://gitlab.com/stwe/echo-demodulator

https://gitlab.com/stwe/echo-demodulator
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one-port SAW resonator with a microwave source and measure the reflected signal. To separate
signal reflected elsewhere along the way from signal reflected by the investigated structure, we
use a circulator directing the microwave to a dedicated output line. A power combiner allows the
measurement of two different structures with the same output line. Apart from that, all data
processing is handled as described in sec. 4.1.2.





Chapter 5

Experimental Results

For quantum acoustodynamic experiments, the superconducting Xmon qubit coherently couples
to single phonons of the SAW resonator. Within this scheme, qubit states can be mapped to the
slow traveling acoustic waves and interfere with the (in the meantime coherently manipulated)
qubit at a later point in time. Here, the main difference to the system where a superconducting
qubit interacts with a superconducting resonator is the travel time or retardation typically
coming along with the acoustic wave resonator. For successful experiments, one requirement is a
sufficiently long qubit coherence time to map a quantum state onto a phonon and interfere with
this state after a typical transit time of the phonon on the order of 100ns to 1us [30]. One of the
technical requirement is to adjust the resonance frequency of the SAW resonator to the properties
of the qubits. For both systems, established concepts to realize GHz circuit elements exist and we
therefore will tailor both the qubit and the SAW resonator to operate in this frequency regime.
The fundamental SAWR frequency is determined by the single electrode width, exemplarily an
electrode width of a ≈ 180nm leads to a SAW resonator frequency of to approx. 5GHz. Within
this chapter, we first present results about the superconducting qubit followed by a discussion
about the properties of the investigated SAW resonator.

5.1 Experimental Results of the Coupled Transmon-Microwave
Resonator Device

In the following, we characterize a transmon qubit designed and fabricated as described in sec.
3.2.2. Starting with an analysis of the readout resonator, we gain insight into its resonance
frequency ωr, coupling rates κr as well as the flux-current dependence of the coil mounted to
the sample. Following these single-tone experiments, we conduct two-tone spectroscopy to gain
insight on the qubit frequency ωq, its coupling strength g to the resonator, anharmonicity α and
intrinsic dephasing rate γφ. Furthermore, we use the photon-number dependent frequency of
the transmon qubit to perform an accurate power calibration of the readout and drive tones,
extracting the total attenuation of the microwave setup. Lastly, time domain spectroscopy is
conducted to gain information about relevant qubit timescales T1, T2 and Tφ.

5.1.1 Single-Tone Spectroscopy

We start by characterizing the readout resonator with a continuous wave transmission measure-
ment. As shown in fig. 2.10, the investigated sample consists of a microwave transmission line
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Figure 5.1: Characterization of the resonant interaction between microwave resonator and qubit.
a) Linear port-to-port microwave transmission S21 through the sample transmission line as a
function of the applied coil current Icoil. Avoided crossings are visible around Icoil = 1.28mA
and Icoil = 1.48mA where the transmon becomes resonant with the microwave resonator, i.e.
ωq = ωr. b) Frequency dependent microwave transmission magnitude |S21| and c) real part of
|S21| versus imaginary part of |S21| at fixed coil current I = 1.40mA (dashed line in a)). Solid
lines are fits to the data according to Ref. [93]. From the fits we extract ωr/2π = 7.213GHz,
Q = 8155 and Qint = 10182.

coupled to a λ/4 microwave resonators. For this notch-port coupling, the transmitted signal |S21|
shows an absorption dip at the resonance frequency ωr of the resonator. The general response of
a harmonic oscillator is Lorentzian [94]. However, a more complex behavior can be observed in
microwave circuits with nonideal impedance matching [95]. Moreover, to identify a functioning
resonator-qubit pair, we measure the frequency dependent microwave transmission as function
of the current through the coil which is mounted on top of the sample box. The magnetic field,
which is generated by this coil changes the magnetic flux through the dc-SQUID of the Xmon
and hereby tunes its resonance frequency ωq(Φ) in a periodic fashion according to eq. 2.26. As
discussed in section 2.3, we expect a level repulsion of the resonance feature of the resonator and
the transition frequency of the qubit in the limit of the strong coupling regime, which manifests
itself as an anticrossing in the absorption function of the superconducting resonator. We observe
this avoided crossing as regular pattern when analyzing the microwave transmission signal as
function of the coil current Icoil and probe frequency ωp. Fig. 5.1a) shows two anticrossings in the
absorption spectrum of the readout resonator. The port-to-port transmission parameter |S21| of
the microwave signal is colorscaled. We do not account for the total attenuation and amplification
of the signal in the circuitry, for data analysis purposes, the signal is either normalized or scaling
factors in the fitting functions account for offsets. The shown spectrum is mainly composed out of
the transmission function of the microwave resonator, whose resonance frequency is independent
of the applied magnetic field. The resonator becomes resonant with the transition frequency of
the qubit at 1.28mA and 1.48mA resulting in the mentioned anticrossing. In the magnetic field
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of coil currents of 1.2 − 1.25mA, 1.32 − 1.45mA and 1.51 − 1.6mA, the microwave resonator
shows a nearly constant resonance frequency. However, the resonance frequency is reduced in the
middle section due to the dispersive shift originating from the resonant coupling with the qubit.
For example, at a coil current of 1.4mA, we observe a notch-type resonance feature attributed to
the microwave resonator at 7.21GHz.
At these large qubit-resonator detunings, we can determine the resonator characteristics

(see figs. 5.1b) and c)). These panels show the frequency dependence microwave transmission
magnitude and the real part versus the imaginary part of the transmission at a fixed coil current
I = 1.40mA. Fitting the data with a “circle-fit” algorithm detailed in Ref. [93] and openly
available1, we find the resonance frequency at ωr/2π = 7.213GHz. Simulations of this circuit
layout with CST Microwave Studio predict a resonance frequency of 7.7GHz. The 5% deviation
in the resonance frequency is attributed oxides on the substrate- and metal-interfaces changing
the effective dielectric constant. Additionally, the fit determines a total quality factor (loss rate)
of Q = 8155± 345 (κr = (885± 38)kHz). The external and internal quality factors (loss rates)
are Qe = 40949± 889 (κr,e = (176± 37)kHz) and Qi = 10182± 528 (κr,i = (708± 2)kHz). Due
to the relation of the coupling rates κr,i > κr,e, the resonator is dominated by internal losses and
comparably weakly coupled to the transmission line. Typically, a readout resonator should have
its dominant loss channel to the transmission line such that κr,e � κr,i. Therefore, for future
samples the external coupling strength should be increased, e.g. by decreasing the distance of
the transmission line and the resonator line and elongating the coupling length. Additionally,
better internal quality factors should be achieved by surface treatment to increase the quality of
metal/substrate- and substrate/air-interfaces [96] and switching the fabrication procedure to a
substractive etch process rather then a lift-off process to improve the metal edge quality [57].

5.1.2 Two-Tone Spectroscopy

With knowledge of the readout resonator we can start to characterize the qubit coupled to it. For
two-tone measurements we send a continuous microwave tone through the transmission line prob-
ing the resonator at its resonance frequency ωr. This resonance frequency was determined without
any excitation of the qubit and low probe tone powers of Pappl,RO = −50dBm corresponding
to a mean photon occupation number of the resonator of less than 15 photons (c.f. 5.1.3) such
that the qubit was in state |g〉. As discussed in sec. 2.3.3, the qubit state dependent frequency
shift of the resonator 2χ will lead to a change in the transmission amplitude of the probe tone
when the qubit is in the excited state as visualized in fig. 2.5c). Therefore, we can utilize this
dispersive shift when exciting the qubit with a second microwave tone. When we measure the
dispersive shift, here in terms of a change in the resonator transmission, as function of the qubit
excitation frequency ωd and the coil current Icoil, we can determine the dispersion of the qubit
frequency (see fig. 5.2a)). We identify the dark blue regions in the spectrum with resonant qubit
transitions, leading to a change in the probe tone transmission. In panel b), we extract the
drive frequencies at which the qubit is excited. At most coil currents, we find two transition
frequencies. Following the spectrum in fig. 2.6c), we identify the higher frequency with the
qubit frequency ωq. The lower frequency can be attributed to a single photon of the two-photon

1GitHub: https://github.com/sebastianprobst/resonator_tools.

https://github.com/sebastianprobst/resonator_tools
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Figure 5.2: Two-tone spectroscopy of the flux-tunable Xmon. a) Microwave transmission |S21| measured
at the resonator resonance frequency ωr as a function of applied coil current and qubit drive
frequency. Changes in the transmission are caused by a qubit-state dependent shift of the
resonance frequency (dispersive shift). The dark blue signatures can be associated with excited
qubit states. b) Qubit resonance frequencies as a function of coil current/bias flux extracted
from a) using Lorentzian fits. We have identified two transitions, the qubit transition |g〉 → |e〉
at ωq and the two-photon process |g〉 → |f〉. The latter is visible at the frequency of single
photon at ωgf/2 in the spectrum. The red line is a fit of eq. 2.26 to the transition frequency
ωq. The lower panel shows the anharmonicity α at each coil current where both transitions
are visible. A slight deviation at Icoil = 100µA and 170µA is visible. To obtain the overall
anharmonicity, we average over all values. c) Detailed avoided crossing of the single-tone
experiment in fig. 5.1a). With the fit parameters from panel b), we can calculate the qubit
frequency in the anticrossing (dashed line ωq/2π). Fitting eq. 2.20 to the dressed states reveals
good agreement of the resonant Jaynes-Cummings model with the measurement. From the fit,
we extract a resonator-qubit coupling rate of g/π = 89MHz, which is the energy splitting of
the dressed states at ωq = ωr.

process driving the transition |g〉 → |f〉. This transition has a energy gap ωgf < 2ωq due to the
negative anharmonicity of the transmon, therefore the frequency of a single photon contributing
is ωgf/2 < ωq. By fitting eq. 2.26 to the curve of ωq, we find a maximum qubit frequency of
ωq,0/2π = (9.010± 0.001)GHz and a periodic tuning of the qubit frequency with I = 414µA.
Using the known SQUID-area 300µm2, we can determine the applied external magnetic flied bias
of the coil to 112mT/A. The difference in frequency between the qubit frequency ωq and the
two-photon process ωgf gives information about the anharmonicity α = ωgf/2− ωge.The lower
panel of fig. 5.2b) shows the anharmonicity for all coil currents with both visible transitions.
A slight deviation at Icoil = 100µA and 170µA can be observed. Averaging over all flux points
leads to α/2π = (−187± 6)MHz. With knowledge of ωq(Φ), it is additionally possible to extract
the qubit-resonator coupling g from avoided crossings as in fig. 5.1a). For this we conveniently
rewrite the transition energy ωdressed = E0,±/~−E0,g/~ from the Jaynes-Cummings ground state
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Figure 5.3: Drive-power dependence of the qubit linewidth. a) Normalized transmission magnitude |S21|
of the probe tone (ωprobe = ωr) as a function of drive tone power and frequency. b) Slices
of the squared normalized transmission magnitude |S21|2 at different drive powers with
Lorentzian fits (eq. 5.4). The individual slices are shifted vertically for better visibility. c)
Power-dependent qubit linewidth extracted from Lorentzian fits in b). The red line is a linear
fit yielding an extrapolated qubit linewidth at zero drive power of γq/2π = 1.70MHz.

|0, g〉 in eq. 2.21 to the dressed states |0, ±〉 in eq. 2.20 as

ωdressed = 1
2(ωr + ωq(Φ))± 1

2
√

4g2 + δ2 (5.1)

Fitting eq. 5.1 to the dressed state frequencies in the anticrossing of fig. 5.1a) (see panel c) of fig.
5.2) with known ωq(Φ) and ωr (dashed lines) reveals a coupling strength g/2π = (44.4± 0.9)MHz.
Additionally to the anharmonicity and the coupling strength to the resonator, the internal

linewidth γq is an important qubit parameter as it is directly related to the dephasing rate [23].
Fig. 5.3a) shows the normalized transmission data of the probe tone probing the microwave
resonator at resonance ωr in dependence of the applied qubit drive power and frequency for
continuous qubit drive. The drive frequency range, in which a qubit response is visible in the
drive tone, broadens with increasing power. The probability Pe of finding the qubit in the excited
state has a Lorentzian shape [23]

Pe = 1
2

Ω2
R

γ1γ2 + δω2γ1/γ2 + Ω2
R
, (5.2)

where ΩR is the Rabi frequency, γ1 and γ2 are the decay and decoherence rates of the qubit and
δω = ωd − ωq is the drive tone detuning. The FWHM of this Lorentzian is given by the qubit
linewidth

γ2 = 2
√
γ2

2 + Ω2
Rγ2/γ1. (5.3)

Therefore, the intrinsic decoherence rate γ2 is given by the linear extrapolation of the square of
the half-width at half-maximum (HWHM, equals FWHM/2) ν2

HWHM. In order to extract the
linewidth of the qubit response, we fit a well-establish Lorentzian function [97] to the readout
spectrum at various powers in fig. 5.3a). The used Lorentzian function additionally accounts for
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Figure 5.4: a) Qubit frequency ωq and change of qubit frequency δωq = ωq(P )−ωq(P → 0) as a function
of the applied probe tone power Pappl,probe at the microwave source output. Higher probe
powers, i.e. more photons in the readout resonator, lead to a lower transition frequency due
to the AC-Stark shift. b) Loss rates of the readout resonator depending on the power. For low
probe powers unsaturated two-level systems lead to increased losses. κr,e is roughly constant
as expected. c) Linear fit to δωqκ

2
r . With known α, δ, g and κr,e the attenuation Λ = −76.2dB

can be extracted. d) Calibrated average photon number 〈nph〉 in the readout resonator. Above
〈nph〉crit the dispersive regime breaks down. Inset shows photon numbers for lower powers.

a complex background and is given by [97]

|S21|2 = 1−
∣∣∣∣ic1 +

√
γq,extγq/2

γq/2 + i(ωd − ωq)

∣∣∣∣2 + c2, (5.4)

and exemplary fits are shown in fig. 5.3b). For high powers, the qubit linewidth is dominated
by power broadening while for low powers it converges towards its intrinsic linewidth γq = 2γ2.
A linear fit to ν2

HWHM in fig. 5.3c) determines the decoherence rate γ2 of the qubit to γ2/2π =
(1.70± 0.10)MHz equaling T2 = 2π/γ2 = (588± 35)ns. Since γq = 2γ2 for negligible power
broadening, this means that we are in the strong coupling regime where g > κr, γq.
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5.1.3 Photon Number Calibration

As the effective coupling strength between the qubit and the resonator scales with the photon
number via geff = g

√
n+ 1, we have to discuss the influence of a large photon number in the

resonator. During derivation of eq. 2.22, we expanded the exact Jaynes-Cummings Hamiltonian
of eq. 2.17 in terms of g/δ. As a result, we find a resonator dependent pull of the qubit frequency
when rearranging eq. 2.22 to

ĤJC/~ = ωrâ
†â+ 1

2

[
ωq + 2χ

(
â†â+ 1

2

)]
σ̂z. (5.5)

With this form, we find the qubit to undergo an AC-Stark shift of 2χ〈nph〉 caused by the mean
photon occupation 〈nph〉 of the readout resonator. Additionally, the photon number statistics
of the occupancy â†â lead to an inhomogeneous line broadening of the qubit [23]. Therefore,
a photon number calibration is needed to have insight on the resonator occupancy depending
on the probe power. As the photon number in a microwave resonator is given by eq. 2.44, this
can be challenging due to insufficient knowledge of the exact attenuation Λ from the microwave
source to the sample and the external coupling rate κext of the resonator to the transmission
line [69]. However, we can make use of the AC-Stark shift of the qubit to quantify the photon
number with the following measurements.

Depending on the probe tone power at the microwave source output, we measure the resonant
qubit frequency and the linewidth of the readout resonator (fig. 5.4a) and b)). For higher readout
powers we see a decrease in the qubit frequency according to the AC-Stark shift for a transmon
[69]

δω = 2g
2

δ

α

α+ δ
〈nr(κ)〉. (5.6)

For this experiment, we configure the qubit at the so-called sweet spot (Icoil = 135µA, see fig.
5.2b)) which is in the dispersive regime with a qubit frequency ωq/2π ≈ 9GHz (see fig. 5.4a)),
far detuned from the resonator frequency ωr/2π = 7.213GHz with δ ≈ 2π × 1.8GHz� g. For a
microwave resonator probed on resonance the average photon number is given by eq. 2.44

〈nr〉 = 2Pappl
~ωrκ2

r
Λκr,e. (5.7)

Λ denotes the attenuation from the signal source to the sample. As expected the internal loss
rate κr,i increases with decreasing power as more two-level systems present on the sample are
not saturated by the probe tone. We can now linearly fit the product δωqκ

2
r in panel c) using the

data points where we know both Pappl,probe and κr,e. The resulting slope can be used to extract
Λ = (−76.2± 0.9)dB. The attenuation of the input line driving the microwave resonator is about
14dB higher than expected from the total attenuation given by the attenuators placed in the
system of −52dB and −9.9dB [80] cable losses. Most likely the attenuation in the cryostat is
higher than recorded due to a wrongly labeled attenuator. With this constant value of Λ and a
constant κr,e as visible in panel b) we can now state the average photon number depending on
the probe power as shown in panel d). The critical photon number, above which the dispersive
regime breaks down [69], 〈nph〉crit = δ2/2g2 = 346 is reached at about Pappl = −36dBm.
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Figure 5.5: a) Transmitted microwave signal |S21| through the sample transmission line as a function of
the probe tone frequency ωprobe around the resonance of a CPWR at resonance frequency
ω̃r. The red line is a complex lorentzian fit to the data. For time domain measurements, the
response of the resonator at frequency ω̃r is measured and depends on the qubit state. b)
Typical time trace of the transmitted signal T for a driven qubit measurement. The individual
time sections I-IV are explained in the main text. All shown time-domain data is averaged
over 106 single-shot measurements. c) Two time traces starting at the readout pulse onset
are shown. The resonator response is different for measurements without qubit drive (black)
versus a π-pulse drive (red) due to the dispersive shift.

5.1.4 Time Domain Measurements

In contrast to frequency spectroscopy time domain measurements capture the dynamics of
the investigated system and allow for direct access to information such as lifetime T1 and
coherence time T2. In this section we will investigate different pulse schemes shown in fig. 2.8d).
All measurements shown are conducted using the setup discussed in sec. 4.1.2 and applying
8dBm drive power and −40dBm readout power, corresponding to an average photon number
〈nph〉 ≈ 160, with a pulsed readout scheme.

Driven Rabi oscillations with different pulse lengths and driving frequencies give information
about the resonance frequency of the qubit as well as durations for π- and π/2-pulses needed to
invert the qubit state or bring it to the equatorial plane of the Bloch sphere. This knowledge will
be used for inversion measurements (allowing to extract T1) and Ramsey/spin-echo protocols
that reveal T2.

5.1.4.1 Data Acquisition for Time Domain Measurements

We start by discussing the data acquisition and analysis for pulsed time domain measurements
and mainly focus on the readout; the description of different pulse sequences can be found in
2.4.4. Applying a microwave pulse sequence leads to a rotation of the qubit state vector on
the Bloch sphere. After the drive pulse manipulated the qubit state, we read the state in the
computational basis {|e〉 , |g〉} via the readout resonator. This is done by probing the resonator
at the resonance frequency ω̃r = ωr − χ found with the qubit in the ground state |g〉. We
use a complex Lorentzian fitting function integrated in the measurement software to extract
the resonance frequency. Fig. 5.5a) shows the signal transmission as a function of frequency
around the resonance frequency ω̃r. The dashed line is the extracted frequency at which the
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system will be probed for all time domain measurements2. Note, that the probe frequency is
not at the minimal transmission but at a frequency with a very large slope in the transmission
spectrum. Therefore, minimal shifts of the resonance frequency can be detected. If the qubit
is in the excited state |e〉, the eigenfrequency of the AC-Stark shifted resonator differs from
ω̃r by 2χ (c.f. 2.4.4). This leads to a different amplitude of the resonator response and there-
fore a change in the transmission signal. In combination with fig. 2.5c), we expect a decrease
in the transmission signal if the qubit is in state |e〉 for positive detuning δ > 0. Since time
domain measurements will be conducted with a heterodyne detection setup instead of a VNA
measurement as in the frequency domain, we will denote the measured signal with T instead of S21.

A typical time trace measured with the used setup is shown in fig. 5.5b). Each single time trace
consist of around 106 averaged measurements. The timing between the applied readout pulse
and the start of the data acquisition is set such that the digitizer card records a few hundred
nanoseconds before reading out the qubit (region I). Following a quick initial signal transmitted
through the chip (region II), the resonator starts to ring-up (region III). At the beginning of the
ring-up, much of the signal is coupled into the resonator leading to a decreased transmission.
On the timescale of its coupling to the transmission line κr,e, the resonator is filled with photon
and saturates. After the readout pulse ends, the ring-down behavior of the resonator can be ssen
accordingly (region IV).
In panel c) of fig. 5.5, the ring-up of the resonator for a preceding π-pulse (red) and no drive pulse
(black) is shown. Clearly, the response of the resonator depends on the qubit state: In comparison
to the transmitted signal for no qubit drive (black, qubit in |g〉), a π-pulse (red, qubit in |e〉) leads
to a stronger absorption of photons by the resonator. This matches the expected behavior as
discussed for panel a). Since each trace is the average of many measurements - each measurement
yielding either |g〉 or |e〉 for the qubit state - we can map the transmission amplitude to the
probability of finding the qubit in the excited state. For our experiments, we fit the ring-up of
the resonator with an exponential T ∝ A exp(−κtRO) beginning at the dashed line in c) and
analyze the resulting amplitude A.

5.1.4.2 Rabi & Lifetime Measurements

In order to investigate the qubit dynamics for different excitation pulses, we perform Rabi
sequences (fig. 2.8d)) with varying pulse durations τd and drive frequencies ωd. Analyzing the
resulating time traces in the previously described manner, we find oscillating transmission
amplitudes as depicted in fig. 5.6 in the left panel. As the Rabi frequency Ω2

R = ε2d + δ2 at which
the qubit population oscillates scales with the detuning δ = ωd − ωq and the drive amplitude
εd, a faster oscillation of the transmitted signal is visible for off-resonant drive. The resonance
frequency of the qubit is found at the qubit drive frequency ωd with the longest Rabi oscillation
period such that ωdτd = (2n + 1)π, n ∈ N indicated by the dashed line. However, this is in
contrast to the expected constant qubit frequency ωq for which the line would be vertical (c.f. fig.
1 of Ref. [98]). Instead, we see an increasing qubit frequency as a function of the pulse length τd.
We explain this behavior by a finite overlap to of the drive and readout pulse (fig. 5.6 right

2This calibration is done before each individual measurement to account for deviations.
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Figure 5.6: Left: Rabi measurements for different pulse lengths τd and drive frequencies ωd. The color-
coded transmission displays the probability of finding the qubit in the excited state. The
dashed line indicates the qubit resonance frequency for different pulse lengths, a non-typical
drift is visible. Middle: Numerical calculation of pulsed Rabi sequences with a finite overlap
to of the drive and readout pulse to replicate the measurement. No loss is included. Right:
Schematic pulse sequence to illustrate the overlap. For varying pulse length (red), the overlap
stays constant due to the measurement setup. Timescales are not to scale.

schemes). For short τd, most of the drive pulse overlaps with the readout pulse such that the qubit
frequency is strongly influenced by the ring-up of the resonator and the consequent AC-Stark shift
2χ〈nph〉. Since χ is negative for transmons (eq. 2.27), the qubit resonance frequency is effectively
decreased. For longer drives, most of the qubit rotation takes place without any disturbance by
the resonator leading to higher qubit frequency in the absence of an AC-Stark shift.
We verify this explanation by numerically solving the Schrodinger equation with a modified

Rabi Hamiltonian in the rotating frame similar to eq. 2.32:

H̃(t)/~ = 1
2

(
− (ωd − ωq(t)) εd

εd (ωd − ωq(t))

)
. (5.8)

Here, the qubit frequency ωq(t) is now time-dependent as the photon population of the resonator
and therefore the AC-Stark shift on the qubit vary over time. Due to the pulse overlap the
readout resonator will start to be populated for a time to before the drive pulse ends. The
changing photon number3 in the resonator results in a time-dependent AC-Stark shift of the
qubit frequency. The numerical calculation shows the same behavior of a drifting qubit frequency
as the measurement. Since there is no decoherence channel implemented the signal stays equally
strong for longer pulse times. More information on the calculation can be found in appendix A.2.
By further investigation of panel a) we want to find the duration of a π-pulse on resonance.

Due to the dispersive shift the signal T at the digitizer card is proportional to the probability Pe
of finding the qubit in the excited state. We can therefore write the transmission similarly to eq.

3The applied readout power of Pappl = −40dBm equals an average photon number of 〈nph〉 = 160.
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Figure 5.7: a) Time evolution of the transmitted signal at fixed drive frequency ωd/2π = 9.000GHz as a
funtion of drive pulse length τd, corresponding to a slice along the dashed line in fig. 5.6a) and
fit following eq. 5.9. The initial π-pulse of the Rabi sequence (inset) inverts the qubit state
and therefore changes the signal T from maximal at τd = 0 to minimal at τπ = 28.9ns. b)
Inversion recovery measurement. For longer wait times τ betwen π-pulse and readout (inset)
the qubit relaxes to its ground state, increasing T. The exponential fit yields T1 = 129ns.

2.36 as
T ∝ sin2

(
ΩRτd

2

)
× exp (−γτd) , (5.9)

with ΩR =
√

(ωd − ωq)2 + ε2d being the Rabi frequency. To cope for the decreasing amplitude
due to decoherence effects, we introduce an exponential factor with decay rate γ. Fitting this
modified equation to a slice along the resonance frequency for short pulses (ωd/2π = 9.000GHz)
reveals the typical Rabi osciallation in fig. 5.7a). From the fit we find τπ = π/ΩR = (28.9± 0.4)ns.
With known τπ we can perform inversion recovery measurements. As drive frequency we select
ωd/2π = 9.012GHz as this seems to be the qubit frequency for long drive pulses in fig. 5.6a)
and therefore as previously discussed the resonance frequency in absence of an AC-Stark shift4.
To minimize problems with overlapping pulses we start with a minimal pulse spacing τ (see fig.
5.7b) inset) of 110ns after the pi pulse with τπ,used = 28ns. Note that the pulse is not exactly
the same as extracted above due to an error at the time of the measurements. This does not
influence the inversion measurement since the qubit decay will be exponential and therefore the
rate of decay is not dependent on the initial state. The signal T shown in panel b) of fig. 5.7 is
again proportional to Pe, an exponential fit leads to a qubit lifetime of T1 = (129± 12)ns.

5.1.4.3 Ramsey & Spin-Echo Measurements

Additionally to the qubit lifetime T1 we want to determine the decoherence time T2. A detailed
discussion of Ramsey and spin-echo sequences can be found in sec. 2.4.2.
We start with a Ramsey measurement following the pulse scheme in fig. 2.8d) and a pulse length
of τπ/2 = 14ns. As discussed for the inversion measurement, perfect timing of the pulse length
is not crucial since it will only affect the signal strength as two π/2-pulses might not lead to a

4Figure 5.6b) was recorded at a later point in time with a slightly different flux suchs that the resonance frequency
here is also slightly different.
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Figure 5.8: Measurements to determine T2 and Tφ. a) Ramsey sequence with varying drive frequencies
ωd and pause lengths τR. Two π/2-pulses are seperated by τR. For off-resonant drives a
beating in the qubit state probability is visible, its exponential decay reveals T2,R. b) Upper
panel: Slice through a) along the dotted line. The beating in the transmission has a frequency
∆ω = ωd − ωq and oscillates sinusoidally (red line fit). The dotted line fit is the enveloping
exponential decay. Lower panel: Spin-Echo measurement as an alternative method to extract
T2. For data points for τSE < 80ns the main decoherence takes place during the drive pulses,
they are therefore excluded from the fit. Insets show pulse sequences, pulse lengths are not to
scale.

complete flip of the qubit state, but the decoherence mechanisms remain unaffected. Fig. 5.8a)
shows Ramsey fringes by sweeping the wait time τR for different drive frequencies ωd. After the
first pulse the qubit starts rotating on the Bloch sphere around the z-axis with ∆ω = ωd−ωq [49].
In the absence of decoherence the second drive pulse populates the excited or ground state for
∆ωτR = nπ with n even or odd, respectively. This oscillation can be seen in the upper panel of
fig. 5.8b). Decoherence (and decay) mechanisms lead to a reduced probability of finding the qubit
in the exited state, therefore an exponential decay indicated by the dotted lines is visible in the
signal. The fit yields a detuning from the resonance frequency of ∆ω/2π = (13.5± 0.2)MHz with
ωd = 9.024GHz resulting in ωq = 9.011GHz which is close to the assumed resonance frequency
for the previous inversion measurements. From the decay rate we can extract a Ramsey coherence
time of T2,R = (108± 23)ns.

A better approach to get the true decoherence time T2 is the spin-echo measurement as this
sequences filters low-frequency noise by inverting the qubit state with a π-pulse after half the
wait time τSE/2. For this measurement the qubit is driven on resonance. Since the sum of all
pulses is a multiple of 2π the expected qubit state for τSE = 0 is |g〉 while for longer wait times
the state should approach a mixed state (|g〉〈g|+ |e〉〈e|) /2 due to dephasing.
As long as τSE < 2τπ the main contribution to decoherence happens during the drive, which

leads to a much more complex behavior, so we exclude these data points from the fit. Longer
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Table 5.1: Important system parameters for the investigated qubit-resonator system.
System Parameter Variable Value
Resonator frequency ωr/2π 7.213GHz
Resonator loss rate κr/2π (885± 38)kHz

Coupling rate g/2π (44.4± 0.9)MHz
Qubit frequency ωq/2π (9.010± 0.001)GHz
Qubit linewidth γq/2π (3.40± 0.20)MHz
Anharmonicity α/2π (−187± 6)MHz

Lifetime T1 (129± 12)ns
Ramsey coherence time T2,R (186± 82)ns

Spin-echo time T2,SE (133± 44)ns

pulses show an exponential change in transmission from low (equaling |g〉) to higher values of T.
Fitting an exponential decay of form exp(−τSE/T2,SE) to the data results in T2,SE = (133± 44)ns.

The decoherence time T2 is a combination of both qubit energy decay characterized by T1 and
pure dephasing on a timescale of Tφ

T−1
2 = (2T1)−1 + T−1

φ (5.10)

Our result corresponds to a limitation of the qubit coherence by dephasing as T2 ≈ T1 is not
limited by the lifetime. Following the discussion of the filter functions from Ramsey and spin-
echo measurements in sec. 2.4.2, the result T2,R > T2,SE suggests that there is a dominating
high-frequency noise source for our measurement setup.

5.1.5 Discussion

All important figures of merit measured and calculated in this section can be found in table 5.1.
For a readout resonator the ideal case would be a higher external loss rate such that the

ring-up time τ ∝ κ−1 of the resonator is minimized. This could be achieved by further reducing
the distance between the resonator and transmission line and increasing the coupling length.

We find a detuning of qubit and resonator δ = ωq − ωr ≈ 2π × 1.8GHz� g when working at
the sweet spot such that we operate in the dispersive regime.

Furthermore, the system resides well in the strong coupling regime since g > κr, γq such that
we can observe the vacuum Rabi splitting of the dressed states |g, 1〉 and |e, 0〉 (fig. 5.2b). The
coupling g between the qubit and readout resonator is on the order of magnitude that is expected
from the design by simulations. For an exact prediction, we would need more information on the
critical current Ic and capacitance CJ of the Josephson junctions due to the dependence of g on
the Josephson energy EJ and charging energy EC in eq. 2.25.
The value for the anharmonicity α/2π = −183MHz is typical for transmon qubits [69, 57]. We
find a dispersive shift of χ/2π = 100kHz (eq. 2.27) per photon occupying the resonator at the
working point at the maximum qubit frequency ωq/2π = 9.01GHz.

Considering the linewidth κr of the resonator, the transmission through the transmission line
does not change as drastically for a different qubit state as depicted in fig. 5.5a), however it is
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enough to distinguish between different qubit states.
The dephasing rate measured from drive power broadening suggests a decoherence time of

T2 = 2π/γ2 = 590ns. Time domain measurements, however, determine a maximum decoherence
time T2,R = 186ns and a qubit lifetime T1 = 129ns. The large discrepancy is unexpected, especially
as the frequency domain measured T2 does not follow T2 ≤ 2T1. Additionally, the large uncertainty
of the qubit lifetime and coherence time is most likely due to the long ring-up time of the readout
resonator in comparison to the characterisitc qubit times, making precise measurements difficult.
To this end, we cannot explain the deviation and further careful investigations are required
to resolve this matter. The unfavorable readout resonator coupling might play a crucial role
for time domain measurements, future adaptions to the sample design will focus on increasing
the coupling rate and therefore decreasing the ring-up time of the resonator, making the time
traces easier to evaluate. The ovservation that T2,R > T2,SE suggests, that we have a dominant
high-frequency noise present in our setup which seems to have a larger impact on dephasing
mechanisms. This conclusion originates from the noise filter functions, which are related to the
Ramsey and Hahn-echo sequence (see fig. 2.9).Dephasing can be caused by flux noise, i.e. a slight
change in the transmon frequency. Earlier work [80] found that already slight detuning off the
“sweet-spot”, where the transmon frequency-flux relation has zero slope, can drastically decrease
the coherence of the system. Further instabilities from current sources or imperfect magnetic
shielding could strengthen the effect, however these effects can be ruled out for our measurement
setup most likely.

Next, we identify some of the most likely detrimental effects on the qubit coherence and discuss
possible remedies for the future. Residue resist at the junction area, as visible in fig. 3.4, can
introduce additional two-level systems [86]. The qubit can interact with these, causing decoherence.
Additionally, the Dolan bridges used to fabricate Josephson junctions are a bottleneck in the
fabrication step. They are always at risk to leave resist residues and tend to undergo deviations
in size. Futhermore, we currently have to use the SUPERBOWL-system, a magnetron-sputter
chamber, to conduct the bandaging process described in sec. 3.2.2. Scanning electron microscope
images show that the sputtered aluminum has a bigger grain size and worse cristallinity than
evaporated Al. The system is also used to sputter AlN, a piezoelectric material that could cause
conversion of electrical energy in the qubit to mechanical strain if deposited on the sample.
We are confident that all of the above issues can be resolved by transferring the fabrication

process to the new evaporation system. The Plassys evaporation system enables an oxygen
descuming in the load lock to clear small resist residues. Aditionally, the system allows for
rotations along two axes, enabling the fabrication of patch-integrated cross-type bridges as
demonstrated in Ref. [99] instead of Dolan bridges. Lastly, the evaporation system has a built-in
argon-ion gun such that the bandaging process can be conducted in there as well, enabling the
usage of a single evaporation system for all fabrication steps without the risk of contaminating
the sample with spurious materials.
Lastly, no surface treatment has been performed on the investigated chip before fabricating

the structures. This limits the film cristallinity due to native SiOx on the wafer surface. Newly
introduced cleaning steps like Piranha and HF-dips remove the oxide layer and lead to less losses
at the interfaces of the substrate. These fabrication steps are well-established and known to
decrease contaminants and oxides at the substrate surface [100, 101].
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5.2 Surface Acoustic Wave Resonator Measurements

In this section, we will investigate a 1-port surface acoustic wave resonator (SAWR) on a thin-film
lithium niobate substrate (TFLNO) consisting of LNO(500nm)/SiOx(2µm)/Si(350µm). The
lithium niobate layer is a 128◦-Y-X cut crystal. This substrate is of particular interest for
our approach to cQAD for which we want to combine cQED and SAW elements on a single
chip. Ultimately, a stack of silicon and lithium niobate should be used for our on-chip cQAD
experiments. The goal is to fabricate SAW devices on the piezoelectric LNO thin-film while
qubits will be fabricated on areas where the LNO thin-film has been removed. This provides a
low-loss silicon substrate without negative influence of the piezoelectricity on the qubit coherence.
Therefore, the behavior of SAWs on thin-film piezoelectric materials has to be understood and
quantified. However, due to fabrication difficulties of the LNO/Si stack, we initially investigate
the behavior of SAWs on thin-film LNO with the tri-stack consisting of lithium niobate and
silicon with an intermediate silicon oxide layer.

5.2.1 Frequency Domain Measurements

5.2.1.1 Free Spectral Range & Single Electrode Reflectivity

We start the investigation of a SAWR depcited in fig. 3.2a) using continuous wave spectroscopy.
Fig. 5.9 shows the microwave reflection |S11| as a function of frequency f at T = 89mK when
probing the resonator using the setup depicted in fig. 4.3. The Figure shows areas of high
reflection (4.880−4.888GHz and 4.916−4.920GHz) and low reflection (4.889−4.913GHz) zones.
Prominently, we note two sets of periodic dip pattern with a reduced reflection amplitude (marked
with black and red arrows) and a clearly visible central peak signature at 4.902GHz. Following the
discussion in sec. 2.6.3, such minima in the reflection spectrum are one characteristic resonance
signature of surface acoustic wave resonators, as they can be associated with the multiple
standing wave patterns which can be excited in the SAW resonator. Upon closer inspection,
the dips appear to occur in pairs of two (blue dashed box), following two distinct periodicities.
Similar double-dip features have been observed in SAWRs by other groups [19, 29] and have
been attributed to longitudinal (black arrows) and transversal (red arrows) shear wave modes
[29].However, plane longitudinal and transversal modes are not confined to the surface and cannot
form SAWs. Therefore, the authors supposedly refer to Rayleigh waves as longitudinal modes
and to shear-horizontal waves as transversal modes. Rayleigh and shear-horizontal waves consist
of partial longitudinal and shear waves, allowing a confinement to the substrate surface. The
phase velocity of shear-horizontal waves is the transversal sound velocity vt of the substrate
[18], therefore a shear-horizontal wave is always faster than a Rayleigh wave as vR < vt. As
the frequency of a wave is propotional to the phase velocity, f ∝ v, faster waves have a higher
frequency than slower waves with the same wavelength. Therefore, we identify the higher of
the two modes forming a pair (blue box, red arrow) with shear-horizontal waves and the lower
mode (blue box, black arrow) with Rayleigh waves. Due to the Fabry-Perot-like nature of the
resonator, dips assigned to specific propagation modes are expected to occur with a constant
frequency periodicity, the free spectral range (FSR), denoted as ν. Although the vivid background
complicates the identification of free spectral modes as some dips are possibly overlapping with
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Figure 5.9: Reflection parameter |S11| of a 1-port surface acoustic wave resonator (SAWR) as a function
of frequency f . The spectrum features many dips which can be identified as modes of
the Fabry-Perot resonator with a free spectral range ν. Black/red solid arrows indicate
Rayleigh/shear-horizontal wave modes, respectively. Some modes are not visible (dashed
arrows) due to the complex microwave background. Over a range of 30MHz, a significant
decrease of the reflection is observed (dashed lines). This might indicate a grating stop band,
allowing the formation of standing wave modes within the resonator.

different features, the approximate position of those absorption dips, extrapolated from the
visible modes, is indicated by dashed arrows.
Taking only the identified dips (solid black and red arrows) into account, we linearly fit the
frequency of the dips fres as a function of the mode number n according to fres = nν. We find
a free spectral range νR = (2.9± 0.1)MHz for the Rayleigh waves and νsh = 3.0MHz for the
shear-horizontal modes. The FSR of both modes is apparently equal within the uncertainty.
For the following analysis, we focus on the more prominent peaks identified as Rayleigh waves.
Combining the FSR and the numerically calculated phase velocity of SAWs at 5GHz on the
TFLNO substrate vp = 3800m/s [46], we can determine an effective cavity length of LC = 655µm
using eq. 2.60. From this, we obtain a penetration depth of the SAW into the mirror grating of
Lp = 128µm (see eq. 2.61). Using eq. 2.62 and the designed electrode width a = 183nm, we find
a single electrode reflectivity of |rs| = 0.14%.
According to earlier work at mK temperatures by Satzinger et. al on LNO [28], we expect a single
electrode reflectivity of a few percent. However, our value is an order of magnitude less. In our
experiment, the Bragg mirrors consist of Ng = 500 grating lines. If the calculated single electrode
reflectivity is correct, we therefore would not reach the high-reflectivity regime discussed in eq.
2.59 for which a strong stop band is visible with unity reflection.
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These results are unexpected as it seems unlikely for the single electrode reflectivity to deviate
by more than one order of magnitude compared to literature values (c.f. e.g. [28, 30]), given the
relative simplicity of the grating structure and the similar substrate. The grating mirrors by
Satzinger et al. [28] consists of 25nm thick Al strips on bulk LNO, such that a comparison to
our 100nm Al on LNO/SiOx/Si should be feasible. In fact, thicker electrodes should increase the
reflectivity due to higher mass loading [18]. Apart from difference of the SAW device structure,
we suspect that the spectral behavior of SAWs on TFLNO is quite different to that on bulk
LNO. The SAW strains decay on the order of one wavelength (λIDT = 732nm) into the substrate.
Therefore, the phase velocities of the SiOx layer and probably of the silicon substrate have to
be considered as well for the description of a SAW. While it might be possible that the multi-
layer substrate changes the reflective behavior of the grating to such great extent, we want to
verify this result and therefore compute the reflectivity with an alternative method in the following.

Instead of using the free spectral range to calculate the penetration depth into the mirror,
we can use the spectral width of the grating stop band to extract the single electrode reflectivity.
The spectrum in fig. 5.9 shows a distinct reduction in the scattering parameter |S11| of about
30MHz (vertical dashed lines). As examplarily calculated in sec. 2.6.2.2, this is the expected
width of a mirror stop band around 5GHz. To this end however, we have no physical intuition
why the reflection should be reduced in the stop band width. In the following, we continue the
analysis under the assumption that this feature is indeed caused by a mirror stop band. Eq.
2.57 allows to relate the width of the of the stop band to the single strip reflectivity. Using
this approach, we find a single strip reflectivity |rs| ≈ 1%, which is in much better agreement
with the reported values of a few percent in other experiments [29, 28, 30] on bulk LNO. With
this reflectivity, the penetration depth should be Lp = a/ |rs| = 18µm, corresponding to a FSR
ν = 4.36MHz, about 50% higher than the experimentally observed value. Alternatively, the
larger FSR could be the consequence of a decreased phase velocity of v∗p = 2νLC = 2616m/s.
However, this value not only contradicts the numerical simulations of Ref. [46], but would also
result in a much lower center frequency of the IDT response f∗c = v∗p/λIDT = 3.6GHz. This in
turn would strongly suppress the excitation of SAWs at 5GHz, contradicting our experimental
observation.
Unfortunately, we therefore cannot present a consistent picture of the findings presented here.

5.2.1.2 SAW Resonator Quality Factor

By fitting the resonance signatures in the reflection spectrum to eq. 2.64, we can extract the
quality factors of the cavity. As opposed to the fits for superconducting microwave resonators
(sec. 5.1.1), we cannot use a “circle”-fit method for the SAWR. As illustrated in fig. 4.3, we
measure the reflected signal by routing it to an output line via a microwave circulator. However,
this alters the reflection coefficient in a way that prohibits the diameter correction method from
correctly removing the complex measurement background [102]. We therefore use eqs. 2.63 and
2.64 to fit the region next to dips in the spectrum. Fig. 5.10a) shows the evaluated dips in the
spectrum, the dashed boxes indicate pairs of dips from the previous discussion. In panel b),
an exemplary fit with eq. 2.64 for dip 2 is shown when probing the system with a microwave
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Figure 5.10: Detailed investigation of Fabry-Perot modes. a) Zoom into a part of the stop band in fig. 5.9.
A double-peak pattern with a complex background is suspected and indicated by dashed
boxes. Each mode pair consists of one Rayleigh and one shear-horizontal mode. b) Exemplary
fit to a single mode with eq. 2.64. The dashed lines show the used data range to exclude the
busy background for the fit. c) Internal and d) external quality factor of the modes as a
function of the applied microwave power Pappl. The internal quality factor is approximately
1.5× 104, the external quality factor around 5.0× 104. For both quantities, a large spread
is observed. No error bars are given as the fitting algorithm provides unreasonably large
uncertainties. Presumably, the fitting algorithm is not stable enough. e) Average phonon
number 〈nph〉 in the SAWR depending on the drive power following eq. 2.44 for mode 2 in
panel a). For the lowest drive power Pappl = −70dBm, the average phonon occupation is 24,
so single phonon level is not reached.

power of −30dBm at the source output. We limit the fitting range to a narrow region around
the dip minimum (dashed lines) to neglect the dominant background and surrounding dips.
For regions outside the fitting range, the fit converges towards a constant maximal reflection
value as one would expect for a single mode of the resonator as no energy can be stored in
the mode. In panels c) and d), the extracted internal and external quality factors Qi and Qe
of the dips labeled in a) are plotted as a function of the applied microwave power. We do not
provide error bars as the uncertainties calculate by the fitting algorithm are unreasonable (several
orders of magnitude larger). We presume that the algorithm is not very stable for the used
fitting functions, improvements (e.g. different fitting algorithms) might be necessary for future
evaluations. The internal quality factor for dips 1 and 2 deviate slightly from fit to fit in a range
of Qi = (8 − 12) × 103 and Qi = (10 − 16) × 103, respectively. For dip 3, the fit result is not
very consistent. This is probably due to the comparably small prominence of the peak in the
spectrum. The external quality factors show a large spread around Qe = 50 × 103, therefore
the resonator is slightly undercoupled. Most microwave resonators based on superconducting
thin films shown an increase in the internal quality factor Qi for higher excitation powers due to
saturation of two-level systems and therefore a decreasing resonator loss rate. In the conducted
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Figure 5.11: Traces of time domain measurements recording a pulsed excitation of the SAWR. Following
a 100ns excitation pulse on resonance with one of the previously identified SAW modes,
the reflected microwave signal T is down-converted and digitized. The acquisition is started
before the application of the pulse such that the pulse itself is included in the measurement.
a) Time trace of the Rayleigh mode “2” in fig. 5.10a). The electromagnetically reflected
microwave signal (solid vertical line) when applying the pulse is registered at t = 0.38µs and
visible as a large peak in the trace. subsequently, several peaks can be observed (dashed lines).
The nature of these peaks is discussed in the main text. b) Time trace at f = 4.918GHz. At
this frequency, a distinct peak is observable at t = 0.85µs, 470ns after the excitation pulse.
This might suggest a SAWR response from traveling SAWs transiting the IDT.

measurements, we do not observe a two-level system saturation of the internal quality factor
Qi as reported in Ref. [19]. However, comparing the effective power at the SAWR to Ref. [19]
accounting for the attenuation (total −55dB from fig. 4.3 with −9dB added by microwave lines),
one would expect at least to see the onset of the TLS saturation. With eq. 2.44, we can calculate
the mean phonon occupancy of a SAW resonator (panel e)) to be 〈nph〉 ≈ 24 for −70dBm drive
power. For lower drive powers, the signal-to-noise ratio becomes too small to extract qualtiy
factors, so no measurements were conducted at the single phonon level.

5.2.2 Time Domain Measurements

Due to the low propagation velocities of SAWs, this specific type of devices are especially suited to
be investigated with time domain measurements as our setup (see fig. 4.3) is capable of digitizing
the reflected microwave signal with 500MSamples/s which corresponds to one sample per 2ns.
During this time, a SAW on the TFLNO (vp ≈ 3800m/s at f = 5GHz) travels 7.6µm. Compared
to the effective cavity length of LC = 655µm, we are able to resolve the propagation of wave
packages by recording the electro-mechanical response of the IDT as reported in Ref. [70]. Ideally,
such measurements can provide insight into the SAW dispersion as well as the attenuation within
the SAWR. In this section, we begin with the investigation of the microwave response of the
IDT after a short excitation pulse at various frequencies. Afterwards, we present data on the
ring-down behavior of a SAWR after excitation into a steady state.
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5.2.2.1 Short Excitation Pulse

A first measurement series is conducted with a drive frequency of f = 4.8946GHz corresponding
to the Rayleigh mode labeled as “2” in the spectrum of fig. 5.10a). The SAWR is excited with a
100ns pulse. Assuming a Gaussian envelope (time-bandwidth product 0.44, ch. 9.1 of[103]), this
corresponds to a FWHM of 4.4MHz in the frequency domain. Therefore, it also nearby resonances
can be excited with the short pulse and might lead to contribution of different modes to the time
trace. The reflected signal T is down-converted and digitally heterodyned5 as described in sec.
4.1.2 with the setup shown in fig. 4.3. An exemplary resulting time trace is depicted in fig. 5.11a).
Several peaks with decreasing amplitude are visible. The initial peak, marked by a solid vertical
line, is the reflected electromagnetic signal, i.e. photons that were not converted into phonons
via the IDT. The time offset is due to cable and circuit element delays as well as the recording
start settings of the digitizer card. The microwave pulse injects SAWs which propagate through
the resonator. After one round trip, i.e. being reflected once on the grating mirrors, the SAWs
pass the IDT once more and create a microwave signal. This process repeats itself with each
consecutive round trip and should result in a periodic train of signal peaks in the time spectrum
spaced by the transit time τ = LC/vg ≈ 170ns. Here, we assume a symmetric 1-port SAWR as
used in the presented measurements, i.e. the IDT is centered between both mirror. Additionally,
we assume a cavity length of LC = 655µm as determined in sec. 5.2.1 and a group velocity of
vg ≈ 3800m/s [46]. However, the time trace in fig. 5.11a) does not show peaks with a constant
periodicity. The spacing between the electromagnetic reflection (solid line) and the following
peaks (dashed lines) is 85ns, 61ns and 100ns, respectively. In contrast to the data published by
Manenti et al. [70], the decay in amplitude is much faster such that we only record four distinct
peaks before no more response is clearly visible.
The non-equidistant spacing of the signals leaves room for interpretation of the physical meaning.
We rule out asymmetry arguments of the SAWR as the IDT is exactly centered between the two
mirrors. Therefore, SAWs traveling towards any of the two mirrors after injection will pass the
IDT after reflection nominally at the same time.
A possible explanation for the non-periodic signal could be interference of at least two different
kinds of SAWs with different group velocities and transit times. However, more peaks would be
needed to verify this theory. Additionally to the varying time spacing, the peaks in the signal
broaden with increasing time. This might suggest a dispersion of the SAW pulse.
All of the mentioned observations - interference of several modes, strong attenuation of SAWs
and dephasing of the transit peaks - could indeed be a first hint towards the observation of a
SAW response on the complex TFLNO substrate. As the penetration depth into the substrate of
a SAW is approximately one wavelength λ = 732nm, the SAW at least has contributions by the
LNO and SiOx, but maybe also slightly by the silicon substrate. To this end, the measurements
cannot be sufficiently explained with the simple assumption of a single SAW mode following the
same behavior as on a bulk substrate. We suspect the involvement of multiple SAWs modes due
to the different dispersion in each layer of the TFLNO substrate.
Additionally, the line of argument above cannot explain that the peaks signatures do not

5We will label the reflected signal measured with the time domain setup as T to be consistent with the cQED
time domain measurement notation.
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Figure 5.12: Time domain measurements for different microwave frequencies f . a) Logarithmic heatmap
of the downconverted microwave reflection T at time t after a drive pulse at frequency f .
The electromagnetic reflection of the 100ns drive pulse is measured at t = 0.38µs with a
high amplitude (c.f. fig. 5.11). Afterwards, a ringing is observed for all frequenies, therefore
ruling out the SAWR as its origin. Around the resonance frequency of the SAWR, signal is
measured until almost 1µs after the drive pulse. Since the signal is constrained to frequencies
around the SAWR stop band, this signal might be related to reflected SAWs. Inset: Zoom
into the region of interest. b) Reflected signal T as a function of drive frequency f for a
fixed point in time (dashed lines in a)). A VNA spectrum (black) is given as reference. The
electromagnetic reflection (red) shows a dip at the SAWR resonance frequency (dashed line).
At t = 0.85µs, an oscillation in the signal amplitude (green) with decreasing amplitude away
from the SAWR frequency is observed. A qualitative discussion of these features is provided
in the main text.

coincide with the expected transit time of 170ns. On average, the spacing is about half of the
expected value. More drastically speaking, neither a doubling of the group velocity vg nor a
halving of the cavity length LC appears reasonable. Therefore, it is possible that the peaks are
in fact unrelated to the physics of the SAWR but instead correspond to an electromagnetical
ringing of the measurement setup.

For some drive frequencies within the stop band, as exemplary shown in fig. 5.11b), a peak in
the reflected signal can be observed at t = 0.85µs. This might hint towards a feature induced
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by SAWs as we do not expect a sudden electromagnetic reflection 500ns after the initial drive
pulse. To evaluate these peaks further, analogous measurements were performed for a wide range
of different drive frequencies fd with the same pulse length of 100ns. The data is shown as a
color plot in fig. 5.12a). The transmission T is plotted logarithmically against the drive frequency
fd and time t to increase the visibility of small peaks. The strong electromagnetic pulse at
t = 0.38µs is followed by several smaller peaks present at all drive frequencies. This supports
the interpretation that the peaks are actually some sort of ringing induced by the measurement
setup. If the signals were caused by the SAWR, a decay of the signal amplitude should occur
when driving the resonator off-resonant, i.e. > 100MHz away from the IDT center frequency,
due to a decreased IDT response (eq. 2.50) and mirror reflectivity eq. 2.58). Since this is not the
case, a correlation with the SAWR can be ruled out.
The ringing behavior decays for t > 0.7µs in the measurement. However, for frequencies close
to the SAWR resonance, peaks in the reflected signal can be observed for t > 0.7µs (c.f. inset
of fig. 5.12a)). A peak in the reflected microwave pulse is visible for constant times throughout
a narrow band of around 30MHz in the range of 4.88 to 4.91GHz, the frequency band which
we have identified in fig. 5.9 as the stopband of the grating.. Moreover, the signal amplitude
oscillates with respect to the drive frequency fd. On the one hand, this could be interpreted
as the resonator beating induced by off-resonant drive. However, the oscillation could also hint
towards a stop band as discussed in the frequency spectrum in fig. 5.9. The stop band reflectivity,
assuming strong reflectivity Ng |rs| � 1, is unity for a frequency range of approx. 30MHz with
|rs| ≈ 1% and a center frequency fc = 5GHz. Outside of the stop band, the reflectivity exhibits
a sinc-like oscillations which could explain the oscillation of the signal strength (see fig. 2.14).
In fig. 5.12b), we further investigate this behavior as well as the frequency dependence of the
electromagnetic peak at t = 0.38µs. A VNA spectrum is shown for reference (black).

The initial peak at the time of the microwave excitation (red) has an amplitude minimum at the
resonance frequency of the investigated SAWR (dashed line in panel b)). This minimum matches
the center frequency of the IDT where microwaves can be most efficiently converted to SAWs such
that the electromagnetic reflection is minimal at this drive frequency. However, the IDT frequency
response should have a characteristic shape resulting from the IDT acoustic conductance as shown
in fig. 2.12a). Due to the small amount of finger pairs (Np = 5), the IDT should create SAWs
efficiently in a broad range of frequencies of approximately 0.9GHz around the center frequency
f = 4.9GHz following eq. 2.52. The width of the dips in fig. 5.12b) both from the VNA spectrum as
well as the slice at t = 0.38µs in the time domain measurement have a FWHM of 80MHz which is
too narrow by one order of magnitude to be explained simply by of the dip via IDT characteristics.

The green dataset corresponds to the amplitude of the peak at t = 0.85µs for each time
trace (green line in fig. 5.12a)). The peak has a time separation of approximately 470ns from
the microwave pulse and is pronounced for certain drive frequencies. With the quality factor
Q ≈ 2× 104 extracted in fig. 5.10c), we expect a decay rate of SAWs on the order of 4µs,
the observed feature could therefore very well originate from SAWs. The slice in the spectrum
depicted in panel b) shows an oscillatory behavior in the peak amplitude that resembles the
grating reflection coefficient in fig. 2.14. This might suggest a SAW response due to the frequency
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dependent grating reflection outside the stop band, see fig. 2.14a). The recorded signal does
not replicate the grating reflection curve directly as it is a convolution of the IDT response (i.e.
the conductance) and the grating reflection. However, the oscillation period (approx. 50MHz)
matches neither the period of the grating reflectivity outside the stop band (approx. 10MHz
from fig. 2.14) nor the period of the IDT acoustic conductance (approx. 0.9GHz from fig. 2.12a)).
Also there is no clear stop band visible around the SAW response at fd = 4.9GHz.
To this end, the origin of the spectrum signature at t = 0.85µs is not clear. The short 100ns
with a bandwidth of 4.4MHz is broad enough to inject SAWs within multiple resonance dips
(see fig. 5.9). Therefore, a variety of SAWs might interfere to produce the observed time traces.
This might change the observed spectrum from the expectation of probing the grating reflection
frequency dependence as shown in fig. 2.14a). Furthermore, multiple transits of the SAWs (transit
time τ ≈ 170ns)have occured at the investigated time, which is 470ns after the pulse ejection.
Multiple reflections, especially on the IDT consisting of 11 electrodes with a single electrode
reflectivity of |rs| ≈ 1% could also play a role for the spectrum as opposed to single transits,
where the reflection at the IDT is usually negligible. For the description of the observed data, a
more involved model accounting for multiple SAWs and multi-reflections has to be developed in
future experiments.

5.2.2.2 Resonator Ring-Down

To access the resonator properties of the SAWR, we prepare the resonator in a steady-state
using a long microwave pulse and investigate the SAWR ring-down behavior in this section.
Fig. 5.13a) shows a single time trace of the microwave reflection during and after exciting the
SAWR with a 5µs-pulse at fd = 4.8946GHz. At the onset of the microwave pulse (t = 0.38µs),
a sharp rise in the reflection T is visible, followed by a decaying ringing behavior (zoom in fig.
5.13b), left). At about t = 2.5µs, the SAWR reaches its steady-state and thus the reflection stays
constant. As soon as the microwave is switched off, the (electromagnetic) reflection decreases
sharply. Following the abrupt change, an additional decaying ringing behavior can be observed
(zoom in panel b), right).
Subsequently, this measurement is done for a range of drive frequencies fd within the suspected
stop band in fig. 5.9. We normalize the reflection T of each time trace to its steady-state amplitude
during the drive, i.e. in the interval t = 4.5 to 5.0µs (c.f. fig. 5.13a)).
Fig. 5.13c) shows the normalized reflection amplitude of previously investigated areas (time
ranges in panel b)) in a color plot as a function of the drive frequency fd and the time t. Both
regions are depicted with the same color map for better comparison, however the amplitude
ranges differ and are given in the respective panels. Additionally, the VNA spectrum of the
devices response for the same frequency range is given for reference. The dashed line indicates
the drive frequency for panels a) and b).
The microwave pulse is applied at t = 0.38µs and ends at t = 5.38µs for these measurements. For
both the ring-up and -down traces, a peak in the reflection can be observed around ∆t = 170ns
(dashhed horizontal lines in the insets of fig. 5.13c)) after the microwave drive start and end,
respectively, when driving the device with fd = 4.891GHz and fd = 4.8946GHz. The VNA
spectrum shows dips at these frequencies which we identified with SAWR Rayleigh modes in fig.
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Figure 5.13: Time-domain analysis of the investigated SAWR with long drive pulses to reveal resonator
characteristics. a) Time-resolved, downconverted microwave reflection during and after a
5µs drive pulse at a fixed frequency fd = 4.8946GHz. The drive pulse starts at t = 0.38µs.
The resonator is populated during the pulse and reaches a steady state for t > 3µs. After the
pulse, a ring-down behavior can be observed. b) Zoom into the dashed boxes of a). The initial
overshoot of the ring-up is most likely caused by the measurement electronics and cut away
for the zoom. c) Frequency dependence of the ringing behavior. A VNA spectrum is given
for reference. The heatmaps show the reflection amplitude T normalized to the steady-state
amplitude of the populated resonator. For the ring-up (lower heatmap), amplitudes lower
than the steady state are observerd and likely caused by electronic ringing. Insets: For both
ring-up and -down, a peak is observed around 170ns after the microwave pulse is switched
on/off, respectively (dashed line).

5.10a). This could indicate a response of the SAWR as this behavior is not observed for different
driving frequencies.
The intuitive explanation for the ring-up feature is similar to the discussion in sec. 5.2.2.1: As the
microwave pulse is applied, SAWs are injected in the resonator. Before a steady-state is reached
and the standing waves are built up in the resonator, individual transits of the injected wave
should be visible. The first transit of the injected SAWs therefore could change the reflection
T after the transit time τ , when the resonator is not filled with standing wave-modes yet. The
time difference between microwave pulse and peak ∆t matches the transit time calculated in sec.
5.2.2.1 of τ = 170ns. This strengthens the conjecture of a visible SAWR mode.
The ring-down spectrum shows qualitatively the same behavior with peaks at the same frequency.
Additionally, there is a peak around fd = 4.900GHz which does not appear in the ring-up
spectrum. Again, the time difference of the peaks at the Rayleigh mode frequencies with respect
to the end of the drive pulse (t = 5.38µs) is around ∆t = 170ns, matching the transit time τ .
For the ring-down, we would expect a superposition of the SAWR exponential decay and the
measurement setup ringing. In the shown ring-down time trace (panel b) of fig. 5.13, right), a
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distinction between the ringing and the decay is not possible. An exponential fit to the ring-down
determines a decay rate of κ/2π = 2.6MHz, corresponding to a quality factor of Q = 1882. This
decay is therefore an order of magnitude faster than extracted from the fit in fig. 5.10b), which
is unexpected. Most likely, the deviation from the expected SAWR ring-down is caused by the
electric ringing.

5.2.3 Discussion

In this chapter we have analyzed a surface acoustic wave resonator on a LNO/SiOx/Si multi-
layer substrate using frequency analysis as well as time-resolved reflection measurements. The
frequency domain analysis suggests a complex Fabry-Perot behavior with multiple modes and
resonances. Assuming a double-peak characteristic with free-spectral ranges of νR = 2.9MHz and
νsh = 3.0MHz for Rayleigh and shear-horizontal modes as well as a speed of sound vp = 3800m/s
[46], the effective cavity length LC = 655µm and single electrode reflectivity |rs| = 0.14% were de-
termined. These results are not consistent with literature, e.g. Refs. [28, 29, 30] where |rs| on bulk
LNO is typically on the order of a few percent. On the other hand, if we assume a single electrode
reflectivity as reported in literature, we would expect vastly different FSRs or phase velocities vp.
Further investigation is therefore necessary to understand the resonator behavior on this complex
substrate. The internal quality factors of different modes were computed to Qi = (8− 16)× 103

with eq. 2.64. No power dependence was observable as the lowest applicable power with visi-
ble signal Pappl = −70dBm equals a mean phonon occupation of 〈nph〉 = 24 according to eq. 2.44.

For time resolved characteristics, 100ns-pulses were applied to the resonator in order to create a
traveling SAW package and resolve its repeated propagation across the resonator and the IDT. As
the corresponding bandwidth of the pulse is 4.4MHz, nearby resonances could have been excited
during the measurements, leading to contribution of multiple SAWs to the measured signal. For
future experiments, the FSR of the cavity has to be increased to avoid this multi-excitation.
In comparison to the expected transit time of τ = 170ns, the pulse is short, such that distinct
transits should be visible. Similar experiments were conducted in Ref. [70] with 300ns-pulses for
τ = 330ns. Peaks could be observed in the time spectrum, however no discrete periodicity was
found. The oscillating signal is most likely a consequence of the measurement electronics, further
investigation should be able to verify this suggestion.
In experiments with long drive pulses, leading to a steady-state of the SAWR, a clear difference
in the reflection amplitude was visible when driving the SAWR on- or off-resonance, respectively.
For the resonant case, a peak appears in the spectrum around 170ns after the start and end of
the microwave drive pulse, matching the expected transit time τ . This feature is not observed for
off-resonant drives. Therefore, this could indicate a distinct phononic respone of the resonator.
However, the decay of the investigated SAWR mode after reaching a steady-state yields a
quality factor of Q = 1882, an order of magnitude lower than expected from frequency domain
measurements.

Overall, the measured characteristics do not show agreement with the assumptions of a simple
Fabry-Perot cavity behavior on a bulk piezoelectric substrate. A possible explanation could be the
complicated TFLNO substrate with three materials and therefore three different longitudinal and
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transversal speeds of sound. As the SAW can have contributions from all substrates, this can lead
to a complicated dispersion, comparable to an optical cavity with three different dielectrics along
the propagation axis. In the long run, the TFLNO substrate will be replaced with a substrate
consisting only of LNO and silicon. SAW devices have been fabricated with promising results on
thin-film substrates with only one thin-film layer [104, 105, 106, 107] as opposed to our more
complicated TFLNO stack with two thin-film layers. Therefore, less complex behavior can be
expected for a single thin-film layer of LNO on silicon.



Chapter 6

Outlook & Summary

6.1 Future Prospects: On-Chip cQAD
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Figure 6.1: a) Scanning electron microscope image of a CPW bridging the height difference between areas
with (left) and without (right) thin-film LNO. The CPW was only tested for ohmic contact,
no microwave measurements were conducted. b) Profile of the “ramp” from the SiOx surface
to the thin-film LNO acquired by atomic force microscopy along the dashed line in a). The
height difference of 500nm is almost linearly surpassed on a length of 750nm.

After the investigation of superconducting qubits on silicon and SAW devices on thin-film
lithium niobate, we want to give a brief outlook on the next steps towards on-chip cQAD. Since
piezoelectricity can limit the qubit coherence drastically, our approach is to remove the thin-film
LNO on any part of the sample where no SAW devices are present. This however brings up the
challenge of transitioning from the silicon substrate to the 500nm high plateau of LNO with a
continuous connection that supports a CPW transmission line. In this chapter, we briefly present
the first attempts at realizing a “ramp” to bridge the gap between the two sample areas.

We fabricate the ramp formation with a RIE etch protocol using large gas flows of SF6 and Ar
following observations in Ref. [108]. The oversupply of SF6 during the etch process leads to the
formation of lithium fluoride (LiF) which is subsequently redeposited. The lithium fluoride acts as
an inhibitor for the chemical etch process and is only removed by argon-ion bombardment. This
effect is however weakened close to the sidewall, i.e. the edges of the thin-film LNO. Therefore, a
ramp is formed by the LiF. To protect regions from the etch process, we use a thick (200nm) Al
etch mask1 that is removed after the etching process with a chemical wet-etchant selective to Al.
Fig. 6.1a) shows a scanning electron microscope image of a CPW on a ramp leading from an area

1The unetched LNO surface of the sample in 6.1a) is very rough as the etch mask was only 100nm Al. Subsequent
chips were fabricated with a thicker mask and did not show an increased roughness any more.
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without thin-film LNO to an area where no LNO was removed. A smooth transition between the
plateaus is visible. The CPW was successfully probed to show galvanic ohmic contact, however
no microwave measurements were conducted. In panel b), an atomic force microscopy height
profile of the ramp along the dashed line in panel a) is shown. The height difference of 500nm is
bridge almost linearly on a length scale of 750nm. This equals a constant slope of 34◦.
In future experiments, the etch process will be further optimized to deal with the rough

surface created on the unprotected SiOx/Si surface. Also the influence of the redeposited LiF on
microwave transmission and coherence times has to be investigated.

6.2 Summary

The goal of this thesis was to pave the way for quantum acoustodynamic experiments at the
WMI. To this end, fabrication and measurements of both circuit quantum electrodynamic and
surface acoustic wave devices have been performed.

We established a scalable Xmon qubit fabrication process following Ref. [85] and conducted full
qubit spectroscopy in the frequency and time domain. The results leave room for improvement,
however a proof-of-concept of this fabrication method was provided and insight was gained
for future improvements in the sample design and fabrication. By utilizing the findings of this
thesis as well as new equipment to optimize the process, we are confident to reach the intended
coherence times of few µs in the near future. In particular, the introduction of a sophisticated
substrate cleaning likely provides a significant increase of the quality of our Xmon qubits.

With the BEAMER software package, we have introduced proximity effect correction into the
electron beam lithography workflow for the fabrication of SAW devices in the gigahertz-regime,
the second mandatory component for quantum acoustodynamic experiments.
We investigated a 1-port SAW resonator on a lithium niobate thin-film substrate potentially

promising for on-chip QAD. Both frequency and time domain measurements were conducted. We
performed measurements with short excitation pulses to gain information of the IDT behavior and
track single wave packages transiting the IDT. Additionally, we investigated the resonator ring-up
and -down behavior for long drive pulses that allow standing wave creation. The measurements
revealed complex dynamics that differs significantly from the well-understood behavior of SAW
resonators on bulk materials. SAWRs on multilayer substrates will therefore be subject to
further research, where we plan to compare experimental data with finite element simulations.
Additionally, reference samples of identical resonator structures on bulk lithium niobate will be
fabricated in order to provide a baseline of experimental data that should help to distinguish
between common SAWR signatures and features specific to multi-layer systems. Ultimately, a
LNO/Si substrate will be studied and eventually replace the LNO/SiOx/Si substrate once films
of sufficiently high quality become more widely available.
Lastly, we demonstrated a promising proof-of-concept for combining both cQED and SAW

elements on a single chip. To this end, we have constructed a RIE process that can selectively
remove LNO from parts of the chip and at the same time form a “ramp” to smoothly bridge the
height difference between cQED and SAW areas on the chip. This will enable us in the long-term
to have full control over the positioning of cQED and SAW elements on our samples, allowing
for much batter scalability compared to previous flip-chip assemblies.
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Appendix: Theory

A.1 Rotating Frame and Optical Bloch Equations

In this section, we will derive the driven qubit Hamiltonian in the rotating frame H̃d,q in
eq. 2.32 as well as the optical Bloch equation in eq. 2.37.

A.1.1 Driven Qubit in the Rotating Frame

Starting with the driven qubit Hamiltonian (eq. 2.31)

Ĥd,q/~ = ωq
2 σ̂z + εd

2
(
e−iωdt + eiωdt

)
(σ̂− + σ̂+) , (A.1)

we find the differential equations for the time evolution of an arbitrary pure qubit state
|ψ(t)〉 = ae(t) |e〉+ ag(t) |g〉 using the Schrödinger equation i~ d

dt |ψ(t)〉 = Ĥ |ψ(t)〉. The set
of equations reads

i
d
dtae(t) = ωq

2 ae(t) + εd
2
(
e−iωdt + eiωdt

)
ag(t), (A.2)

i
d
dtag(t) = εd

2
(
e−iωdt + eiωdt

)
ae(t)−

ωq
2 ag(t). (A.3)

To remove the explicit time dependence of eqs. A.2 and A.3, we switch to a rotating frame
with an angular speed ωd by making the replacements

be(t) = eiωdt/2ae(t), (A.4)
bg(t) = e−iωdt/2ag(t). (A.5)

In the rotating frame, eqs. A.2 and A.3 simplify to

i
d
dtbe(t) = ωq − ωd

2 be(t) + εd
2
(
1 + e2iωdt

)
bg(t), (A.6)

i
d
dtbg(t) = εd

2
(
1 + e−2iωdt

)
be(t)−

ωq − ωd
2 bg(t). (A.7)

The final simplification can be done by applying rotating wave approximation (RWA) [50,
59]. For this, we neglect terms that rotate very fast (here with 2ωd) and therefore average
to zero quickly. Neglecting all terms with contributions ∝ 2ωd in eqs. A.6 and A.7, we find
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a explicitly time independent set of equations corresponding to the Hamiltonian in eq. 2.32

H̃d,q/~ = 1
2 (−∆ωσ̂z + εdσ̂x) , (A.8)

where ∆ω = ωd − ωq

A.1.2 Optical Bloch Equation

A visual representation of the Hamiltonian in eq. A.8 by rewriting the Hamiltonian to

H̃d,q = ~
2
~Ω · ~σ, (A.9)

where ~Ω = (εd, 0,−∆ω) is the rotation vector on the Bloch sphere and ~σ = (σx,σy,σz) is
the Pauli matrix vector.
In sec. 2.4.2, we defined the state vector ~r of a qubit on the Bloch sphere in terms of its
length r and two angles φ and θ. Another representation of the state vector is by using
the expectation values along the x, y and z axes which can be calculated with the Pauli
matrices as

~r =

〈σx〉
〈σy〉
〈σz〉

 . (A.10)

Using the Ehrenfest theorem for operators [109]

d
dt〈Ô〉 = i

~

〈[
Ĥ, Ô

]〉
+
〈
∂Ô

∂t

〉
, (A.11)

as well as the commutator relation for the Pauli matrices

[σi, σj] = 2iεijkσk, (A.12)

where εijk is the Levi-Civita symbol, we find the following relation for the time evolution of
the Bloch state vector ~r:

d
dtri = d

dt〈σi〉 = i

~

〈[
H̃d,q,σi

]〉
= i

2
∑

j
Ωj〈[σj,σi]〉 = i

2
∑

jk
Ωj (−2iεijk〈σk〉)

=
[
~Ω × 〈~σ〉

]
i
.

For the last step, we used the definition
[
~a×~b

]
k

= εijkaibj and the permutation relation
εijk = εjki. In vector notation, this leads to eq. 2.37

d
dt~r = ~Ω × ~r. (A.13)



A.2 Qubit Frequency Drift 81

A.2 Qubit Frequency Drift

In this section, we present the calculation for the numerical Rabi drive solution in fig. 5.6.
For this calculation, we implement a finite overlap to of the drive and readout pulse as
discussed in the main text (c.f. sec. 5.1.4.2). The starting point is the modified Hamiltonian
for a driven qubit in the rotating frame, where the qubit frequency ωq is time dependent
(eq. 5.8):

H̃(t)/~ = 1
2

(
− (ωd − ωq(t)) εd

εd (ωd − ωq(t))

)
. (A.14)

As above, ωd and εd are the drive frequency and amplitude. With the Schrödinger equation,
the set of differential equations after a RWA is similar to eqs. A.6 and A.7

d
dtbe(t) = ωq(t)− ωd

2i be(t) + εd
2i bg(t), (A.15)

d
dtbg(t) = εd

2i be(t)−
ωq(t)− ωd

2i bg(t). (A.16)

Due to the coupling g between the qubit and the microwave resonator, the qubit frequency
undergoes a dispersive shift of the form (eq. 2.23)

ωq(t) = ωbareq +
(

2χ〈nph〉(t) + 1
2

)
. (A.17)

We denote the bare qubit frequency, i.e. the eigenfrequency of the qubit without any
coupling to the environment or circuitry, as ωbareq . Crucially, the mean photon number in
the readout resonator is time dependent in the case of overlapping pulses as the resonator
is started to be filled with photons during part of the drive pulse. For the used toy model,
we assume an exponential time dependence of the photon number

〈nph〉(t) =

A
(
e(t−τ+to)/tr − 1

)
for t > τ − to,

0 else,
(A.18)

where A is an amplitude factor, t the time starting at the beginning of the drive pulse, τ is
the drive pulse length, to is the overlap time and tr the characteristic ring-up time of the
resonator.
Numerically solving the set of differential equations A.15 and A.16 with initial values
be(0) = 0 and bg(0) = 1 leads to the pattern shown in fig. 5.6. The used parameters
approximately representing the ring-up behavior (time and occupation) of the resonator
as well as the measured Chevron pattern are A = 160, to = 200ns, tr = 1µs and εd =
1.15× 108. The qubit and resonator frequencies characteristics can be found in table 5.1.
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Appendix: Fabrication

B.1 cQED Fabrication

The following is a detailed fabrication sequence for a 3-step bandaging process. The essential
steps are described and illustrated in sec. 3.2.2.

Preparation and non-Josepheson Elements

1. Clean new Si chip by ultrasonic bath in technical acetone (room temp.), p.a. acetone
(room temp.), p.a. acetone (70°C), IPA (70°C) and IPA (room temp.) for 2 minutes
each, dry with N2, ash 3 minutes with O2, (optionally) briefly bake at 170-200°C.

2. Spin-coat chip with 60µl positive EBL resist PMMA/MA(33%) (AR-P 617.08) for
60s at 4000RPM. Bake at 170°C for 2 minutes.

3. Define alignment markers for subsequent fabrication steps by EBL (6.5C/m2). Square
with 10× 10µm2 (mp_sqr10) are typically used.

4. Develop in AR600-56 for 2 minutes (constant “8”-motion), rinse 2x in IPA, dry with
N2.

5. Evaporate Ti(6nm)/Au(24nm) onto sample.
6. Lift-off resist layer with excess metal in 70°C aceton. Soak sample for 12-15 minutes.

Remove dissolved material with disposable pipette and transfer sample to new beaker.
Repeat last step after 5 minutes until resist layer is gone. Optionally, use ultrasonic
bath if material remains on the substrate. Rinse in p.a. acetone and IPA, dry with
N2.

7. Spin-coat chip with 60µl positive EBL resist PMMA/MA(33%) (AR-P 617.08) with
2-step programm1 (5s at 500RPM, 60s at 8000RPM). Bake at 170°C for 2 minutes.

8. Define non-Josephson elements with EBL (2.3C/m2). Use database with < 10nA for
increased process speed, beam spotsize is not crucial.

9. Develop in AR600-56 for 2 minutes on the rotation plate (500RPM, hold sample with
tweezers), rinse 2x in IPA, dry with N2.

10. Evaporate Al(100nm).
11. Lift-off as in step 6. For ultrasonication: lowest power, only few seconds!

1This step is due to an error in the recipe, ideally, one would use 70s at 8000RPM. The exposure dose
then might differ from the given values.
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SQUID

1. Prebake sample 2 minutes at 170-200°C.
2. Spin-coat chip with 60µl positive EBL resist PMMA/MA(33%) (AR-P 617.08) for

120s at 2000RPM. Bake at 160°C for 10 minutes2.
3. Spin-coat chip with 60µl positive EBL resist PMMA950K (AR-P 679.02) for 120s at

2000RPM. Bake at 160°C for 10 minutes3.
4. Define SQUID. Exposure is done with a PEC corrected pattern4 (base dose 6.75C/m2).

Use lowest current database for minimum spot size and best precision.
5. Develop 30s in AR600-56 without moving, then immediately transfer to 4°C-cold

IPA for 10 minutes. Do not rinse, immediately dry with N2.
6. Evaporate 64nm Al 55◦ normal to the substrate surface. Oxidize for 100 minutes

with oxide pressure 7.9× 10−3 mbar (old evap system: VAT 15%, O2 flowrate 8sccm).
Evaporate 70nm Al 0◦ normal to the substrate surface. The 55◦-rotation angle should
be chosen in such a way that the Josephson junction is formed in the same way as
depicted in fig. 3.4a).

7. Lift-off resist layer with excess metal in 70°C aceton. Soak sample for 12-15 minutes.
Remove dissolved material with disposable pipette and transfer sample to new beaker.
Repeat last step after 5 minutes until resist layer is gone. Do not use ultrasonic bath.
Rinse in p.a. acetone and IPA, dry with N2.

Bandage

1. Depending on time passed between SQUID lift-off and bandage fabrication, carefully
clean sample (no ultrasonication!).

2. Prebake sample 2 minutes at 170°C.
3. Spin-coat chip with 60µl positive EBL resist PMMA600K (AR-P 699.04) for 60s at

4000RPM. Bake at 170°C for 5 minutes.
4. Spin-coat chip with 60µl positive EBL resist PMMA950K (AR-P 679.02) for 60s at

4000RPM. Bake at 170°C for 5 minutes.
5. Define bandages, exposure dose 1.2×5.8C/m2 for clearing, 1.0×5.8C/m2 for undercut.
6. Develop 120s in AR600-56 under constant “8”-shape movement.
7. Ar-ion mill bandage region with Kaufman & Robinson ion source type EH200HC,

currently done in SUPERBOWL system, for 240s. Set parameters in table B.1.
8. Sputter 150nm Al with power 150W at set height 30mm.
9. Lift-off resist layer with excess metal in 70°C aceton. Soak sample for 12-15 minutes.

Remove dissolved material with disposable pipette and transfer sample to new beaker.
Repeat last step after 5 minutes until resist layer is gone. Do not use ultrasonic bath.
Rinse in p.a. acetone and IPA, dry with N2.

10. Ash 3 minutes with O2.

2Recent developments in Quantum Computing group suggest a bake duration of 3 minutes.
3As above.
4The PEC corrected pattern for the SQUID was provided by GenISys in the scope of a BEAMER showcase.
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Table B.1: Kaufman & Robinson ion source type EH200HC settings
Parameter MFC1 MFC4 KC EV EA DV DA

Set 3sccm 10sccm 1.5A 120V 0.5A 100V 0.5A
Is 2.9sccm 10sccm 1.5A 54V 0.5A 100V 0.5A

B.2 SAW Devices

The following is a detailed fabrication sequence for the SAW devices on
LNO(500nm)/SiOx(2µm)/Si(350µm).

1. Clean new Si chip by ultrasonic bath in technical acetone (room temp.), p.a. acetone
(room temp.), p.a. acetone (70°C), IPA (70°C) and IPA (room temp.) for 2 minutes
each, dry with N2, ash 3 minutes with O2, (optionally) briefly bake at 170-200°C.

2. Spin-coat chip with 60µl positive EBL resist PMMA/MA(33%) (AR-P 617.08) for
60s at 8000RPM. Bake at 170°C for 2 minutes.

3. Define SAW device with PEC corrected pattern, base dose 2.65C/m2. Consider
exposure dose from surrounding ground planes (dose multiplier 1.0) for the proximity
effect!

4. Develop 120s in AR600-56 on the rotation plate (500RPM, hold sample with tweezers),
rinse 2x in IPA, dry with N2.

5. Evaporate 100nm Al.
6. Lift-off resist layer with excess metal in 70°C aceton. Soak sample for 12-15 minutes.

Remove dissolved material with disposable pipette and transfer sample to new beaker.
Repeat last step after 10 minutes until resist layer is gone. Optionally, carefully use
ultrasonic bath if material remains on the substrate (lowest power, only for a few
seconds, high risk of damaging structures). Rinse in p.a. acetone and IPA, dry with
N2.
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