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Chapter 1

Introduction

In contrast to conventional electronic devices which utilize only the charge degree of

freedom, spintronic devices take advantage of the electron spin degree of freedom and

thus unite magnetic and electric properties. Due to their application relevance and

their outstanding fundamental physical principles, they are a vigorously investigated

topic. Concerning their technological applications, spintronic devices are nowadays

most prominently used as hard disk drive reading heads. By awarding this year’s

Nobel prize in physics to Albert Fert and Peter Grünberg for the discovery of the giant

magnetoresistance [1, 2], the importance of this field of research is unambiguously

emphasized.

Controlling the magnetization is a very important aspect for the realization of

spintronic devices. Naturally, magnetization can be controlled by external magnetic

fields. However, the implementation of magnetic fields of sufficient strength to switch

the magnetization is technologically difficult on sufficiently small length scales and

power consuming. Hence, other approaches to control the magnetization are needed.

From a technological point of view, electric fields are easy to implement on even

very small length scales, power efficient and fully switchable. The ability to reversibly

switch the magnetization orientation by an electric field is thus considered a milestone

on the way to new functional spintronic devices.

The necessary physical properties for such an electric field control of magnetization

are given in materials that exhibit ferromagnetic and ferroelectric properties at the

same time. These so-called multiferroic materials are an important topic of current

research as multiferroic devices may be employed in future random access memories

that combine the advantages of magnetic and ferroelectric random access memories [3,

4].

1
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Introduction

In this thesis, we investigate the properties of multiferroic heterostructures rather

than that of materials which unite ferromagnetic and ferroelectric properties in one

phase, as only heterostructures show robust multiferroic properties at room temper-

ature [5].

A brief overview of the general concept of ferroic materials and their description

by a free energy is given in Chapter 2, along with the introduction to the properties

of multiferroic materials and the expected interactions between ferromagnetic and

ferroelectric phases. The material parameters of the ferroic materials used in this

thesis are summarized in Chapter 3. In addition to the elemental ferromagnetic

materials cobalt and nickel, the iron oxide magnetite (Fe3O4) is investigated. Thin

films of these ferromagnetic materials are deposited on ferroelectric substrates. With

barium titanate (BaTiO3) and PZT-based piezoelectric actuators, two ferroelectric

substrates that will show vastly different influences on the ferromagnetic thin films

are presented.

This thesis makes use of high resolution X-ray diffraction (HRXRD), ferromagnetic

resonance (FMR) and superconducting quantum interference device (SQUID) mag-

netometry, which represent a powerful set of techniques to determine structural as

well as magnetic properties. The most relevant aspects of these techniques for the

measurements performed during this thesis are summarized in Chapter 4.

The first half of the experimental part of this thesis is concerned with the magne-

toelastic effect that describes the influence of strain on magnetic anisotropy. To this

end, a magnetostrictive and a piezoelectric phase are coupled in heterostructures of

ferromagnetic thin films on voltage controlled ferroelectric actuators.

The strains involved in this coupling can directly be observed by HRXRD as shown

exemplarily for single crystals of MgO that are glued onto actuators in Chapter 5.

In Chapter 6, polycrystalline thin films of cobalt and nickel that are evaporated onto

piezoelectric actuators are investigated. The magnetic anisotropy of these heterostruc-

tures is determined at room temperature by FMR as a function of the voltage applied

to the actuator. Numerical simulations of the free energy surfaces yield the voltage

dependent equilibrium orientation of the magnetization. These results are compared

to those expected from magnetoelastic theory and the effect of external magnetic fields

on the magnetization is considered. A technological application for this voltage-strain-

control of magnetization orientation, that replaces the magnetic field modulation of

conventional FMR, is introduced.
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In the second half of this thesis, the multiferroic material system consisting of Fe3O4

thin films that are deposited onto BaTiO3 substrates by pulsed laser deposition is

presented. The dependence of the magnetization on the electric polarization of the

BaTiO3 substrate at room temperature is investigated in Chapter 7. To this end, the

polarization of the BaTiO3 substrate is studied by HRXRD measurements and its

influence on the magnetization is probed by SQUID and FMR measurements.

Finally, in Chapter 8, we investigate the FMR of a Fe3O4/BaTiO3 heterostructure

as a function of temperature. BaTiO3 exhibits several structural phase transitions

at characteristic phase transition temperatures that influence the magnetization of

the Fe3O4 thin film by interface strain coupling. Hence, in addition to electric fields,

temperature is a second means of controlling the magnetization in this heterostructure.
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Chapter 2

Ferroics and multiferroics

Materials that exhibit spontaneous electric polarization, magnetization or strain are

called ferroics. They are of the utmost technological importance, as the natural re-

manence of these materials opens the possibility to use them e.g. for information

storage devices. Hard disk drives that rely on platters with ferromagnetic surfaces for

non-volatile data storage are indispensable to cope with today’s data volume in in-

formation technology. Ferroelectric random access memory is commercially available

and widely used in smartcards [6]. Ferroelastic materials are used amongst others

in medical applications such as minimally invasive stents that widen narrowed blood

vessels.

The already extremely high technological importance of ferroic materials could be

further increased if two or more ferroic properties are united in the same phase. Such

materials are called multiferroics. For example, many materials combine ferroelec-

tric and ferroelastic properties. Unfortunately, materials combining ferromagnetic

and ferroelectric properties – such as HoMnO3 – are very rare and do not show ro-

bust multiferroic properties at room temperature [5]. However, materials showing

magnetoelectric coupling are of great interest, as they would allow for an electric field

control of magnetization that may be used in magnetoresistive random access memory

or other devices utilizing magnetoresistive effects.

Robust room temperature multiferroic properties are found in heterostructures con-

sisting of separate ferromagnetic and ferroelectric phases, which allows for an electric

field control of magnetization. In this thesis, multiferroic heterostructures consisting

of a ferromagnetic thin film and a ferroelectric substrate are investigated. This allows

us to determine the interaction between the different ferroic properties.

5
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Ferromagnetic Ferroelectric Ferroelastic

η Magnetization M Polarization P Strain ε

ξ Magnetic field H Electric field E Stress σ

T ≥ Tc Paramagnetic phase Paraelectric phase Austenite phase

T < Tc Ferromagnetic phase Ferroelectric phase Martensite phase

Domain
walls

Bloch or Neel walls Ferroelectric domain
walls

Boundaries between
variants

Table 2.1: Analogies between different ferroic materials.

2.1 Ferroics

Several crystals undergo phase transitions if external parameters such as pressure

or temperature are changed. If, in a certain crystal, at least one of these phase

transitions is accompanied by a spontaneous change of directional symmetry, one

speaks of a ferroic crystal. Landau and Lifshitz [7] pointed out that crystal symmetry

may spontaneously be broken even if the atoms in the crystal itself are rearranged

continuously, which is obvious if one for example imagines a cubic crystal becoming

distorted to tetragonal shape by an arbitrary small displacement of lattice atoms. A

phase transition involving a spontaneous break of symmetry caused by a continuously

evolving order parameter η is called a second-order phase transition. In our case,

the order parameter is the magnetization M , polarization P or strain ε and the

phase transition to the ferroic state occurs if the order parameter becomes different

from zero. It is important to note that this ordering needs to be spontaneous, thus

must occur even in the absence of an external field. The analogies between the

different ferroic materials are shown in Tab. 2.1. In the absence of applied fields,

thermodynamic equilibrium is determined by minimizing the Helmholtz free energy

F (η, T ) with respect to the order parameter η. Thus the necessary condition for

equilibrium is given by [8]:
∂F

∂η
!
= 0 . (2.1)

If an external field ξ is applied, which in our case is given by a magnetic field H,

electric field E or a mechanical stress σ, the total free energy is quantified by the
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Gibbs relation:

G(η, ξ, T ) = F (η, T )− ξη , (2.2)

and thermodynamic equilibrium is reached if

∂G

∂η
= 0 ,

∂2G

∂2η
> 0 (2.3)

⇔ ∂F

∂η
= ξ ,

∂2F

∂2η
> 0

is fulfilled. Therefore Eq. (2.3) describes the adjustment of the order parameter to bal-

ance the internal energy with the work caused by the external field. The spontaneous

ordering in the absence of an external field is described by η(T ) = 0 for T ≥ Tc and

η(T ) 6= 0 for T < Tc. Tc is the Curie temperature at which the crystal undergoes the

phase transition to the ferroic state (often referred to as disorder-order or soft-mode

transition). If T ≥ Tc, the ferroic material is in a non-ordered state which is called

paramagnetic, paraelectric or austenite, respectively (cf. Tab 2.1). In this state, the

order parameter η ∈ {M,P, ε} is a linear function of the field ξ ∈ {H, E, σ} for suffi-

ciently small fields. For paramagnetic materials it is given by M = C ·H/T with the

Curie-constant C and for paraelectric materials by P = ε0χE with the permittivity

of free space ε0 and the electric susceptibility χ. Finally, for austenite materials, the

order parameter is given by ε = sEσ with Young’s modulus sE.

If we now assume T < Tc, the breaking of symmetry leads to a spontaneous ordering

of magnetization, polarization or strain in the crystal even without an external field,

and the material is now in its ferromagnetic, ferroelectric or martensite phase. If no

external field is applied, all orientations of the order parameter are equally favorable

and therefore domains enclosing regions of equally oriented order parameter emerge

in such a way that the macroscopic ordering may remain zero.

The dependence of the order parameter on an external field can be described by an

appropriately chosen Helmholtz free energy F , which for ferromagnetic and ferroelec-

tric materials can be derived from the taylor expansion of the Helmholtz free energy

shown in [9] as:

F (η) =





1
2
κ(η + ηR)2 , η ≤ −ηI

1
2
κ(η − ηR)2 , η ≥ ηI

1
2
κ(ηI − ηR)

(
η2

ηI
− ηR

)
, |η| < ηI

(2.4)
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G(η,ξ=0)

η
I

ηη
R

G(η,ξ=ξ
C
)

η η

G(η,ξ>ξ
C
)(a)

ξ ξ
ξ
C

ξ

η

η
R

η
I

-η
R

η η(b)

Figure 2.1: (a) Gibbs free energy and (b) resulting hysteresis of the order parameter η ∈
{M,P, ε} depending on the external field ξ ∈ {H, E, σ}.

The resulting Gibbs free energy G(η, ξ) = F (η) − ξη is plotted in Fig. 2.1(a) for

T < Tc. Here, ±ηR denote the minima of G(η, ξ), ηI one inflection point of G(η, ξ)

and κ the reciprocal slope of the curve depicted in Fig. 2.1(b) for |ξ| > ξC, with the

coercive field

ξC = κ(ηR − ηI) . (2.5)

For T < Tc, G(η, ξ) has the shape of a double well potential, unlike for T ≥ Tc where

it shows a single well potential [9]. The order parameter can now be imagined as a

ball resting in the potential in Fig. 2.1(a) – it will stay in a local minimum unless

the applied field is large enough to let it overcome the potential barrier to the global

minimum of the potential. Hence hysteresis can only occur if the potential shows

more than one well, thus only in ferroic materials.

For ferroelastic materials, the Helmholtz free energy can be derived in a similar
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way [10], but as the microscopic physical ordering is quite different for ferroelastic

materials if compared to ferromagnetic and ferroelectric materials, other parameters

need to be involved, although G(η, ξ) qualitatively shows the same evolution as de-

picted in Fig. 2.1(a).

It is important for the understanding of the free energy concept, that the expression

for the free energy shown above is just one possible description of the free energy in

ferroic materials. Depending on which physical properties of the system one wants

to describe, appropriate expressions for the free energy need to be derived. The free

energy shown above was used because it unifies the macroscopic properties common to

all ferroic materials. There exist several other approaches to free energy descriptions

of ferroic materials that are no longer applicable for the entire class of materials, but

concentrate on a more precise description of one ferroic material. For example, a

commonly used theory to provide the relation between order parameter and field in

ferroelectric materials is the Devonshire-Slater [11, 12] free energy. In ferromagnetic

materials the mean field (Weiss) theory [13, 14, 15] is applied and for ferroelastic

materials Landau and Lifshitz [16] established the Landau theory of elasticity.

We have shown three features common to all ferroic materials: The existence of a

Curie temperature Tc as well as the existence of hysteresis and domains. This was

done by the introduction of the general concept of free energy, which resulted in an

order parameter that will always reside in such a state that the free energy is in a

local minimum.

In the following sections, a microscopic description of the respective order parameter

for all three investigated ferroic materials will be given.

2.1.1 Ferromagnets

In ferromagnets, the order parameter is the magnetization M, which is defined as the

magnetic moment µ per unit volume V .

M =
dµ

dV
(2.6)

The magnetic moment µ is microscopically caused by the classical orbital angular

momentum L of an electron in the atomic shell as well as its spin S, resulting in

µ = µB (L + geS) (2.7)
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with the Bohr magneton µB and the Landé factor ge of the electron. Quantum me-

chanical exchange interaction results in the parallel orientation of magnetic moments

in ferromagnets, thus ferromagnetism is a quantum mechanical phenomenon.

In this work, magnetic fields will by described by the magnetic induction B = µ0H.

M is related to B by

B = µ0 (H + M) . (2.8)

In ferromagnetic materials, the relation between the magnetic field intensity H and

the magnetization M is non-linear because of hysteresis as shown in Fig. 2.1(b). In

Eq. (2.3) this relation was shown to be

∂F

∂M
= B = µ0H , (2.9)

which is obviously only valid if the vector properties of M and H are disregarded,

which can only be done if M and H are parallel.

The magnetic field dependence of the magnetization is referred to as the magnetic

susceptibility χM:

χM =
∂M

∂H
. (2.10)

If one now is interested in the equilibrium orientation of M rather than just its

magnitude and wants to consider the more general case of M and H not being neces-

sarily parallel, M as well as H need to be parameterized in a suitable way by choosing

an appropriate coordinate system and representation of M and H as a function of

the chosen parameters. Due to the importance of this step, which will involve the

introduction of the so called magnetic anisotropy, it will be carried out in a separate

Section later in this Chapter.

Another important ferromagnetic property is the formation of ferromagnetic do-

mains that enclose regions of identical magnetic moment orientation. If the macro-

scopic magnetization is saturated at high external magnetic fields (H > Hc = ξc in

Fig. 2.1(b)) the ferromagnet is in a single domain state. Upon removal of the exter-

nal magnetic field (H = 0) some domains will form to minimize the free energy of

the crystal and the macroscopic magnetization is reduced to the so called remanent

magnetization MR. If the external magnetic field is now reversed to H = −Hc the

macroscopic magnetization diminishes to zero. However, as the crystal is still in a fer-

romagnetic state there is spontaneous magnetization and the vanishing macroscopic
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magnetization is caused by the decay into domains that each still show a magne-

tization. The domains are separated by domain walls in which the magnetization

orientation continuously adjusts from the orientation in one domain to the orienta-

tion in the adjacent domain. If the magnetization vector rotates in the domain wall

plane (in a plane perpendicular to the domain wall) one speaks of a Neel (Bloch) do-

main wall. Furthermore, adjacent domains with antiparallel magnetization are called

180◦ domains and adjacent domains with orthogonal magnetization are called 90◦

domains.

2.1.2 Ferroelectrics

The ferroelectric order parameter P is defined as the dipole moment p per unit volume

V :

P =
dp

dV
, (2.11)

which is related non-linearly to the electric field E as depicted in Fig. 2.1(b) by:

∂F

∂P
= E . (2.12)

This again will only hold true for P parallel to E. In general, the electric field

dependence of the polarization is defined as the electric susceptibility χE: [17]

χE =
∂P

∂E
. (2.13)

Microscopically, the ferroelectric polarization in the materials investigated in this

thesis (lead zirconium titanate and barium titanate) is caused by the displacement xi

of lattice ions bearing the electric charge qi. The total dipole moment for N displaced

ions thus is given by

p =
N∑

i=1

xiqi , (2.14)

and one speaks of displacement polarization. In ferroelectric materials, polarization

thus will always be accompanied by a deformation of the unit cells, which immediately

leads to the conclusion that for a ferroelectric material the unit cell has a higher

symmetry in its paraelectric state than in its ferroelectric state.

The induction of a polarization to the sample by an applied mechanical stress

is called the piezoelectric effect, and the strain resulting from an electric field is
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called the inverse piezoelectric effect. Note that while all ferroelectric materials show

piezoelectricity, there are piezoelectric materials that are not ferroelectric such as

quartz. Two basic equations correlate the electric polarization P , the electric field E,

the elastic strain ε and the mechanical stress σ [18]:

P = −dPiezoσ + χE (2.15)

ε = −sEσ + dPiezoE ,

with the dielectric susceptibility χ, the elastic compliance sE and the piezoelectric

strain coefficient dPiezo. For applications in actuators, the most relevant case of

Eq. (2.15) is the so called d33-effect which describes the elongation (or contraction) of

the ferroelectric material parallel to the applied electric field:

ε3 = sE
33σ3 + d33E3 , (2.16)

with ε3 usually being in the range of 0.1%.

The concept of ferroelectric domains is similar to that for ferromagnetic domains.

Just as in ferromagnetic materials, one distinguishes between 90◦ domain walls sep-

arating domains with perpendicular polarization and 180◦ domain walls separating

domains with antiparallel polarization. A detailed introduction to ferroelectric do-

main walls can be found in the textbook by Jona and Shirane [19].

2.1.3 Ferroelastics

In ferroelastics, the order parameter is the strain ε which is linked to the stress σ by

∂F

∂ε
= σ , (2.17)

for parallel stress σ and strain ε.

It was already mentioned above that microscopically ferroelasticity differs from fer-

romagnetism and ferroelectricity in such a way that the free energy shown in Eq. (2.4)

is only a coarse approximation. This is due to the phase mixture present in pure fer-

roelastics even below Tc [9]. While ferromagnetic and ferroelectric materials show

domains enclosing regions with identical order parameter, in ferroelastic materials

domains separate martensite and austenite regions. Hence a change of the order pa-

rameter in ferroelastic materials is linked to phase transitions rather than just domain
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Figure 2.2: Phase control in multiferroics [5].

reformation.

Ferroelectric materials showing a displacement polarization are commonly referred

to as being ferroelastic as well. This is due to the piezoelectric effect that results in a

coupling of strain and polarization. Hence the strain in these ferroelectric materials

is hysteretic as well as the polarization and ferroelectric domains show elastic behav-

ior [20]. As this denomination of ferroelectric piezoelectric materials as ferroelastics

is ambiguous, we will always refer to them just as ferroelectrics.

2.2 Multiferroics

Figure 2.2 [5] shows the relation between the different ferroic order parameters mag-

netization M , polarization P and strain ε that are responses to magnetic field H,

electric field E and stress σ, respectively. In multiferroic materials, all three order pa-

rameters may be influenced by all three fields. Thus, in addition to the direct effects

of the fields on their respective order parameter (depicted by the blue, yellow and red

arrows in Fig. 2.2), the following six effects may be observed:

• H → P magnetoelectric effect
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• E → M converse magnetoelectric effect

• H → ε magnetostrictive effect

• σ → M magnetoelastic effect

• E → ε inverse piezoelectric effect

• σ → P piezoelectric effect.

In intrinsic multiferroic materials there now exists a single phase where at least two

ferroic order parameters show spontaneous ordering. Unfortunately, materials unit-

ing ferroelectric and ferromagnetic properties have proven to be rare, though to the

present date it is not understood in detail why there are so few magnetic ferroelectrics.

However, as the ferromagnetic exchange is mediated by itinerant 3d-electrons that

result in lattice conductivity and thus reduce the tendency for displacement polariza-

tion [21, 22], ferromagnetic and ferroelectric properties seem to be mutually exclu-

sive. This constraint can be circumvented by the use of multiferroic heterostructures

that show all the desirable multiferroic properties and can straightforwardly be fab-

ricated by depositing a ferromagnetic film on a ferroelectric substrate. Multiferroic

heterostructures of this kind will be the focus of this work and have been vigorously

investigated for the last years [5, 23, 24, 25, 26], driven by technological aspirations.

For example, an approach to MRAM that utilizes the GMR effect [27] may be found

by utilizing the converse magnetoelectric effect (marked by the green arrow in Fig. 2.2)

which allows for the manipulation of magnetization by electric fields instead of mag-

netic fields. As all ferroelectric materials exhibit piezoelectricity, strain will always be

involved in (converse) magnetoelectric effects in multiferroic heterostructures. This

allows for the use of electric field induced magnetoelastic effects in heterostructures

of ferromagnets and ferroelectrics to control the equilibrium orientation of magneti-

zation.

2.3 The magnetic free energy density

As already mentioned above, we are interested in the vector properties of the mag-

netization of ferromagnetic materials, where the magnetization M and magnetic field

H are no longer necessarily parallel. Furthermore, even for H = 0, M may have

preferential directions, which is not covered by the free energy description used so far.
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Figure 2.3: Coordinate system relative to sample [28].

Hence, we need to introduce a more detailed free energy model which takes into

account microscopic effects on the magnetization orientation. Since free energy is

always additive [7], we can include any desired effect just by finding an appropriate

free energy description and adding it to the total free energy density of the system,

which will be denoted by Ftot. Before doing so, we introduce the coordinate system

shown in Fig. 2.3 [28] used to describe the orientation of both M and H relative to

a sample. Capital greek letters describe the equilibrium orientation of magnetization

and lower case letters the orientation of the external magnetic field. Thus we achieve

the parametrization:

M = (M, Θ, Φ) (2.18)

H = (H, θ, φ) , (2.19)

which will allow us to incorporate the vector properties of M and H in the mathemat-

ical description of the free energy density Ftot = Ftot(M, Θ, Φ, H, θ, φ). Magnetization

directions coinciding with a maximum of Ftot are called ”magnetically hard”and those

coinciding with a minimum of Ftot are called ”magnetically easy”, hence the total

magnetic free energy density Ftot is a measure for the angular-dependent magnetic

hardness. As shown in Eq. (2.3), in equilibrium M points towards a minimum of Ftot,

thus along a magnetically easy axis.
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2.3.1 Contributions to the magnetic free energy density

We will now briefly introduce contributions to the total free magnetic energy density.

We start with the only term dependent on the external magnetic field, generally

introduced in Eq. (2.2) as F = −ξη:

Fstat = −µ0H ·M , (2.20)

which is called Zeemann or magnetostatic term [29]. If expressed with the parametriza-

tion introduced above, it becomes

Fstat = −µ0MH (sin Θ sin Φ sin θ sin φ + cos Θ cos θ + sin Θ cos Φ sin θ cos φ) . (2.21)

If we only regard the above term, the magnetization will always be parallel to the ex-

ternal magnetic field as this minimizes Fstat. Thus to account for magnetic anisotropy

further terms need to be introduced.

Due to the sample’s geometry and the discontinuity of the magnetization at the

sample surfaces, the magnetic free energy density generally is anisotropic. For a thin

film, which is appropriate to describe all ferromagnetic samples used in this work, this

anisotropy is given by [30]:

Fdemag =
µ0

2
M2 sin2 Θ cos2 Φ (2.22)

and is referred to as shape anisotropy or demagnetization term for thin films. It

describes an uniaxial anisotropy with a hard axis perpendicular to the sample plane.

Further contributions to the total free magnetic energy density arise from the crys-

talline structure of the sample, which for a cubic crystal may be approximated by

Fc =
1

4
Kc1

(
sin2 (2Θ) + sin4 Θ sin2 (2Φ)

)
. (2.23)

This expression disregards higher order cubic contributions discussed e.g. in the text-

book by Chikazumi [29] and is therefore referred to as the first order cubic anisotropy

term and Kc1 is called first order cubic anisotropy constant1.

So far we have derived a total magnetic free energy density Ftot = Fstat+Fdemag+Fc

that may be used to describe the magnetization orientation in cubic single crystal

1As all free energy densities used in this work will only include first order anisotropy terms, Kc1 is
here simply called cubic anisotropy constant.
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ferromagnetic thin films. We will now consider the additional effects on magnetization

that are expected in multiferroic heterostructures.

2.3.2 Magnetoelastic effect

The magnetostrictive effect describes the elongation (or contraction) of a ferromagnet

if it is exposed to a magnetic field and is responsible for the familiar hum of transform-

ers. The magnetoelastic (converse magnetostrictive) effect thus describes the effect of

stress – that results in strains in the ferromagnet – on magnetization. If only strains

parallel to the orthogonal [100], [010] and [001] directions are regarded, shear strains

can be neglected and we obtain pure uniaxial strains. Hence, the effect on the mag-

netic free energy density will be uniaxial as well and can generally be described by

three orthogonal uniaxial contributions parallel to the directions of the strains:

Fstrain = Ku,[100] sin
2 Θ sin2 Φ + Ku,[010] cos2 Θ + Ku,[001] sin

2 Θ cos2 Φ . (2.24)

Magnetoelastic theory may be used to calculate the anisotropy constants in the above

equation for any given strain. This will be done in Chapter 6. We further note

that the term in Fstrain proportional to Ku,[001] and the demagnetization term Fdemag

possess a two-fold symmetry with identical angular dependence in thin films. It is

hence common practice to unite both terms in the effective uniaxial anisotropy term

Fu,eff,[001] = Ku,eff,[001] sin
2 Θ cos2 Φ.

For ferromagnetic films deposited onto a substrate, there usually are epitaxial

strains that arise from a small lattice mismatch between the film and the substrate.

These uniaxial strains are present even if no external stress is applied to the sam-

ple and thus Fstrain most often needs to be included in free energy descriptions of

ferromagnetic thin films.

We finally would like to emphasize that, if the strain in the ferromagnetic film can

be tuned continuously and reversibly, this will allow for a control of its magnetic

anisotropy.

2.3.3 Magnetoelectric effect

We have so far described the effects of intrinsic magnetic anisotropy on magnetiza-

tion as well as the effects of strains by appropriate terms in the total free energy

density. To complete the effects proposed in Fig. 2.2, we now have to regard the
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magnetoelectric effect that describes the influence of magnetic fields on polarization

and the converse magnetoelectric effect that describes the influence of electric fields

on magnetization [31]:

P ∝ α̂H (2.25)

M ∝ α̂E .

The magnitude of these effects is given by the second rank magnetoelectric tensor α̂.

The magnetoelectric (ME) effect can be described by an additional term FME in the

free energy [31]:

FME = α̂E ·H . (2.26)

So far, no description of the physical origin of the magnetoelectric effect was given in

this thesis. This is due to the vast difference of this effect in single phase multiferroic

materials and multiferroic heterostructures. In the former, microscopic interactions of

the lattice atoms and the electric field, such as the displacement of ions, occur [32, 33].

In the latter, the magnetoelectric effect is primarily caused by strain coupling at the

interface of the ferromagnetic and the ferroelectric phase. Whereas the microscopic

effect in intrinsic multiferroic materials is usually small, much larger magnetoelectric

coupling is observed in heterostructures.

2.4 Conclusion

The most important physical principles of ferroic and multiferroic materials as far as

this thesis is concerned were introduced. We gave a brief description of the free energy

concept in ferroic materials and the possible interactions in multiferroic structures.

The multiferroics contributions to the magnetic free energy density were introduced

and the complete multiferroic magnetic free energy density is given by:

Ftot = Fstat + Fu,eff,[001] + Fc + Fu,[100] + Fu,[010] + FME . (2.27)

The magnetoelectric effect led to the proposal of a new class of ferroic materials with

the order parameter T being the antisymmetric component of the magnetoelectric

tensor α̂ [34]. T is called toroidal moment and describes local vortices of the magnetic

moment. The materials showing a spontaneous toroidal moment are referred to as
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ferrotoroidic materials. The renewed interest in the magnetoelectric effect that arose

in the past years [32] led to the very recent finding of ferrotoroidic domains [35], which

are an indispensable property of any ferroic material. Hence ferroic materials still pose

a viable field of fundamental research, whereas multiferroic materials are investigated

vigorously mainly due to their application potential.
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Chapter 3

Materials

In the previous Chapter, we introduced the physical principles of ferroic and multi-

ferroic materials. The most relevant material properties of the ferroic materials used

in this thesis will be discussed here. Unless stated otherwise, the properties in this

Chapter apply to bulk materials at a temperature of 300 K and a pressure of 1 kPa.

In thin films, that will be used throughout this thesis, material constants may differ

from bulk values. These deviations will be discussed in the respective Sections.

3.1 Ferromagnetic materials

As we strive to control the magnetization in multiferroic heterostructures, ferromag-

netic materials will be present throughout all aspects of this work. Among the ele-

mental ferromagnetic materials, only cobalt (Co), nickel (Ni) and iron (Fe) have Curie

temperatures well above room temperature and are therefore relevant for applications.

We investigate the classic ferromagnetic transition metals nickel and cobalt, as well as

magnetite (Fe3O4) as a prototype for a more complex magnetic material. This Section

briefly outlines the material properties relevant to this thesis, a detailed introduction

to ferromagnetic materials can be found in the textbooks by Chikazumi [29] and

Morrish [30].

As magnetoelastic effects are a main focus of this thesis, the material parameters

relevant to this effect will be presented for the investigated materials in addition to the

basic magnetic properties given by the saturation magnetization Ms
1 and the g-factor.

The elastic moduli cij describe the stress per strain ratio of the material cij = σi/εj in

1In literature, the saturation magnetization Ms is often quoted in cgs units as emu / g. Conversion
to SI units is calculated with the density ρ by 1kA

m = 10
4π

emu
g

g
cm3 .

21
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Ms (kA/m ) g-factor λ100 × 106 λ111 × 106 c11 (1011 N/m2) c12 (1011 N/m2)

411 [39] 2.185 [40] -45.9 [41] -24.3 [41] 2.5 [41] 1.6 [41]

Table 3.1: Magnetic, magnetostrictive and elastic moduli of bulk nickel at room tempera-
ture.

Voigt notation [36] in the linear regime (Hook’s law). For cubic materials, the magne-

tostrictive constants λijk describe the maximal elongation or contraction λ = 2
3
δl/l of

the ferromagnet in the direction [ijk] of the external magnetic field upon magnetiza-

tion from the demagnetized state to saturation [29]. Symmetry considerations yield

two independent magnetostrictive constants for cubic materials and four independent

constants for hexagonal materials.

3.1.1 Nickel

Nickel has a curie temperature Tc = 627 K [37] well above room temperature and is

a very common element found in every-day items such as coins. Nickel crystallizes

stable in the face centered cubic (fcc) structure, though hexagonal closed package

(hcp) and body centered cubic (bcc) Ni has been prepared [38]. At room temperature

and atmospheric pressure, the crystalline lattice constants are aNi = bNi = cNi =

0.35241(7) nm [38]. As we will investigate magnetoelastic effects in Ni in Chapter 6,

the magnetostrictive constants and elastic moduli are of interest and thus presented

in Tab. 3.1. As will be shown in Chapter 6, due to the negative magnetostrictive

constant λ100 of Ni, a compressive strain along a cubic axis will result in a reduction

of the magnetic free energy density in the direction of the strain.

3.1.2 Cobalt

Cobalt’s very high Curie temperature Tc = 1388 K [37] and high saturation magne-

tization Ms = 1167 kA/m [42] make it an ideal model ferromagnet. Cobalt is found

in hcp and fcc crystalline structure depending on temperature. For low tempera-

tures it crystallizes in hcp and above the transition temperature Tt = 690 K [43] in

fcc structure. Cobalt may be engineered to crystallize in body-centered-cubic (bcc)

structure as well [44], but bcc-Co is not found naturally. Hence for our work, only

the hcp phase is relevant. At room temperature, the lattice constants of hcp-Co are:
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Ms (kA/m ) g-factor c11 (1011 N/m2) c12 (1011 N/m2)

1167 [42] 2.15 [46] 3.07 [47] 1.65 [47]

Table 3.2: Magnetic and elastic constants of hcp cobalt at room temperature.

λA × 106 λB × 106 λC × 106 λD × 106

−45 −95 110 −100

Table 3.3: Magnetostrictive constants of hcp cobalt at room temperature [48].

aCo = bCo = 0.251 nm and cCo = 0.407 nm [45]. Magnetic and elastic constants are

displayed in Tabs. 3.2 and 3.3.

3.1.3 Magnetite

Magnetite (Fe3O4) is the oldest known magnetic material and is predicted to be totally

spin polarized at the Fermi level, while experimental evidence of |P | = 80% in thin

films exists [49]. Magnetite is a decent conductor with a conductivity of 250 Ω−1cm−1

at room temperature [50]. At a temperature of TV = 122 K, magnetite exhibits a

structural Verwey transition [51], discontinuously lowering its electrical conductivity

by two orders of magnitude. Its high Curie temperature Tc = 858 K [52] and well

studied magnetic anisotropy properties [53, 54, 55, 56] make it an ideal choice for our

investigations. In contrast to cobalt and nickel, magnetite is not an elemental ferro-

magnet but each magnetite unit cell consists of 24 iron and 32 oxygen atoms. At room

temperature, Fe3O4 crystallizes in the inverse cubic spinell structure [57] with lattice

constants aFe3O4 = bFe3O4 = cFe3O4 = 0.8396 nm [53]. Microscopically, magnetite shows

ferrimagnetic properties, that result in a macroscopic behavior which is equivalent to

that of a ferromagnet and thus we will refer to magnetite as being ferromagnetic.

Magnetite has been reported to show ferroelectric properties at temperatures below

approximately 10 K [58, 59, 60, 61]. Thus, in addition to its ferromagnetic proper-

ties, magnetite is an intrinsic multiferroic material. However, no reports of the exact

ferroelectric transition temperature or magnitude of the electric polarization exist.

Due to the low transition temperature and difficult to prove ferroelectric properties,

Fe3O4 is not suitable for everyday use as an intrinsic multiferroic material. As we
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Ms (kA/m ) g-factor λ100 × 106 λ111 × 106 c11 (1011 N/m2) c12 (1011 N/m2)

381 [62] 2.12 [63] -20 [64] 80 [64] 2.73 [65] 1.06 [65]

Table 3.4: Magnetic, magnetostrictive and elastic constants of Fe3O4 at room temperature.

will investigate magnetite only at temperatures well above the ferroelectric transition

temperature, only its ferromagnetic properties are relevant to this thesis.

3.2 Barium titanate

Barium titanate (BaTiO3) is a very widespread room temperature ferroelectric ma-

terial often used as a dielectric in capacitors due to its low cost and high dielectric

constant ε = 4100 [66]. Its ferroelectric properties have been investigated already

several decades ago [67, 68, 69, 70] and it is today commonly used as the ferroelectric

phase in multiferroic heterostructures.

Barium titanate exhibits three crystalline phase transitions at distinct tempera-

tures, one from the paraelectric to the ferroelectric state at the Curie temperature

Tc = 393 K [19] and two in between ferroelectric phases at lower temperatures T1

and T2. Upon cooling down the crystal from a temperature above Tc, the crystalline

structure changes from the paraelectric cubic phase to the ferroelectric tetragonal,

orthorhombic and finally rhombohedral phase. The phase transitions are caused by

changes in the spontaneous polarization which result in a deformation of the lattice

as explained in the previous Chapter. In Fig. 3.1, the lattice parameters are displayed

as a function of temperature in the approximation of a pseudocubic unit cell with the

lattice constants a, b and c orthogonal to each other in real space [71]. This simpli-

fication results in the rhombohedral state being approximated by a cubic unit cell,

although there still is a spontaneous polarization along any of the crystalline <111>

directions.

As can be seen from Fig. 3.1, at room temperature the unit cell is tetragonal.

The unit cell crystallizes in the perovskite structure and is shown in Fig. 3.2 for the

cubic and for the tetragonal phase. Microscopically, the spontaneous polarization

is caused by a displacement of the Ti4+ ion from its central position which it takes

above Tc [67]. This is schematically shown in Fig. 3.2 for the tetragonal phase. One

can see that upon the phase transition to the ferroelectric state, the Ti4+ ion has six
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Figure 3.1: Barium titanate lattice parameters [71] and spontaneous polarization along
[100] [67] as a function of temperature (solid lines correspond to increasing
temperature and dotted lines to decreasing temperature).

T ≥ T
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Figure 3.2: The barium titanate unit cell and spontaneous polarization caused by a dis-
placement of the Ti4+ ion.
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Figure 3.3: Surfaces of the BaTiO3 unit cells in the four different crystalline phases and
possible transitions.

possible displacement directions that may be reduced to a basis of three orthogonal

possible displacement vectors. In a crystal consisting of several unit cells, we expect

all orientations to be equally favorable if no external electric field is applied. This

gives rise to domain formation in the crystal. In the tetragonal phase, we distinguish

between a-domains with a || [001] and c-domains with c || [001]. The a-domains are

further divided into a1-domains with c || [100] and a2 domains with c || [010]. Domains

in the orthorhombic phase are depicted according to the same scheme. Fig. 3.3 shows

the resulting (001) unit cell surfaces for all phases as well as the possible transitions

with temperature that can be derived from the lattice parameter evolution shown in

Fig. 3.1.

At room temperature, BaTiO3 is ferroelectric and thus shows a piezoelectric effect

as described in Eq. 2.15. The piezoelectric coefficients and elastic moduli are given in
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d31 (10−12 C/N) d33 (10−12 C/N) c11 (1011 N/m2) c12 (1011 N/m2)

-33.4 [72] 90 [72] 2.75 [73] 1.79 [73]

Table 3.5: Piezoelectric and elastic constants of BaTiO3 at room temperature.

d31 (10−12 C/N) d33 (10−12 C/N)

-290 640

Table 3.6: Piezoelectric coefficients of PZT ceramics at room temperature [76].

Tab. 3.5.

3.3 Lead zirconate titanate

Lead [Plumbum] Zirconate Titanate (PZT) is a room temperature ferroelectric nowa-

days widely used in piezoelectric devices, which utilize the d33-effect introduced in

the previous Chapter. Additionally, PZT has found applications in ferroelectric ran-

dom access memories [74]. Its chemical structure is Pb[Zr1−xTix]O3 (0 < x < 1),

most commonly x ≈ 0.5. For x ≥ 0.5 the ferroelectric phase is tetragonal and for

smaller portions of titanium the ferroelectric phase is rhombohedral with an antifer-

roelectric phase below x = 0.1 [75]. The Curie temperature is dependent on x as well

and increases with increasing x from Tc(x = 0) = 250 K to Tc(x = 1) = 500 K [75].

For x ≥ 0.5, PZT shows properties similar to BaTiO3 with a perovskite crystalline

structure which is tetragonally distorted below the Curie temperature Tc = 350 K.

Piezoelectric actuators built from stacks of PZT may be used to apply stress to a

sample attached to the actuator as shown in Chapters 5 and 6. We use Piezomechanik

PSt 150/2x3/5 actuators [76] built from stacks of PZT ceramics. The piezoelectric

coefficients of the PZT used in these actuators are given in Tab. 3.6.

3.4 Magnesium oxide

Magnesium oxide (MgO) crystallizes in the cubic fcc structure with an unstrained

lattice constant aMgO = bMgO = cMgO = 0.4212 nm [77]. It is a non-ferroic insulator
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c11 (1011 N/m2) c12 (1011 N/m2)

2.97 0.965

Table 3.7: Elastic moduli of MgO at room temperature [77].

and commonly used as a substrate for functional thin films. Due to its simple crystal

structure and very high achievable purity it is an ideal candidate to demonstrate the

effect of stress on lattice structure as will be done in Chapter 5. The elastic moduli

of MgO are displayed in Tab. 3.7.
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Experimental techniques

In this Chapter, the experimental techniques used in this thesis are described. Mag-

netization is the most relevant physical property for ferromagnetic materials. SQUID

(superconductive quantum interference device) magnetometry determines the static

response of a magnetic system. Thus SQUID magnetometry is suitable to detect

static properties such as the saturation magnetization. FMR (ferromagnetic reso-

nance) is sensitive to the dynamic magnetic response and is one of the most precise

measurement techniques to determine magnetic anisotropy.

In ferroelectric materials, we observe two effects relevant to this work: Polarization

and the corresponding strains. A reversal of polarization is accompanied by displace-

ment currents which may directly be recorded as a function of electric field using

standard laboratory equipment. HRXRD (high resolution X-ray diffraction) can be

used to precisely determine lattice constants and thus strains in crystals.

4.1 SQUID magnetometry

SQUID magnetometry can be used to determine the magnetization M of a sample

with high precision as a function of parameters such as external magnetic field H or

temperature T . The SQUID magnetometer MPMS XL-7 manufactured by Quantum

Design provides a magnetic field of −7 T ≤ µ0H ≤ +7 T and a temperature range

of 1.8 K ≤ T ≤ 400 K in the sample space. As can be seen in Fig. 4.1, a second

order gradiometer [78] suppresses the pickup of all static magnetic fields and all sig-

nals homogeneous over the gradiometer length – including the sample holder. Apart

from the shielding currents in the superconducting loop, only currents induced by the

movement of the magnetic sample inside the gradiometer pickup coils are flux-coupled

29



30
Chapter 4

Experimental techniques
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Figure 4.1: Schematic illustration of a SQUID magnetometer.

into the SQUID loop. Thereby, a resolution of 10−8 emu = 10−11 Am2 is achieved. It

is important to note that only the component of M parallel to the gradiometer axis

and hence parallel to the external magnetic field is detected.

4.2 Ferromagnetic resonance spectroscopy

The standard measurement technique to determine the magnetic anisotropy and

thereby the equilibrium orientation of magnetization in ferromagnetic thin films is

ferromagnetic resonance spectroscopy (FMR). As the theory of FMR is covered in de-

tail in several textbooks [79, 80, 29], only a brief introduction to the relevant aspects

to this thesis will be given here.

4.2.1 Theoretical background

The resonant absorption of an electromagnetic field in a system of magnetic moments

coupled by exchange interaction is referred to as ferromagnetic resonance. Experimen-

tally, the electromagnetic field is realized by the superposition of a static magnetic field

µ0H0 and an alternating microwave field µ0H1(ωt) = µ0H1 sin(ωt). The microwave
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field is of much smaller magnitude and perpendicular to the static field.

The resonance condition is met if the frequency of the external electromagnetic

microwave µ0H1 sin(ωt) field matches the precession frequency of the magnetization

M about H0. The most general form of the resonance condition in paramagnets is

given by

ω = γµ0H0 , (4.1)

with ω being the resonance frequency and γ the gyromagnetic ratio

γ =
gµB

~
. (4.2)

This resonant absorption of electromagnetic waves in a system of uncoupled magnetic

moments is called electron spin resonance (ESR).

In ferromagnetic materials, the magnetic moments have a long range order mediated

by exchange interaction. Due to the exchange interaction of the magnetic moments,

the effective magnetic field µ0Heff – about which M precesses – is a non linear function

of the external magnetic field µ0H0 [81]. Hence, in ferromagnetic materials, the

resonance condition is

ω = γµ0Heff . (4.3)

The equation of motion of the magnetization vector around the effective magnetic

field is classically given by

∂tM = −µ0γM×Heff . (4.4)

The effective magnetic field µ0Heff though is unknown and hence the simple equation

of motion (4.4) for the precession of the magnetization around the effective magnetic

field is not easily solved in exchange-coupled materials. Furthermore, we have to take

into consideration the magnetic anisotropy that causes a finite angle between M and

H0. Deriving the equation of motion by introducing the magnetic free energy den-

sity Ftot includes the effects of magnetic anisotropy [28] and yields the ferromagnetic

resonance equation of motion

(
ω

γ

)2

=
1

M2
s sin2 Θ

((
∂2

ΦFtot

) (
∂2

ΘFtot

)− (∂Φ∂ΘFtot)
2
)

. (4.5)

This expression usually includes a damping parameter α, that is neglected in this
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thesis. This is a simplification done here as the damping does not influence the

FMR resonance position but only the FMR line shape, that is not systematically

investigated here. Eq. (4.5) has to be fulfilled simultaneously with the necessary

condition for the minimization of the free energy density Ftot with respect to the

orientation of the magnetization given by Θ and Φ (cf. Fig. 2.3):

∂ΦFtot

∣∣
Φ=Φ0

= ∂ΘFtot

∣∣
Θ=Θ0

= 0 . (4.6)

Equations (4.5) and (4.6) provide the link between the measured resonance fields and

the magnetic free energy density Ftot. An analytic evaluation of these equations is

only possible for certain orientations of the external magnetic field µ0H0 with respect

to the sample. Using the coordinate system shown in Fig. 2.3, this was done in [56]

for the total magnetic free energy density

Ftot = Fstat + Fu,eff,[001] + Fu,[010] + Fc (4.7)

= −µ0MH0 (sin Θ sin Φ sin θ sin φ + cos Θ cos θ + sin Θ cos Φ sin θ cos φ) +

Ku,eff,[001] sin
2 Θ cos2 Φ +

Ku,[010] cos2 Θ +

1

4
Kc1

(
sin2 (2Θ) + sin4 Θ sin2 (2Φ)

)
,

which will later be shown to be sufficient to describe the magnetic anisotropy of our

samples. The contributions to Ftot in Eq. (4.7) were introduced in Chapter 2.

Solving Eq. (4.5) and (4.6) with Ftot from (4.7) for H0 along the cartesian axes

[100], [010] and [001] yields the following analytic expressions:

• H0 || [100] (φ = 90◦, θ = 90◦):

(
ω

γ

)2

=

(
µ0Hres,[100] + 2

Ku,[010]

M
+ 2

Kc1

M

)
× (4.8)

(
µ0Hres,[100] + 2

Ku,eff,[001]

M
+ 2

Kc1

M

)
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• H0 || [010] (φ = 90◦, θ = 0◦):

(
ω

γ

)2

=

(
µ0Hres,[010] − 2

Ku,[010]

M
+ 2

Ku,eff,[001]

M
+ 2

Kc1

M

)
× (4.9)

(
µ0Hres,[010] − 2

Ku,[010]

M
+ 2

Kc1

M

)

• H0 || [001] (φ = 0◦):

(
ω

γ

)2

=

(
µ0Hres,[001] + 2

Ku,[010]

M
− 2

Ku,eff,[001]

M
+ 2

Kc1

M

)
× (4.10)

(
µ0Hres,[001] − 2

Ku,eff,[001]

M
+ 2

Kc1

M

)

4.2.2 Experimental setup for FMR measurements

All FMR measurements described in this work were carried out using a Bruker ESP

300 spin resonance spectrometer featuring a static magnetic field 5 mT ≤ µ0H0 ≤ 1 T

and operated at a microwave frequency of approximately 9.3 GHz. A schematic view

of the setup – which was kindly granted access to by M. S. Brandt, C. Bihler and

H. Hübl at the Walter Schottky Institute – is shown in Fig. 4.2(a). Experimentally,

the sample is rotated in the static external magnetic field, though theoretically one

describes the rotation of the magnetic field in a coordinate system attached to the

sample.

A FMR spectrum from one of the actual samples (CP1) used in this work is shown

in Fig. 4.3 and introduces the notation used.

Characteristic features of the spectrum are the extrema µ0Hmax and µ0Hmin, the

peak to peak linewidth µ0∆Hpp = |µ0Hmax − µ0Hmin|, and the resonance position

taken throughout to be at µ0Hres = 1
2
(µ0Hmax +µ0Hmin). The shape of the resonance

line resembles the derivative of a Lorentzian. This is caused by the magnetic field

modulation detection that will be explained in the following.

4.2.3 Modulation and lock-in detection

To achieve optimal sensitivity, signal modulation and lock-in amplifier detection is

used to extract the resonance signal from the background noise. The lock-in incor-

porates a phase sensitive detector (PSD) which multiplies the sinusoidally modulated
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Figure 4.2: (a) Schematic view of the FMR setup [82] and (b) of the TE102 cavity [28],
showing the microwave magnetic (H1) and electric (E1) fields. H1 is orthog-
onal to the static magnetic field H0.

input signal Vsig(t) sin(ωmodt+φsig) with a pure sine function VLI sin(ωreft+φref), which

yields:

VPSD(t) = Vsig(t)VLI sin(ωmodt + φsig) sin(ωreft + φref) (4.11)

=
1

2
Vsig(t)VLI cos([ωmod − ωref ]t + φsig − φref)−

1

2
Vsig(t)VLI cos([ωmod + ωref ]t + φsig + φref) .

Thus, the PSD outputs two AC signals, one at the sum frequency (ωmod + ωref) and

one at the difference frequency (ωmod−ωref). VPSD(t) is now passed through a low pass

filter which removes the AC signal, leaving only the DC signal component present at

ωmod = ωref :

Vout(t) =
1

2
Vsig(t)VLI cos(φsig − φref) . (4.12)

Hence, if the lock-in’s reference frequency ωref is set to the modulation frequency

ωmod, all input signals at other frequencies are suppressed in the lock-in output Vout.

Furthermore, the phase difference φsig − φref must not be time dependent. As a last

step, the output signal defined in (4.12) is averaged over a certain time, called the
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Figure 4.3: Example spectrum of a Cobalt thin film with the magnetic field in the film
plane.

lock-in time constant tLI:

Vout,avg(t) =
1

tLI

∫ t

t−tLI

Vout(τ) dτ , (4.13)

which for all measurements discussed in this thesis is set to tLI = 0.1 s. This value

is chosen because a magnetic field sweep during one single FMR measurement takes

200 s and comprises 1024 data points, which results in a step time of approximately

0.2 s. Therefore, with a larger time constant, resolution would be lost and with a

smaller time constant, the signal to noise ratio would be decreased unnecessarily.

The resonant microwave absorption in the cavity is detected by a detector diode,

that outputs a voltage Vsig proportional to the microwave absorption. Modulation is

achieved by periodically modulating the external field µ0H0 by a parallel AC magnetic

field µ0Hmod at a frequency ωmod. This results in a sinusoidal FMR signal that is

amplitude-modulated with the frequency ωmod. The amplitude of the signal is given

by

Vsig,mod(µ0H0) = Vsig

(
µ0H0 +

1

2
µ0Hmod

)
− Vsig

(
µ0H0 − 1

2
µ0Hmod

)
, (4.14)



36
Chapter 4

Experimental techniques

which, for modulation amplitudes Hmod ¿ ∆Hpp is equivalent to the first derivative

of the pure resonance signal, which explains the lineshape seen in Fig. 4.3. If the

modulation amplitude is chosen to be close to or even larger than the linewidth, the

signal no longer represents the first derivative of a Lorentzian but becomes distorted,

one technically speaks of an overmodulated signal. The influence of modulation am-

plitude and frequency on the lineshape and noise is covered in detail in the textbook

by Poole [80].

4.3 High resolution X-ray diffraction

HRXRD is a standard measurement technique to determine lattice constants and

crystal structure. Furthermore, conclusions on the crystalline quality and phase pu-

rity can be made. In this thesis, HRXRD is utilized for precise lattice parameter

determination of crystals with orthorhombic structure, therefore the discussion will

be limited to this application. An in-depth description of the HRXRD technique can

be found in the textbook by Cullity and Stock [83].

4.3.1 Experimental setup

The setup used for all diffraction measurements in this thesis is a Bruker AXS D8-

Discover four-circle high resolution X-ray diffractometer. A CuKα X-ray source and

a monochromator provide parallel X-ray beams with a wavelength λ = 0.154056 nm.

Fig. 4.4(a) shows a schematic view of the setup displaying the eponymous four circles

ω, φ, χ and 2θ.

4.3.2 Scattering theory

X-ray beams are generally diffracted arbitrarily by the electron sheath of lattice atoms.

If parallel and monochromatic X-ray beams with the wavelength λ and wave vector ki

are diffracted on lattice atoms arranged in lattice planes with distance d, the diffracted

beams with wave vector kf interfere with each other constructively or destructively.

According to Bragg’s law, constructive interference occurs if the retardation ∆s of

the diffracted beams is an integer multiple of λ:

∆s = 2dhkl sin θ = nλ n ε N , (4.15)
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Figure 4.4: (a) Schematic view of the 4-circle diffractometer. (b) Diffraction of X-ray
beams on lattice planes.

where hkl are the Miller indices of the atomic plane and n designates the n-th order of

diffraction. The correlation of ∆s and θ can easily be seen in Fig. 4.4(b). Equivalently,

the constructive interference can be described vectorial by the Laue condition:

Khkl = kf − ki = q , (4.16)

with q denoting the scattering vector and Khkl designating a reciprocal lattice vector.

4.3.3 Reflections in reciprocal space

The available reflections are dependent on the geometry of the investigated material

and may be described by a set of Miller indices (hkl), corresponding to a set of

parallel atomic layers. According to the Laue condition, constructive interference of

the incident beams is achieved if q = Khkl. Fig. 4.5 shows a two-dimensional section

of reciprocal space, containing the reflections (0kl) of MgO. If a certain reflection is

to be measured, one has to choose the appropriate angles ω, 2θ, χ and φ. Due to

geometrical restrictions, not all reflections are available. As ki = kf = 2π/λ, the
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Figure 4.5: Two dimensional reciprocal space showing the MgO reflections available for
diffraction.

available reflections are encompassed by a half circle with radius qmax = ki + kf =

2 · 2π/λ = 4π/λ. Both, the incident and the diffracted beam can not pass the sample

plate, this results in the conditions ω > 0 and ω < 2θ (grey half circles in Fig. 4.5).

Two measurement modes relevant for this work are introduced:

2θ-ω-scan

If 2θ is varied at double angular velocity with respect to ω, the scattering vector q

changes only in magnitude but retains its direction in reciprocal space. This scan

is marked by a green arrow in Fig. 4.5. If one chooses ω = θ, q advances in [001]

direction and reaches the (00l) symmetric reflections. The results of 2θ-ω-scans are

displayed as the reflection intensity I(2θ). An exemplarily 2θ-θ-scan of a magnetite

(Fe3O4) thin film on a magnesium oxide (MgO) substrate (scan of the sample that

will be investigated in the next Chapter) is displayed in Fig. 4.6(a).

Reciprocal Space Map (RSM)

A RSM provides a rectangular scan of reciprocal space as indicated by the orange

box in Fig. 4.5. The rectangular mapping is achieved by varying both ω and 2θ
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Figure 4.6: (a) 2θ-θ-scan and (b) reciprocal space map of a Fe3O4 thin film on MgO
substrate with color coded logarithmic intensity (red depicting high intensity
and blue depicting zero intensity).

accordingly. In contrast to 2θ-ω scans, where the intensity is a function of a single

variable, the intensity I(q‖, q⊥) obtained from RSMs is a function of two variables.

q‖ and q⊥ denote the components of q perpendicular to [001] and parallel to [001],

respectively. An example reciprocal space map of the MgO (024) and Fe3O4 (048)

reflections of the Fe3O4 thin film on the MgO substrate is displayed in Fig. 4.6(b).

4.3.4 Determination of lattice constants

For an orthorhombic unit cell with lattice constants a, b and c, the distance d between

lattice planes is given by:
1

d2
=

h2

a2
+

k2

b2
+

l2

c2
, (4.17)

which in combination with Bragg’s equation (4.15) enables us to determine out-of-

plane lattice constants from the data achieved by a 2θ-θ-scan (h = k = 0):

c =
λl

2 sin θ
. (4.18)

RSMs are conventionally represented not by q‖ and q⊥ which are both dependent on

the wavelength λ, but in so called reciprocal lattice units (rlu) which are independent
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of λ. This is done by normalizing 4π/λ = 1, which is equivalent to the normalization

of the radius of the encompassing half circle in Fig. 4.5 to 1. This results in the

renormalization of q‖(rlu) = q‖/4π
λ

and q⊥(rlu) = q⊥/4π
λ

. From a RSM represented by

these reciprocal lattice vectors, the lattice constants can be calculated by [82]:

a =
1

q‖a(rlu)

λ

2
h (4.19)

b =
1

q‖b(rlu)

λ

2
k (4.20)

c =
1

q⊥c(rlu)

λ

2
l . (4.21)

4.3.5 Precise lattice parameter determination

Figure 4.7: The systematic error δc/c is pro-

portional to cot θ.

As we strive for the determination of

small lattice parameter changes, it is

indispensable to minimize experimen-

tal errors. As evident from Eq. (4.18),

HRXRD is an indirect measurement

technique, as c is not a linear func-

tion of the measurand θ, but of sin θ.

We now calculate the deviation δc/c of

Eq. (4.18):

δc

c
=

∣∣∣∣
∂c

∂θ
· δθ

c

∣∣∣∣ = |− cot θδθ| . (4.22)

Assuming some error δθ, one can see

from Fig. 4.7 that it is desirable to

measure reflections coinciding with val-

ues of 2θ as close to 180◦ as possible.

This minimizes the error in the deter-

mined lattice constant which is propor-

tional to cot θ. The true value of a lattice constant can therefore be calculated by

extrapolating the measured values to 2θ = 180◦. This is done by using an extrapola-

tion function f(θ) that accounts for the errors present in the experimental setup. To
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this end we use the Nelson-Riley extrapolation function [83]:

f(θ) =
cos2 θ

sin θ
+

cos2 θ

θ
. (4.23)

The Nelson-Riley function accounts for the systematic error introduced by the offset

of the sample with respect to the diffractometer axis, as well as beam divergence and

the specimen’s shape and absorption. Practically, one determines the lattice constants

for different reflections by determining 2θ and calculating c with Eq. (4.18). If these

c are plotted versus f(θ), the corrected value for c is found by linear extrapolation to

f(θ) = 0. Assuming no error at all, it is apparent that the slope of the linear fit is

0. The slope of the linear fit therefore is a measure of the systematic error. In order

to achieve a reliable linear fit, one at best measures a high number of reflections at

angles close to 2θ = 180◦. Unfortunately, often only a few reflections are available (for

MgO, only two reflections – (002) and (004) – are available), thus the reliability of the

results can only be checked by statistics, requiring a large number of measurements.
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Chapter 5

Measuring strain in MgO single

crystals

We investigate a magnetite (Fe3O4) thin film which was deposited onto a single crystal

magnesium oxide (MgO) substrate by pulsed laser deposition by Andreas Brandlmaier

during his Diploma thesis [56]. The Fe3O4 film is coherently strained, so that any

change in substrate lattice constant is transmitted into the film. We now use piezo-

electric actuators to induce a stress into the MgO substrate, which in turn results

in voltage-controllable strains in the film. These strains can be directly quantified

by measuring the lattice constants of either the substrate or the film. We thus use

high resolution X-ray diffraction (HRXRD) to determine the lattice constants as a

function of actuator voltage, focussing on the MgO substrate with its more intensive

XRD reflections. The precise determination of strains is an important procedure, as

it allows the application of magnetoelastic theory to calculate the strain-controlled

magnetic anisotropy of the ferromagnetic film.

5.1 Introduction

In his thesis, Andreas Brandlmaier prepared samples of 30 nm thick magnetite (Fe3O4)

thin films on approximately 50 µm thick magnesium oxide (MgO) single crystals

that were glued onto voltage driven piezoelectric actuators [56]. The samples were

glued face down (actuator–glue–Fe3O4–MgO) onto Piezomechanik PSt 150/2x3/5 ac-

tuators [76] using two component epoxy1. The actuator has a nominal expansion

of 0.13% along the main axis of elongation within the semi-bipolar voltage range

1UHU plus endfest 300
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Figure 5.1: (a) Schematic view of the sample on actuator. (b) Orthorhombic distortion of
MgO unit cell caused by the actuator.

−30 V ≤ VPiezo ≤ +150 V and dimensions a× b× L = 2× 3× 5 mm3. We use one of

these samples which is is schematically shown in Fig. 5.1(a) and was glued onto the

actuator in such a way, that the the strain axes coincide with crystalline axes of MgO.

We thus expect an orthorhombic deformation of the MgO unit cell as a function of

actuator voltage as schematically shown in Fig. 5.1(b). We use a Bruker AXS D8-

Discover four circle diffractometer for all HRXRD measurements. An introduction

to this setup is given in Chapter 4 and the basic properties of Fe3O4 and MgO are

discussed in Chapter 3.

5.2 Elastic theory

Due to the elastic properties of crystals, an applied uniaxial stress results in a parallel

and two orthogonal pure lattice strains. To calculate the full set of pure in-plane and

out-of-plane strains, it is thus sufficient to determine a single strain. The relation of

the strains are then given by the crystal’s elastic moduli and can be calculated using

elastic theory. This will be done for MgO single crystals in the following.

A stress acting on a crystal results in strain which in three dimensional space is

described by the 3×3 strain matrix εij [45]. We use the contracted Voigt notation [84],
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so that in particular εi = εii (i = 1, 2, 3). For a cubic crystal, continuum elastic

theory [29] relates the strain to the elastic free energy density Fel:

Fel =
1

2
c11(ε

2
1 + ε2

2 + ε2
3) + c12(ε1ε2 + ε2ε3 + ε1ε3) , (5.1)

where c11 and c22 are the elastic moduli of MgO (cf. Tab. 3.7). This expression

neglects the effects of shear strain (ε4 = ε5 = ε6 = 0). This can be done here as the

sample – and thus the sides of the crystalline unit cell – is aligned along the actuator’s

orthogonal axes of elongation or contraction and thus only pure strains εi (i ≤ 3)

are present. Stresses in the crystal are given by the partial derivatives of the elastic

free energy as shown in (2.17). Assuming that the stress and strain are parallel, we

obtain:

σi =
∂Fel

∂εi

(i = 1, 2, 3) . (5.2)

We assume no stress perpendicular to the sample plane, as the crystal is free to move

in this direction. Hence σ3 = ∂Fel/∂ε3 = c11ε3 + c12(ε1 + ε2) = 0 which yields

ε3 = −c12

c11

(ε1 + ε2) . (5.3)

Therefore the out-of-plane strain ε3 is a function of the in-plane strains ε1 and ε2.

The in-plane strains are related by the Poisson ratio ν:

ε1 = −νε2 , (5.4)

with ν = νPiezo = 0.45 for the used actuator, which is calculated from the piezoelectric

constants of the actuator d31,Piezo = −290 pm/V and d33,Piezo = +640 pm/V [76]. As

can be seen from Eqs. (5.3) and (5.4), a single experimentally determined strain εi is

sufficient to calculate the strains in the two orthogonal directions. For instance, if ε3

is determined by measuring the strained out-of-plane lattice constant c with respect

to the unstrained value c0, the three orthogonal strains are given by:

ε3 =
c− c0

c0

=
∆c

c0

(5.5)

ε1 = −c11

c12

ν

ν − 1
ε3

ε2 = −c11

c12

1

1− ν
ε3 .
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5.3 Measurement results

The out-of-plane lattice constant cMgO was determined as a function of actuator volt-

age by means of 2θ-θ-scans of the MgO (002) and (004) reflections. To determine the

change in in-plane lattice constants aMgO and bMgO, reciprocal space maps of the MgO

(204), (024) and (224) reflections were recorded at VPiezo = −30 V and VPiezo = +90 V.

The reflection intensities of the Fe3O4 thin film were unfortunately too small to allow

for a quantitative analysis of strain in the ferromagnetic thin film itself within rea-

sonable integration time. Hence, we will show only results obtained from the MgO

reflections, as already mentioned above.

5.3.1 Strain effect on the out-of-plane lattice constant

Fig. 5.2 shows the raw data obtained from a 2θ-θ-scan of the MgO (002) and (004)

reflections for VPiezo = −30 V and VPiezo = +120 V. To determine the peak position,

a split Pearson VII fit [85] is applied, which gives a very good fit of the experimental

data (cf. Fig. 5.2). The Nelson-Riley formalism (cf. Chapter 4) is used to calculate

the corrected out-of-plane lattice constant cMgO, which is shown in Fig. 5.3(a) as a

function of actuator voltage VPiezo. The lattice constant evolves nearly linearly in the

entire measurement range of −30 V ≤ VPiezo ≤ +120 V.

Fig. 5.3(b) shows the strains along the MgO cubic axes (cf. Eq. (5.5)). Whereas

ε3 is directly obtained from the determination of lattice constants as a function of

actuator voltage (cf. Fig. 5.3(a)), ε1 and ε2 are calculated with elastic theory by

using Eq. (5.5). All strains are displayed relative to the strains at VPiezo = 0 V, thus

for VPiezo = 0 V all strains vanish in Fig. 5.3(b). For −30 V ≤ VPiezo ≤ +90 V we

observe the following strains2:

∆ε−30V,+90V
1 = −13× 10−5 (5.6)

∆ε−30V,+90V
2 = 28× 10−5

∆ε−30V,+90V
3 = −5× 10−5 .

2We calculate strains only for −30V ≤ VPiezo ≤ +90V for good comparison to the later discussed
reciprocal space map measurements
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Figure 5.2: Data (points) and fit (lines) for the MgO (002) and (004) symmetric reflections
at actuator voltages VPiezo = −30V and VPiezo = +120 V.

Figure 5.3: (a) MgO out-of-plane lattice constant as a function of actuator voltage. The
error bar represents the maximum fitting error as discussed in Section 5.3.2.
(b) Strains εi calculated from Eq. (5.5).
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5.3.2 Estimation of the measurement uncertainty

An estimate of the error in cMgO is given by the fitting error of the raw data shown in

Fig. 5.2. This error was determined to be smaller than δ(2θ) = 0.001◦. According to

Eq. (4.22), this yields errors in c of δc = 9.0× 10−6 nm for the MgO (002) reflection

and δc = 3.4× 10−6 nm for the MgO (004) reflection. These errors are now incor-

porated into the Nelson-Riley correction and yield the error bars in Fig. 5.4. The

dashed lines in Fig. 5.4 correspond to the resulting two extreme possible linear fits

of the lattice constants determined from the MgO (002) and (004) reflection at each

voltage VPiezo. Thus, the error in cMgO is enclosed by the dashed lines at f(θ) = 0

for each VPiezo. For −30 V ≤ VPiezo ≤ +120 V the error in cMgO is determined in this

fashion and the error bar in Fig. 5.3(a) corresponds to the maximum error.

Finally, we argue that the constant slope of the linear fits for −30 V ≤ VPiezo ≤
+90 V (cf. Fig. 5.4) is a good indication that the determination of cMgO using the

Nelson-Riley correction is accurate in our case. As described in Chapter 4, the Nelson-

Riley function accounts for systematic errors, with the slope of the linear fit repre-

senting the magnitude of these errors. One can see from Fig. 5.4 that the slope – and

hence the systematic error – remains nearly constant for −30 V ≤ VPiezo ≤ +90 V.

The systematic error is caused by diffractor misalignment, beam divergence, specimen

shape, absorption and displacement from the diffractometer axis. All these errors are

present for our samples, but are not expected to change with VPiezo. Therefore a con-

stant linear fit slope is a good indication for an accurate determination of cMgO for

each reflection at all actuator voltages. Due to the linear and reversible evolution of

cMgO with VPiezo, spurious effects such as temperature drift can be ruled out as the

cause of lattice constant change.

Taken together, even with a rather conservative error calculation, the HRXRD data

unambiguously shows that the influence of the actuator-induced strain on the MgO

lattice can be accurately determined with HRXRD.

5.3.3 Strain effect on the in-plane lattice constants

To determine the effect of strain on the in-plane lattice constants, reciprocal space

maps of the MgO (204), (024) and (224) reflections were recorded. A conventional

reciprocal space map (RSM) is shown exemplarily in Chapter 4. As the shift of

reflections caused by changes in lattice constants as a function of actuator voltage are
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VPiezo = +90 V. The corrected lattice constants are obtained at f(θ) = 0 and
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much smaller than the reflection width (cf. Fig. 5.2) two non-standard approaches

to the visualization of RSMs are used here, both focusing on showing the difference

between two reciprocal space maps rather than absolute values.

For each available reflection, we recorded one RSM at VPiezo = −30 V and one at

VPiezo = +90 V. We now normalize each measurement point in a given RSM with

respect to the maximum intensity (Inorm
max = 1). Figs. 5.5(a), 5.6(a) and 5.7(a) show

the contour lines at the half maximal normalized intensity Inorm = 0.5 for the MgO

(204), (024) and (224) reflections at both actuator voltages, while Figs. 5.5(b), 5.6(b)

and 5.7(b) show the difference of normalized intensity Inorm
diff = Inorm

−30V − Inorm
+90V for the

respective reflections.

One sees, that a precise quantitative determination of the peak positions is difficult

in these RSMs, as the reflection peak widths are big if compared to the shifts of the

reflections as a function of actuator voltage. Hence we will only qualitatively compare
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the measurements to theoretical expectations. The calculations performed in the

following thus are mainly intended to reveal the difficulty of precise lattice parameter

determination from reciprocal space maps.

The shift of the reflections in Figs. 5.5, 5.6 and 5.7 can be described by different

scattering vectors (cf. Chapter 4) for VPiezo =−30 V and VPiezo =+90 V. The observed

shift in the RSMs is caused by a movement of the reflections in reciprocal space

as a function of actuator voltage. Hence the shift can be estimated by calculating

∆q⊥ = q⊥−30V−q⊥−90V and ∆q‖ = q‖−30V−q‖−90V. This will be done in the following.

The basic relation between the in-plane lattice constants3 aMgO and bMgO and the

scattering vectors q‖a and q‖b is given by equations (4.19) and (4.20). The out-of-plane

lattice constant cMgO that is related to q⊥ by (4.21) was already measured by 2θ-θ-

scans as a function of actuator voltage and is thus assumed to be known. Thus we

will calculate all shifts as a function of the known strain ∆ε3 = ε3(−30 V)−ε3(+90 V)

from Eq. (5.6).

For all reflections, the change in the out-of-plane lattice constant ∆c = c+90V −
c−30V = ∆ε3c−30V (with ∆ε3 taken from Eq. (5.5)) is expected to result in a shift in

q⊥, which can be derived by:

∆c = c+90V − c−30V
(4.21)
=

[
1

q⊥+90V

− 1

q⊥−30V

]
λ

2
l = ∆ε3c−30V (5.7)

⇔ ∆q⊥ = q⊥−30V − q⊥+90V = q⊥−30Vq⊥+90V∆ε3c−30V
2

λl
.

We now neglect the difference between q⊥−30V and q⊥+90V in the product q⊥−30Vq⊥+90V.

This can be done here as the change q⊥−30V − q⊥+90V is expected to be in the order

of 1× 10−4 rlu as can be seen from Figs. 5.5(a) to 5.7(a). This approximation yields:

∆q⊥ = q2
⊥∆ε3c−30V

2

λl
≈ −4× 10−5 rlu , (5.8)

with q⊥ = 0.731 rlu estimated from Fig. 5.5(a). Thus we expect the reflection mea-

sured with VPiezo =−30 V to be shifted to smaller values of q⊥ with respect to the

reflection measured with VPiezo =+90 V.

In the following, we will calculate the expected difference ∆q‖ of the in plane com-

ponent of the scattering vector for −30 V ≤ VPiezo ≤ +90 V for all three investigated

reflections.

3For better readability, the superscript ”MgO” will be omitted in the following discussion.
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Figure 5.5: Reflection peak shift for the MgO (204) reflection: (a) Contours at half max-
imal normalized intensity for VPiezo = −30V and VPiezo = +90V. (b) Differ-
ence in normalized intensity Inorm (red: Inorm

diff = 0.2, green: Inorm
diff = −0.2,

dark blue: Inorm
diff = 0).

MgO (204)

We start from the basic relation of the lattice constant a and its representation by q‖a
in reciprocal space given in Eq. (4.19). We obtain the representation of the difference

of the lattice constant a for VPiezo = −30 V and VPiezo = +90 V in reciprocal space:

a+90V − a−30V = ∆a =

[
1

q‖a+90V

− 1

q‖a−30V

]
λ

2
h ⇔ ∆

[
1

q‖a

]
= ∆a

2

λh
. (5.9)

Approximating that the crystal is cubic at VPiezo = −30 V and the application of other

voltages to the actuator results in an orthorhombic distortion yields:

a+90V − a−30V

a−30V

=
∆a

a−30V

=
∆a

c−30V

⇔ ∆a = ∆ε1a−30V ≈ ∆ε1c−30V . (5.10)

Combining Eq. (5.10) and (5.9), we can evaluate

∆

[
1

q‖a

]
=

2∆ε1

λh
c−30V . (5.11)
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Figure 5.6: Reflection peak shift for the MgO (024) reflection: (a) Contours at half max-
imal normalized intensity. (b) Difference in normalized intensity Inorm.

In order to be able to compare the measured shift ∆q‖a to the theoretical expectations

we solve Eq. (5.11) for ∆q‖a:

∆q‖a = q‖a−30V − q‖a+90V = q‖a−30Vq‖a+90V
2∆ε1

λh
c−30V (5.12)

≈ q2
‖a

2∆ε1

λh
c−30V = −5× 10−5 rlu ,

with q‖a = 0.367 rlu (cf. Fig. 5.5(a)). This shift corresponds well to the shift ∆q‖
seen in Fig. 5.5(a). The calculated out-of-plane shift derived in Eq. (5.8) matches the

experiment as well.

MgO (024)

The shift expected for this reflection can be calculated in the same way as shown for

the MgO (204) reflection, starting from Eq. (4.20). The result is:

q‖b−30V − q‖b+90V ≈ q2
‖b

2ε2

λk
c−30V = 1× 10−4 rlu , (5.13)

with q‖a = 0.367 rlu(cf. Fig. 5.6(a)). This is in good accordance with the shift observed

in Fig. 5.6(a). However, the shift ∆q⊥ calculated from Eq. (5.8) is not present in
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Figure 5.7: Reflection peak shift for the MgO (224) reflection: (a) Contours at half max-
imal normalized intensity. (b) Difference in normalized intensity Inorm.

Fig. 5.6(a). This may be due to the reflection line shape changing for VPiezo = −30 V

compared to VPiezo = +90 V.

MgO (224)

In order to calculate the expected shift for this reflection, we have to take into consid-

eration that the a and b lattice constants are both involved in this reflection. Hence

we no longer observe a lattice constant change ∆a or ∆b but a change in the diagonal

of the rectangle spanned by a and b, which will be referred to as the diagonal lattice

constant
√

a2
+90V + b2

+90V −
√

a2
−30V + b2

−30V = ∆
√

a2 + b2.

Using h = k = 2 as well as Eqs. (4.19) and (4.20), we can express the diagonal

lattice constant change in reciprocal space as follows:

∆
√

a2 + b2 = λ∆

√
1

q2
‖a

+
1

q2
‖b

. (5.14)

We now express the change in the lattice constants a and b as a function of the applied

strains: a+90V = a−30V(1 + ∆ε1) and b+90V = b−30V(1 + ∆ε2). Furthermore, we once
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again assume that a−30V = b−30V. We can now evaluate the left side of Eq. (5.14) to

∆
√

a2 + b2 =
√

a2
−30V(1 + ∆ε1)2 + b2

−30V(1 + ∆ε2)2 −
√

a2
−30V + b2

−30V

≈ a−30V

√
(1 + ∆ε1)2 + (1 + ∆ε2)2 − a−30V

√
2 ≈ 0 .

(5.15)

We hence expect no change in the diagonal lattice constant
√

a2 + b2, as the strains

ε2 ≈ −ε1 ¿ 1 are small and of opposite signs. In reciprocal space, the diagonal lattice

constant is represented by 1
q‖

=
√

1
q2
‖a

+ 1
q2
‖b

. According to Eq. (5.14) this leads to the

final conclusion:

∆

√
1

q2
‖a

+
1

q2
‖b

= ∆
1

q‖
≈ 0 ⇔ ∆q‖ = q‖−30V − q‖+90V ≈ 0 . (5.16)

No shift is expected for the MgO (224) reflection, which is in good accordance with

Fig. 5.7(a). The small difference of reflections only visible in Fig. 5.7(b) may be

accounted to a pure shift in q⊥ as calculated in Eq. (5.8).

5.4 Discussion

Comparing the results obtained from 2θ-θ-scans (cf. Sec. 5.3.1) and reciprocal space

maps (cf. Sec. 5.3.3), it is evident that 2θ-θ-scans are more suitable to quantify

strains that cause very small lattice distortions of the order of 10−4. Whereas we ob-

served a systematic evolution of the out-of-plane lattice constant cMgO in 2θ-θ-scans,

no definite quantitative conclusion on the in-plane lattice constants aMgO and bMgO

was obtained from the RSMs. As the exact peak position in RSMs can not easily

and reproducibly be obtained by a numerical fit, RSMs only allow for a qualitative

investigation of strains of this order of magnitude. Thus, while RSMs usually allow

to directly determine in-plane crystal properties, without suffering from the poten-

tial deviations of the elastic moduli and Poisson ratio, they are not suitable for the

quantitative measurements of very small in plane strains.

However, elastic theory enables us to calculate all pure strains εi induced in the

sample along the three cubic axes, even if only one lattice constant can be exper-

imentally determined. We quantify the out-of-plane lattice constant by 2θ-θ-scans

and find that we able to reversibly and linearly tune the in-plane strain in the MgO

single crystal by up to ε2 = 2.8× 10−4 along the actuator’s dominant elongation axis



Section 5.4
Discussion 55

for −30 V ≤ VPiezo ≤ +90 V. This amounts to approximately 30% of the nominal

expansion of the actuator δL/L = 8.7×10−4 in the same voltage range. We attribute

this deviation from the nominal actuator stroke to imperfect strain transmission due

to the epoxy and strain relaxation in the MgO crystal itself. Thus, thinner samples

that are deposited directly onto the actuator are expected to reduce this loss of strain

significantly.
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Chapter 6

Strain-induced magnetization

switching in ferromagnetic thin films

In the previous Chapter, we found that the strain transmitted from a piezoelectric

actuator into a 50 µm thick MgO crystal amounts to only ≈ 30% of the nominal full

stroke of the actuator. This was attributed to imperfect strain transmission caused by

the glue, and strain relaxation in the crystal. To achieve a better strain transmission,

it is hence desirable to omit the use of a substrate and glue. We therefore evaporated

nickel and cobalt thin films directly onto the actuator. As these thin films are poly-

crystalline, no net crystalline anisotropy is expected, and the magnetic free energy

density can ideally be reduced to the terms describing the uniaxial shape anisotropy

and the uniaxial anisotropies arising from the strain induced by the actuator’s elon-

gation as a function of applied voltage.

The aim of this Chapter is to prove that the voltage dependent expansion of the

actuator induces anisotropies into the ferromagnetic thin film that enable us to com-

pletely control the equilibrium orientation of the magnetization in a range of up to 90◦.

Furthermore, an application for this voltage-strain-control of magnetic anisotropy,

that allows for a very precise determination of magnetoelastic effects, will be pre-

sented.

6.1 Motivation

The effect of strain in a MgO/Fe3O4/piezoactor heterostructure on the magnetic

anisotropy of the Fe3O4 thin film was investigated in a previous thesis by Andreas

Brandlmaier [56] by FMR measurements. The main result is shown in Fig. 6.1. One

57
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Figure 6.1: The sample used for XRD measurements shows a change in magnetic
anisotropy for actuator voltages −30V ≤ VPiezo ≤ +90V.

can clearly see that the ferromagnetic resonance field shifts if the actuator volt-

age and therefore the strain is varied, but no qualitative change of anisotropy is

achieved. From these experiments, a magnetization rotation of ∆Θ = 6◦ is obtained

for −30 V ≤ VPiezo ≤ +90 V [86]. A qualitative change of the magnetic anisotropy

is prevented by the cubic anisotropy present in the ferromagnetic Fe3O4 thin film.

Its magnitude Kc1/Ms = −14.9 mT is much larger than the strain induced change

in uniaxial anisotropy. If a perfect strain transmission is assumed, a magnetization

reorientation of ∆Θ = 17◦ is predicted [86]. To achieve any larger effect on magnetiza-

tion orientation, the cubic anisotropy needs to be reduced – which can most easily be

achieved by the use of polycrystalline materials. As these materials can be deposited

directly onto the actuator without the need for a substrate, the strain transmission is

perfect and much larger effects on the magnetic anisotropy are expected. This is the

main idea behind the experiments presented in the following.

6.2 Sample preparation

Andreas Brandlmaier evaporated 100 nm thick cobalt or nickel films onto piezoelectric

actuators. A brief review of the properties of cobalt and nickel is given in Chapter 3.

To prevent an oxidation of our 2× 2 mm2 polycrystalline films, a protective layer of
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10 nm gold is deposited on top of the films. We once again use Piezomechanik PSt

150/2x3/5 actuators [76] that are built in an on stack isolating design illustrated in

Fig. 6.2(b). The actuator’s face is covered by a less than 50 µm thick polymer coating.

As the inner diameter of the cryostat shown in Fig. 4.2(b) measures only 4 mm, the

actuators were polished down from their original dimensions a×b×L = 2× 3× 5 mm3

to a × b × L = 2× 3× 2.5 mm3 as shown in Fig. 6.2(b). As the piezo-stacks are

arranged perpendicular to the dominant elongation axis, this results in the removal of

stacks. Assuming an evenly distributed expansion over the entire actuator length L,

the polishing is expected to remain without consequences for the nominal expansion

of δL
L

= 0.13% in the specified voltage range of −30 V ≤ VPiezo ≤ +150 V. In total,

two actuators with cobalt thin films named CP1 and CP2 and two samples with

nickel thin films named1 NP2 and NP3 were prepared in this way and investigated.

A schematic view of the samples is displayed in Fig. 6.2(a). The actuator’s main axis

of elongation points along the [010] direction of the sample coordinate system.

strain ε
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Figure 6.2: (a) Schematic view of the ferromagnetic thin film on actuator. (b) Schematic
view of the actuator, showing the stack structure and the removed part.

For our measurements we use a Keithley 237 sourcemeter and apply voltages−30 V ≤
VPiezo ≤ +100 V to the actuator. We record the ferromagnetic resonance spectra of

1The first sample, NP1, was not polished and thus did not fit into the cryostat.
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our samples at room temperature using a Bruker ESP 300 X-band (9.3 GHz) spin

resonance spectrometer. An introduction to ferromagnetic resonance and the used

measurement setup is given in Chapter 4. The orientation of the samples in the ex-

ternal magnetic field is varied with the magnetic field rotated either in the (001) or in

the (010) plane. These two measurement configurations shown in Fig. 6.3 are referred

to as ”in-plane” (ip) and ”out-of-plane” (oop), respectively. The angle for the in-plane

rotation is defined as α and the angle for the out-of-plane rotation is defined as χ.

Experimentally, an orientation of α = 0◦ as well as χ = 0◦ denote H0 || [100] for both

in-plane and out-of-plane rotations. This is not consistent with the definition of angles

in Fig. 2.3 that is used in all theoretical descriptions, but offers the advantage that

the results of out-of-plane and in-plane measurements can be more easily compared,

as 0◦ refers to the same direction of H0 in both cases. In the theoretical calculations,

we use the definition of angles customary in the literature. The transformation from

the theoretical definition of angles (θ, φ) to the experimentally used angles (α, χ) is

given by

α = 90◦ − θ φ = 90◦ (6.1)

χ = 90◦ − φ θ = 90◦ .

The rotation of the external magnetic field in relation to the sample is technically

always restricted to the rotation in one plane, making one angle sufficient to describe

the orientation as can be seen from Eq. (6.1). Unless stated otherwise, all rotations

are carried out using a goniometer with an angular precision better than 0.001◦. All

samples were mounted on specimen holders as shown in Fig. 6.3. To determine all

the samples’ magnetic anisotropy contributions for a given VPiezo, the samples are

rotated in both in-plane and out-of-plane configuration. For each orientation α or

χ and voltage VPiezo a FMR spectrum is recorded. The resonance field µ0Hres and

linewidth µ0∆Hpp are extracted as described in Chapter 4. As the spectra show only

one single strong FMR resonance for these samples, this is a rather straightforward

process.

6.3 Cobalt thin films

The samples CP1 and CP2 (cobalt on actuator) were prepared under identical condi-

tions and showed nearly identical results. Therefore only the measurements for sample
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Figure 6.3: Schematic view of samples mounted for in-plane and out-of-plane measure-
ments. Both configurations are shown at 0◦ orientation of the sample in the
external magnetic field, showing the equivalency of both configurations for
α = χ = 0◦.

CP1 will be discussed here.

6.3.1 In-plane FMR measurements

The angular dependence of the FMR resonance field is displayed in Fig. 6.4(a) for the

in-plane rotation. CP1 shows a resonance field minimum at H0 || [100] and a resonance

field maximum at H0 || [010] for all investigated actuator voltages. The observed

shift of resonance field for VPiezo = −30 V to VPiezo = +100 V is µ0Hres,[100],+100V −
µ0Hres,[100],−30V = µ0∆Hres,[100] = −4 mT for H0 || [100] and µ0∆Hres,[010] = 4 mT for

H0 || [010]. The linewidth µ0∆Hpp is shown in Fig. 6.4(b). µ0∆Hpp changes less than

2 mT for different voltages and orientations.

6.3.2 Discussion

For each voltage VPiezo, we estimate the error of the experimentally determined reso-

nance field positions µ0Hres = µ0
1
2
(Hmax−Hmix) (cf. Fig. 4.3) caused by a variation of

line shape. We assume that the damping is not influenced by the sample orientation

in the magnetic field and thus the linewidth should remain constant for all orienta-
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Figure 6.4: CP1 (cobalt on actuator) resonance fields as a function of in-plane rotation
angle and actuator voltage at T = 300 K (a) and corresponding linewidth (b).

tions. At any voltage VPiezo, we now determine the standard deviation of the mean

linewidth σ 〈µ0∆Hpp〉 for the complete in-plane rotation. As the linewidth change

influences the resonance position for each single spectrum no more than ±1
2
µ0∆Hpp

the standard deviation of µ0Hres due to a change in linewidth is given by

σµ0Hres = ±1

2
σ 〈µ0∆Hpp〉 . (6.2)

Evaluation of (6.2) for the linewidths shown in Fig. 6.4(b) yields values below 0.2 mT

for all voltages. This error is smaller than the symbol size in Fig. 6.4(a). A change

in linewidth with actuator voltage can therefore clearly be ruled out as the origin of

resonance field shifts. Further experimental errors that may influence resonance field

positions, such as those caused by temperature or microwave frequency deviations

between single measurements and the error caused by an imperfect sample mounting

are not taken into account in Eq. (6.2). However, given the systematic evolution of

resonance fields at all investigated voltages, they are ruled out as the cause of the

resonance field shifts, but may explain the small mismatch of resonance fields at H0

|| [010] and H0 || [010] at all voltages.
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An inversion of the angular anisotropy is clearly not observed for this sample.

This is due to the in-plane uniaxial anisotropy already present at VPiezo =0 V that is

reduced, but can not be inverted by applying −30 V ≤ VPiezo ≤ 0 V to the actuator.

For VPiezo > 0 V the uniaxial anisotropy already present at VPiezo = 0 V becomes even

more distinct (cf. Fig. 6.4(a)). As the voltage range of the actuator is −30 V ≤
VPiezo ≤ +150 V, it is hence not possible to invert the magnetic anisotropy of our

cobalt samples. Therefore the desired 90◦ switching of magnetization can not be

achieved in these samples. No further investigation of the origin of the uniaxial

anisotropy already present at VPiezo = 0 V was done. As this anisotropy was observed

for both cobalt samples prepared under identical conditions, it may be caused by an

anisotropic thermal expansion of the actuator during the evaporation process. Other

possible explanations are the ordering of cobalt microcrystals or the exchange bias

caused by antiferromagnetic cobalt oxide [87].

As a voltage dependent inversion of the in-plane magnetic anisotropy – mandatory

for a switching of the equilibrium orientation of the magnetization by 90◦– was clearly

not observed for the cobalt samples, the voltage dependence of the angular anisotropy

of the out-of-plane resonance fields was not investigated.

6.4 Nickel thin films

The samples NP2 and NP3 were prepared in the same fashion as the cobalt thin films

on actuators. For both samples, the in-plane and the out-of-plane anisotropy of the

ferromagnetic resonance field was determined.

6.4.1 In-plane FMR measurements

The in-plane FMR measurements of NP2 and NP3 show similar characteristics and

are displayed in Figs. 6.5(a) and 6.6(a). Both show a clear inversion of anisotropy for

VPiezo = −30 V with respect to VPiezo = +20 V. Compared to sample NP2, the in-plane

resonance fields of sample NP3 are generally shifted to lower fields by approximately

10 mT. Furthermore, opposed to NP2, NP3 shows no uniaxial anisotropy for VPiezo =

0 V. The angular dependent change of linewidth is small for NP3 (cf. Fig. 6.6(b)),

therefore the experimental error calculated from (6.2) is smaller than the symbol size

and no error bars are displayed in Fig. 6.6(a). For NP2 the linewidth shows a distinct

180◦ periodic anisotropy shown in Fig. 6.5(b) but is not influenced by VPiezo.
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Figure 6.5: Resonance fields (a) and linewidth (b) for sample NP2 (nickel on actuator)
with the magnetic field rotated in the (001) plane. The error bars in (a) are
calculated according to Eq. (6.2).
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Figure 6.6: Resonance fields (a) and linewidth (b) for sample NP3 (nickel on actuator)
with the magnetic field rotated in the (001) plane.
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Figure 6.7: NP2 (nickel on actuator) resonance fields for the out-of-plane rotation (a) and
comparison of in-plane and out-of-plane resonance fields (b).

6.4.2 Out-of-plane FMR measurements

The resonance fields obtained for the magnetic field rotation in the (010) plane are

shown in Fig. 6.7(a) for sample NP2 and in Fig. 6.8(a) for sample NP3. The resonance

fields for H0 || [001] are µ0Hres ≈ 750 mT for NP2 and µ0Hres ≈ 790 mT for NP3 at

all actuator voltages. Figs. 6.7(b) and 6.8(b) show a comparison of in-plane and out-

of-plane measurements for H0 || [100]. A good match of in-plane and out-of-plane

resonance fields is observed for these nominally identical orientations of H0.

For sample NP3, the unsystematic shift of the resonance field for H0 || [001] (cf.

Fig. 6.8(a)) is caused by a change of sample mounting between measurements.

6.4.3 Linearity and reversibility of voltage dependence

To check for the linearity and reversibility of the VPiezo-dependence of resonance fields,

measurements at −30 V ≤ VPiezo ≤ +90 V were carried out for H0 || [100], H0 || [010]

(Fig. 6.9(a)) and H0 || [001] (Fig. 6.9(b)). Fig. 6.9 shows a nearly linear shift of

resonance fields for −30 V ≤ VPiezo ≤ +90 V at all three investigated orientations

of the external magnetic field. In Fig. 6.9(a), we show a comparison to the values
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Figure 6.8: NP3 (nickel on actuator) resonance fields for the out-of-plane rotation (a) and
comparison of in-plane and out-of-plane resonance fields (b).

Figure 6.9: NP3 (nickel on actuator) resonance fields for for selected orientations of H0.
The open squares correspond to the results presented in Fig. 6.6(a) and 6.8(a)
(the lines are intended as guides to the eyes).
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taken from the in-plane rotation (cf. Fig. 6.6(a)) that demonstrates the excellent

reproducibility of our results. For H0 || [001] (Fig. 6.9(b)), the resonance fields display

a systematic linear dependence on actuator voltage as well, but they differ from the

resonance fields obtained from the out-of-plane rotations (cf. Fig. 6.8(a)) at this

orientation. This is very probably due to the already mentioned sample tilting during

the rotation measurements. A small hysteresis of µ0Hres(VPiezo) is observed, as the

actuator elongation also exhibits hysteresis according to the actuator’s data sheet [76].

6.4.4 Discussion

The good match of in-plane and out-of-plane measurements at H0 || [100] shows the

equivalence of both in-plane and out-of-plane sample mountings at this orientation.

We observe a clear inversion of resonance field anisotropy for both nickel samples

upon the application of voltages in the range of −30 V ≤ VPiezo ≤ +20 V to the

actuator. This shows that we are able to invert the magnetic free energy density,

which corresponds to a 90◦ switching of the magnetization. The measurement shown

in Fig. 6.9 proves that the switching is fully reversible and the hysteresis of the actuator

has no influence on the inversion of the magnetic free energy density for |VPiezo| ≥ 20 V.

6.4.5 Numerical simulations

In this Section, we phenomenologically evaluate the dependence of the magnetic

anisotropy on the actuator voltage. Given the similar results for both nickel sam-

ples, only results for NP3 will be discussed in this Section. A free energy Ftot with a

cubic and two uniaxial anisotropy terms is expected to be sufficient to describe the

magnetic anisotropy:

Ftot = −µ0MH0 (sin Θ sin Φ sin θ sin φ + cos Θ cos θ + sin Θ cos Φ sin θ cos φ) +

Ku,eff,[001] sin
2 Θ cos2 Φ +

Ku,[010] cos2 Θ +

1

4
Kc1

(
sin2 (2Θ) + sin4 Θ sin2 (2Φ)

)
. (6.3)

We iteratively adjust the anisotropy constants of Ftot until solving the ferromagnetic

equation of motion yields resonance fields coinciding with the afore experimentally

determined resonance fields. The anisotropy constants determined in this Section will
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be compared to those expected from magnetoelastic theory in the next Section.

Numerically solving the ferromagnetic equation of motion given in (4.5) with Ftot

from (6.3) yields four independent fitting parameters: Kc1/Ms, Ku,[010]/Ms, Ku,eff,[001]/Ms

and the g factor. All FMR resonance fields obtained for sample NP3 can be fitted

assuming only a change in Ku,[010] and Ku,eff,[001] while Kc1/Ms = 0.5 mT = const

and g = 2.15 = const. This g value is in good agreement with the value g = 2.185

for bulk nickel (cf. Tab. 3.1). The saturation magnetization Ms is assumed to re-

main constant, and its absolute value does not effect the calculated anisotropy fields.

Table 6.1 shows the anisotropy fields that were numerically determined. Fig. 6.10

VPiezo (V )
Ku,[010]

Ms
(mT )

Ku,eff,[001]

Ms
(mT ) Kc1(mT )

-30 -3.4 238.6 -0.5

0 0.2 239.2 -0.5

+20 4.2 237.9 -0.5

+90 17.4 233.0 -0.5

Table 6.1: Anisotropy constants of NP3 (nickel on actuator) determined from numerical
simulations.

shows a comparison of simulation and experimental data for the in-plane measure-

ments and Fig. 6.11(a) shows the comparison of simulation and experimental data for

the out-of-plane measurements. The anisotropy fields Ku,[010]/Ms and Ku,eff,[001]/Ms

are plotted as a function of VPiezo in Fig. 6.11(b).

The simulated resonance fields are in very good agreement with the measurements.

This proves that the anisotropy terms in Eq. (6.3) are sufficient to describe the mag-

netic anisotropy of NP3 at all investigated actuator voltages. Fig. 6.11(b) shows

the nearly linear change of Ku,[010] with VPiezo while the relative change of Ku,eff,[001]

remains small.

As the actuator-induced stress can be fully described by its influence on the uniaxial

anisotropy constants Ku,[010] and Ku,eff,[001], magnetoelastic theory can be applied to

calculate the expected change in magnetic anisotropy as a function of actuator voltage.

This is the goal of the following Section.
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Figure 6.10: Numerical simulations of the FMR resonance fields (lines) with anisotropy
constants taken from Tab. 6.1 and experimental data (symbols) for NP3
(nickel on actuator) with H0 rotated in-plane.

6.5 Theoretical description

The actuator-induced stress affects the magnetization due to the magnetoelastic effect

as described in Chapter 2. The lattice strain in the Ni thin film results in uniaxial con-

tributions to its magnetic free energy density that can be calculated by magnetoelastic

theory.

We assume that the strains in the Ni film vanish at an actuator voltage of VPiezo

=0 V. Hence, in this case, the magnetic free energy density given in Eq. (6.3) is

appropriate to describe the system with the anisotropy constants at VPiezo =0 V (cf.

Tab. 6.1).

Upon the application of a voltage VPiezo 6= 0 V, the actuator induces two orthogonal

in-plane strains ε1 and ε2 into the Ni film. The resulting magnetoelastic effect can

be described by uniaxial contributions to the magnetic free energy density at VPiezo

=0 V. These uniaxial contributions are given by the magnetoelastic free energy density

Fmagel. We will now derive an expression for Fmagel suitable to describe our system.
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Figure 6.11: (a) NP3 (nickel on actuator) FMR resonance fields (symbols) and numer-
ical simulations (lines) for the out-of-plane rotation. (b) NP3 anisotropy
constants as a function of actuator voltage (the lines are guides to the eyes
only).

To this end, we start from the general expression for Fmagel given in [29]:

Fmagel =
3

2
λ

(
cNi
12 − cNi

11

) (
ε1(α

2
1 − 1/3) + ε2(α

2
2 − 1/3) + ε3(α

2
3 − 1/3)

)
. (6.4)

This expression contains the averaged magnetostrictive constant λ that will be defined

later, as well as the elastic moduli cNi
11 and cNi

12 of Ni (cf. Tab. 3.1). Here, αi (i = 1, 2, 3)

denote the directional cosines of the magnetization. With respect to the coordinate

system shown in Fig. 6.2(a) the directional cosines can be expressed by:

α1 = sin Θ sin Φ (6.5)

α2 = cos Θ

α3 = sin Θ cos Φ .

In (6.4), εi (i = 1, 2, 3) denote the strains along [100], [010] and [001]. Hence shear

strains are neglected. This simplification is justified as the change in the magnetic
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anisotropy of the Ni thin film as a function of actuator voltage was described by a

change only in uniaxial anisotropies in the previous Section. The fact that our films

are polycrystalline is accounted for by the introduction of the longitudinal averaged

magnetostrictive constant [29]

λ =
2

5
λ100 +

3

5
λ111 . (6.6)

λ is calculated from the single cubic crystal magnetostrictive constants λ100 and λ111

by averaging the elongation δl/l in the direction (β1,β2,β3)

δl

l
=

3

2
λ100

(
α2

1β
2
1 + α2

2β
2
2 + α2

3β
2
3 −

1

3

)
× (6.7)

3λ111(α1α2β1β2 + α2α3β2β3 + α3α1β3β1) ,

for different orientations αi, assuming αi = βi. The values for λ100 and λ111 are taken

from Tab. 3.1.

Using elastic theory, the strains εi can be described as a function of ε2 which

is the strain component pointing along the actuator’s main axis of elongation (see

Fig. 6.2(a)). In Chapter 5, we showed a method of determining ε3 with HRXRD.

This method is not applicable here, as our samples are not suited for lattice constant

determinations by HRXRD because of the small film thickness and its polycrystalline

structure. However, HRXRD is not necessary in the case of ferromagnetic thin films

evaporated directly onto actuators, as these thin films do not influence the expansion

of the actuator. Hence we can estimate ε2 by assuming a linear expansion of the

actuator in the entire voltage range −30 V ≤ VPiezo ≤ +150 V to

ε2 =
δL

L

VPiezo

180 V
, (6.8)

with the nominal full stroke of the actuator δL
L

= 0.13% [76]. To determine ε1 and ε3,

we rely on continuum elastic theory [36], which was briefly introduced in Chapter 5

and which yields

ε1 = −νPiezoε2, ε3 = −cNi
12

cNi
11

(ε1 + ε2) . (6.9)

From the point of view of magnetic anisotropy, Equation (6.4) describes a superpo-

sition of three uniaxial anisotropies. The magnitude of these anisotropies is given by
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the three uniaxial magnetoelastic anisotropy constants:

K?
u,magel,[100] =

3

2
λ(cNi

12 − cNi
11)ε1 (6.10)

K?
u,magel,[010] =

3

2
λ(cNi

12 − cNi
11)ε2

K?
u,magel,[001] =

3

2
λ(cNi

12 − cNi
11)ε3 .

As three orthogonal uniaxial anisotropies can always be expressed in terms of two

orthogonal uniaxial anisotropies as shown in [56], we use:

Ku,magel,[100] = K?
u,magel,[100] −K?

u,magel,[100] = 0 (6.11)

Ku,magel,[010] = K?
u,magel,[010] −K?

u,magel,[100] =
3

2
λ(cNi

12 − cNi
11)(ε2 − ε1)

Ku,magel,[001] = K?
u,magel,[001] −K?

u,magel,[100] =
3

2
λ(cNi

12 − cNi
11)(ε3 − ε1)

in the following.

We thus finally obtain the magnetoelastic term:

Fmagel = Ku,magel,[001] sin
2 Θ cos2 Φ + Ku,magel,[010] cos2 Φ (6.12)

−1

2
λ

(
cNi
12 − cNi

11

)
(ε1 + ε2 + ε3) .

Adding this term to the total free energy density (6.3), one finds

Ftot,magel = Fstat + Fmagel + Fu,eff,[001],0V + Fu,[010],0V + Fc (6.13)

= −µ0MH0 (sin Θ sin Φ sin θ sin φ + cos Θ cos θ + sin Θ cos Φ sin θ cos φ) +
(
Ku,eff,[001],0V + Ku,magel,[001]

)
sin2 Θ cos2 Φ +

(
Ku,[010],0V + Ku,magel,[010]

)
cos2 Θ +

1

4
Kc1

(
sin2 (2Θ) + sin4 Θ sin2 (2Φ)

)−
1

2
λ

(
cNi
12 − cNi

11

)
(ε1 + ε2 + ε3) .

We can now analytically calculate the resonance fields expected for H0 || [100], H0 ||
[010] and H0 || [001]. Analytical expressions for µ0Hres at these orientations are given

in Chapter 4 for Ftot without the magnetoelastic contribution Fmagel. For Ftot,magel we

obtain:
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• H0 || [100] (φ = 90◦, θ = 90◦):

µ0Hres = −Ku,eff,[001],0V + Ku,magel,[001]

M
− Ku,[010],0V + Ku,magel,[010]

M
− 2

Kc1

M

+

√(
Ku,eff,[001],0V + Ku,magel,[001]

M
− Ku,[010],0V + Ku,magel,[010]

M

)2

+

(
ω

γ

)2

(6.14)

• H0 || [010] (φ = 90◦, θ = 0◦):

µ0Hres = −Ku,eff,[001],0V + Ku,magel,[001]

M
+ 2

Ku,[010],0V + Ku,magel,[010]

M
− 2

Kc1

M

+

√(
Ku,eff,[001],0V + Ku,magel,[001]

M

)2

+

(
ω

γ

)2

(6.15)

• H0 || [001] (φ = 0◦):

µ0Hres = 2
Ku,eff,[001],0V + Ku,magel,[001]

M
− Ku,[010],0V + Ku,magel,[010]

M
− 2

Kc1

M

+

√(
Ku,[010],0V + Ku,magel,[010]

M

)2

+

(
ω

γ

)2

(6.16)

Using this set of expressions we can now calculate the ferromagnetic resonance fields

expected from magnetoelastic theory and compare them to our measurements. This

will be done for H0 || [100] and H0 || [010].

The unstrained anisotropy constants Ku,eff,[001],0V, Ku,[010],0V and Ku,[010],0V are given

by those displayed in Tab. 6.1 at VPiezo =0 V. The magnetoelastic anisotropy contribu-

tions are calculated using Eq. (6.11) and the resonance fields are now calculated with

Eqs. (6.14) and (6.15). A comparison of the resonance fields thus obtained from mag-

netoelastic theory (incorporating the bulk saturation magnetization Ms taken from

Tab. 3.1) to the measured ones is displayed in Fig. 6.12. For H0 || [100] the calculated

resonance fields show a very good agreement to the measured ones. The same applies

to H0 || [010] within |VPiezo| ≤ 30 V. We observe a small deviation of the measured

resonance fields from those expected from magnetoelastic theory for |VPiezo| > 30 V

that will be discussed later.

Finally, we address the free energy surfaces to show that magnetoelastic theory is
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Figure 6.12: Experimentally determined FMR resonance fields of sample NP3 (symbols)
in comparison to the resonance fields calculated from magnetoelastic theory
(blue lines) as a function of the actuator voltage. Full symbols correspond
to increasing voltage, open symbols to decreasing voltage (the thin lines
connecting the symbols are guides to the eyes only).

appropriate to describe the observed magnetic anisotropy as a function of actuator

voltage.

The free energy Ftot (cf. Eq. (6.3)) is calculated with the phenomenologically de-

termined anisotropy constants listed in Tab. 6.1 and is compared to the free energy

Ftot,magel (cf. Eq. (6.13)) obtained from magnetoelastic theory as described above. The

free energy contours in the (001) plane thus obtained for different actuator voltages

at zero external magnetic field are displayed in Fig. 6.13.

As one can see from Figs. 6.12 and 6.13, magnetoelastic theory yields results for

both resonance fields and free energy that qualitatively closely represent the measured

resonance fields and phenomenologically obtained free energy surfaces.

The reasons for the small deviation of magnetoelastic theory and measurement were

not investigated in detail. We can only speculate that the quantitative deviations of

magnetoelastic theory from the measurement results may be due to a deviation of

the Poisson ratio νPiezo from the specified value νPiezo = 0.45. This deviation can

be caused by a non-uniform strain transmission through the polymer layer. Perfect
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[100]

[010]

M

Figure 6.13: Section of the NP3 (nickel on actuator) free Energy surfaces in the (001)
plane. Solid lines show the free energies (cf. Eq. (6.3)) calculated with the
phenomenological anisotropy constants from Tab. 6.1 and dashed lines show
the free energies calculated from magnetoelastic theory (cf. Eq. (6.13)).

agreement of magnetoelastic theory and experiment is achieved, if νPiezo is varied from

νPiezo = 0.45 to νPiezo = 1 as a function of actuator voltage.

6.6 Manipulating the magnetization switching

behavior with external magnetic fields

In the previous Sections, we showed that we are able to reversibly invert the in-plane

magnetic anisotropy of our samples. In this Section, the switching of the magnetiza-

tion will be visualized by free energy calculations for various external magnetic field

strengths and orientations.

The simple case of vanishing magnetic field is displayed in Fig. 6.13. The comparison

of positive and negative actuator voltages shows the shift of the free energy minimum

from [100] to [010] if the actuator voltage is changed from positive to negative values.

Assuming that M stays in a minimum of the free energy in equilibrium, this suggests

that a 90◦ switching of magnetization orientation should be possible by changing VPiezo
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Figure 6.14: For vanishing magnetic field, actuator voltage polarity change causes an
irreversible demagnetization process in a sample fully magnetized along
[100]. The dashed contours show a top view of the unstrained sample at
VPiezo = 0 V. Magnetization orientation in a given sample area is depicted
by blue arrows, and possible equilibrium orientations of M are shown as blue
dots in the free energy.

alone. However, without the application of an external magnetic field, all minima of

the free energy are degenerate. This means that the magnetization orientations Θ

and Θ + 180◦ are equivalent. This is an obvious result of the fact that for µ0H0 = 0,

Ftot,magel contains only cubic and uniaxial contributions that are both 180◦ periodic.

As we now argue, in vanishing external magnetic field, this results in the demagneti-

zation of a ferromagnetic thin film upon changing the polarity of VPiezo. As illustrated

in Fig. 6.14, we start with a fully ordered state, chosen to be M || [100] due to an

external magnetic field µ0H0 || [100] without loss of generality. The magnetic field is

now turned off, resulting in degenerate minima in the free energy. However, due to the

ferromagnetic hysteresis, the macroscopic magnetization remains oriented along [100].

If we now change the actuator voltage polarity and the anisotropy of the free energy

is hence reversed, demagnetization will occur as the magnetization of each domain

switches to any one of the degenerate free energy minima with the same probability

(in this simple model, interactions between domains are neglected).

This decay of magnetization into domains can easily be avoided by the application of

a small, but finite, static external magnetic field µ0H0. In respect to the contributions



Section 6.6
Manipulating the magnetization switching behavior with external magnetic fields 77

to the free energy Ftot, the external magnetic field influences only the Zeemann term

Fstat. As shown in Section 2.3.1 of Chapter 2, an external magnetic field causes a

unidirectional contribution to the free energy with the minimum in the direction of

µ0H0. The degeneracy of free energy minima can hence be removed if the magnitude

and direction of µ0H0 are chosen appropriately.

This is illustrated in a three dimensional plot of the switching angle

∆Θ = ∆Θ(θ, H, Φ = π/2, φ = π/2) (6.17)

of magnetization as a function of the external magnetic field’s orientation θ and mag-

nitude µ0H0 in Figs. 6.15(a) and 6.15(b). In the numerical calculations of ∆Θ we

assumed that the external magnetic field and thus the magnetization remain in the

sample plane (φ = Φ = π/2). We simulate the switching of the magnetization by nu-

merically2 minimizing Ftot(θ, H) for two different actuator voltages VPiezo ∈ {V1, V2}.
This is done by using the anisotropy constants listed in Tab. 6.1 and the free energy de-

fined in Eq. 6.3. This yields the equilibrium orientation Θ0 of M for both VPiezo = V1

and VPiezo = V2 so that ∆Θ = |Θ0,V1 −Θ0,V2| can be calculated. Figures 6.15(a)

and 6.15(b) show the achievable switching angle ∆Θ as a function of magnitude

and orientation of the external magnetic field µ0H0 for VPiezo ∈ {+20 V,−30 V} and

VPiezo ∈ {+90 V,−30 V}, respectively. One can clearly see the dependence of ∆Θ on

the voltages chosen. As the anisotropy constants evolve nearly linearly with actuator

voltage as shown in Fig. 6.11(b), it is generally desirable to apply as high voltages

as possible to achieve large ∆Θ in a given external magnetic field. The optimal ori-

entation of the sample in the magnetic field is dependent on V1 and V2 as well. For

µ0H0 = 50 mT the optimal magnetic field orientation θ is approximately θ = 30◦

if VPiezo is alternated from VPiezo = +90 V to VPiezo = −30 V (cf. Fig. 6.15(b)) and

approximately θ = 45◦ if VPiezo is alternated from VPiezo = +20 V to VPiezo = −30 V

(cf. Fig. 6.15(a)).

For the simplest and most application relevant case of applying an oscillating volt-

age ±VPiezo to the actuator, we finally show some exemplary free energy surfaces

calculated from magnetoelastic theory for different, fixed magnetic field orientations

and magnitudes (cf. Fig. 6.16). The orientation θ of the magnetic field with respect

to the sample is numerically optimized to obtain the largest possible magnetization

switching angle ∆Θ in each case. Magnetoelastic theory thus allows to calculate the

2All numerical calculations performed in Maplesoft Maple 9.
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Figure 6.15: Magnetization switching angle ∆Θ as a function of the magnitude µ0H0

and the orientation θ of the external magnetic field. (a) ∆Θ for VPiezo ∈
{+20V,−30 V}. (b) ∆Θ for VPiezo ∈ {+90V,−30V}.

optimal external magnetic field magnitude and orientation for a desired switching

angle ∆Θ and actuator voltages.

For an external magnetic field with magnitude µ0H = 1 mT thus a magnetization

switching of ∆Θ ≈ 80◦ is expected if an AC voltage VPiezo = ±30 V is applied to the

actuator (cf. Fig. 6.16). We now estimate whether a magnetic field of this magnitude is

sufficient to remove the degeneracy of the free energy density of the Ni film at VPiezo =

30 V at room temperature. If µ0H = 1mT is applied at the optimal orientation

(θ = 9◦, φ = 90◦) we can calculate

Ftot,magel,diff = |Ftot,magel(M,H, Θ1, 90◦, 9◦, 90◦)− Ftot,magel(M, H, Θ2, 90◦, 9◦, 90◦)|
≈ 130 N/m2 , (6.18)

where Θ1 and Θ2 are the two minima of Ftot,magel at VPiezo = 30 V. Ftot,magel,diff needs

to be larger than the thermal energy density ET = kBT/Vfilm within the volume

Vfilm = 4× 10−13 m3 of the Ni thin film. At T = 300 K, the thermal energy density

is ET = 1× 10−8 N/m2. Thus, in this simple estimation, the degeneracy is easily

removed by a magnetic field µ0H = 1 mT.
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Figure 6.16: Free energy contours in the (001) plane for sample NP3 (nickel on actuator).
Magnetoelastic theory yields the maximum achievable switching angle ∆Θ of
the magnetization for selected actuator voltages and external magnetic field
magnitudes.
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6.7 Application: Piezomodulated ferromagnetic

resonance

To achieve optimal sensitivity, conventional electron paramagnetic and ferromagnetic

resonance setups usually take advantage of lock-in techniques (cf. Chapter 4). Usu-

ally magnetic field modulation is used, as it is technologically easy to realize, but

other modulation parameters such as microwave frequency modulation are possible

as well. In this Section, we will use voltage-strain controlled magnetic anisotropy as

the modulation parameter.

A technique that replaces the magnetic field modulation by strain modulation was

originally developed by Collins et al. [88] in 1972 for ESR spectroscopy. A setup

for strain-modulated ESR measurements (SMESR) is described in [89]. The tech-

nique was adapted by Henning and den Boef [90] in 1978 for FMR. The latter

work introduced the term strain-modulated ferromagnetic resonance (SMFMR) for

the technique. SMFMR is used to determine magnetostrictive constants at high pre-

cision [91, 92] and is hence mentioned in review articles on the topic of magnetostric-

tion [93, 94].

However, SMFMR requires a specifically designed microwave cavity as the stress

is exerted by a complex sample holder. A further drawback so far was the inability

to measure magnetic anisotropy with SMFMR, as the sample holders could not be

rotated in the magnetic field. These disadvantages are resolved by piezomodulated

ferromagnetic resonance (PMFMR), in which the stress is exerted by an actuator at-

tached to the sample that can easily be installed and rotated in a standard microwave

cavity.

6.7.1 Modulation parameters

The key to the lock-in measurement technique is the periodic modulation of one mea-

surement parameter. In conventional FMR, µ0H0 is modulated by a parallel AC

magnetic field µ0Hmod of much smaller magnitude (all conventional FMR measure-

ments shown here use µ0Hmod = 3.2 mT). This modulation results in the output

signal Vsig,mod(µ0H0) defined in Eq. (4.14).

In PMFMR, we no longer use magnetic field modulation, but rather apply an AC

voltage to the actuator. The AC voltage is characterized by the modulation frequency

νpmod and peak-to-peak amplitude V pp
Piezo that will be referred to as modulation ampli-
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tude, though strictly speaking the modulation amplitude is the shift of resonance field

observed for the two extreme values of the sinusoidal actuator voltage VPiezo. As this

shift can only be approximately calculated with magnetoelastic theory (or measured

by conventional FMR, which is not feasible for very small modulation amplitudes)

we stick to the exactly known peak-to-peak voltage V pp
Piezo to quantify the modulation

amplitude.

Due to the magnetoelastic effect, the application of an AC voltage to the actuator

results in a periodic shift of the FMR resonance field µ0Hres. This is different from

conventional magnetic field modulation, where µ0Hres is constant and the magnetic

field is varied sinusoidally. This difference in modulation leads to two important dif-

ferences between PMFMR and conventional FMR. Firstly, the PMFMR modulation

does not affect every spin resonance signal present in the cavity as only signals mag-

netoelastically coupled to the actuator are modulated. This results in the elimination

of any spin resonance signal detectable in conventional FMR, the resonance position

of which is independent of the actuator’s elongation. Secondly, due to the magnetic

anisotropy, the FMR resonance field shift due to the AC modulation is dependent on

the orientation of the sample in the external magnetic field. This is schematically

shown in Fig. 6.17 and will be referred to as anisotropic signal modulation.

6.7.2 PMFMR experiments

We chose to exemplarily investigate the sample CP1 (cobalt on actuator) with PMFMR

because it showed the best signal-to-noise ratio and smallest linewidth of all samples in

the FMR measurements. Moreover, as evident from Fig. 6.17, a voltage-induced inver-

sion of the magnetic anisotropy is not required for PMFMR. The sample is installed in

the in-plane configuration as discussed above. The AC modulation voltage with peak-

to-peak amplitude V pp
Piezo at a frequency of νpmod is provided by a Hewlett Packard

HP3245A universal source which also provides the reference frequency signal for the

lock-in amplifier. Due to a large pickup signal proportional to VPiezo superimposed on

the detector diode signal VFMR, the difference signal VFMR − λVPiezo (0 < λ < 1) is

investigated. This is experimentally realized by scaling the modulation voltage VPiezo

with a phase retaining adjustable voltage divider before connecting λVPiezo to the B

input of the lock-in amplifier, with the resonance signal VFMR connected to the A

input. Now the lock-in’s A − B input mode is used which results in the subtraction

of a signal proportional to VPiezo from the resonance signal to compensate for the pick
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Figure 6.17: Schematic principle of anisotropic signal modulation.
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Figure 6.18: (a) PMFMR spectra of sample CP1 (cobalt on actuator) as a function of
in-plane orientation of H0. The spectra are offset by a constant value. (b)
PMFMR signal amplitude as a function of in-plane orientation α (the lines
are guides to the eyes only).

up signal.

6.7.3 In-plane anisotropy

For sample CP1 (cobalt on actuator), the in-plane anisotropy at room temperature

was determined for angles −20◦ ≤ α ≤ 210◦ in steps of 10◦ using anisotropic signal

modulation as shown in Fig. 6.17. These measurements were carried out with a

modulation amplitude of V pp
Piezo = 20 V with zero DC bias voltage at a modulation

frequency νpmod = 2013 Hz. Fig. 6.18(a) shows the raw data. The predicted inversion

of the PMFMR resonance signal sign every 90◦ can clearly be seen. Fig. 6.18(b)

shows the peak-to-peak PMFMR signal amplitude App as a function of the in-plane

orientation α, from which the extinction of the PMFMR signal at H0 || [110] and H0

|| [110] is again obvious.
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Figure 6.19: (a) Influence of modulation frequency on PMFMR signal amplitude. For
νpmod ≤ 100Hz, AC coupling attenuates the signal (see text). For νpmod >
10 kHz the voltage source power limit was exceeded. (b) Piezomodulated
resonance spectra obtained at modulation frequencies of νpmod = 53, 113
and 5113Hz with H0 || [100].

6.7.4 Influence of modulation amplitude and frequency

With the proof-of-principle experiment summarized in Fig. 6.17, we now determine

the dependence of the PMFMR signal amplitude on the modulation amplitude and

frequency for H0 || [100]. In Fig. 6.19(a) the PMFMR signal amplitude is displayed for

modulation frequencies 3 Hz ≤ νpmod ≤ 100 kHz at a constant modulation amplitude

V pp
Piezo = 20 V. We obtain a constant signal amplitude in the range of 100 Hz ≤ νpmod ≤

10 kHz. For νpmod < 100 Hz, the signal is attenuated by the capacitive coupling of

the ESR signal cable to the voltage amplifier of the microwave detector diode signal.

The reduction of the signal amplitude at frequencies above 10 kHz is probably caused

by the power limit of the voltage source. From Fig. 6.19(b) one can see that for

frequencies above 100 Hz noise is no longer significantly reduced at a modulation

amplitude of V pp
Piezo = 20 V. In PMFMR, the modulation frequency represents the

number of actual magnetoelastic measurements performed per second. Hence, for

high modulation frequencies, we can gather very good statistical information on strain-

induced resonance field shifts.

Next we address the dependence of the PMFMR signal amplitude on the modu-
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Figure 6.20: Influence of the modulation amplitude on the PMFMR signal amplitude for
H0 || [100]. For the grey symbol, the source power limit was exceeded. The
inset shows the piezomodulated resonance spectrum obtained at a modula-
tion amplitude of V pp

Piezo = 0.01V (red), as well as a 50 points averaging over
the total 1024 points of this data set (black).

lation amplitude V pp
Piezo. As displayed in Fig. 6.20, the PMFMR signal amplitude is

linearly dependent on the modulation amplitude at a constant modulation frequency

νpmod = 2013 Hz. At small modulation amplitudes the noise floor becomes visible and

at V pp
Piezo = 40 V the voltage source reaches its power limit. Due to the high number of

magnetostrictive measurement cycles compared during a single magnetic field sweep,

we are able to detect a signal at modulation amplitudes as small as V pp
Piezo = 0.01 V, as

can be seen in the inset showing the raw signal and a 50 point adjacent averaging at

V pp
Piezo = 0.01 V. According to Eq. (6.8), a peak to peak voltage of V pp

Piezo = 0.01 V cor-

responds to an in-plane strain along the dominant axis of elongation in [010] direction

of ε2 = 7× 10−8. For an actuator length L = 2.5 mm we hence are able to observe a

variation ∆L = 0.2 nm utilizing the magnetoelastic effect. Thus, with PMFMR, we

are able to detect strains two orders of magnitude smaller than those detectable in

HRXRD (cf. Chapter 5).
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Figure 6.21: (a) Angular dependence of resonance fields obtained from conventional FMR
measurement. (b) FMR resonance fields as a function of actuator voltage for
H0 || [100].

6.7.5 Comparison to conventional FMR measurements

We now compare our measurements results obtained by PMFMR to those obtained

by conventional magnetic field modulation in the identical setup. In conventional

FMR, we record the resonance field as a function of applied strain to determine

magnetoelastic effects.

In Fig. 6.21(a) the in-plane angular anisotropy of the resonance field for actuator

voltages VPiezo = +10 V and VPiezo = −10 V is displayed. For the strain caused by the

application of these voltages to the actuator, a magnetoelastic effect is clearly visible

and results in an angle dependent shift of the FMR resonance field. We now recorded

FMR spectra for H0 || [100], systematically varying VPiezo in the range −20 V ≤
VPiezo ≤ +20 V. The results are shown in Fig. 6.21(b). While we observe the expected

linear dependence of resonance field for |VPiezo| > 5 V, for |VPiezo| ≤ 5 V the resolution

limit is met.

We will now briefly discuss the cause of this resolution limit. The experimentally

achievable resolution is limited by the magnetic field step size during the magnetic
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field sweep. Generally, the resolution is given by:

∆µ0H0 =
sweepwidth

magnetic field steps
. (6.19)

The setup at the Walter Schottky Institute currently is set to 1024 magnetic field steps

independent of the sweepwidth. The sweepwidth needs to be larger than the FMR

signal linewidth. This explains why we can not resolve the small shift of resonance

field for |VPiezo| ≤ 5 V. However, in PMFMR, we can exploit the maximum resolution

of the setup of ∆µ0H0 ≈ 2 µT which is the smallest magnetic field step size with

which µ0H0 can technically be varied.

Thus, if we want to determine a small shift in FMR resonance field due to magne-

toelastic coupling, PMFMR is a convenient way to do so. While in conventional FMR

the number of measurements needs to be increased to gather statistical information

on the magnetoelastic effect, in PMFMR we only have to increase the modulation

frequency. This makes conventional FMR more susceptible to time effects such as

temperature or microwave frequency drift.
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Chapter 7

Converse magnetoelectric effect in

Fe3O4/BaTiO3 heterostructures

In the previous Chapter, we investigated heterostructures of ferromagnetic thin films

and PZT-based actuators. In these samples, the two ferroic phases are separated by

a non-ferroic polymer layer. While these heterostructures showed interesting mul-

tiferroic properties, heterostructures featuring a direct ferroic phase boundary are

of greater fundamental interest. Furthermore, from a technological point of view,

it is desirable to produce multiferroic heterostructures in as few steps as possible.

Following Andreas Brandlmaier’s proposal [56], Stephan Geprägs fabricated such het-

erostructures by depositing ferromagnetic magnetite (Fe3O4) thin films directly onto

ferroelectric barium titanate (BaTiO3) substrates by pulsed laser deposition.

In this Chapter, we investigate the converse magnetoelectric effect – the effect of an

electric field on the magnetization – in these heterostructures. To this end, an electric

field is applied perpendicular to the sample plane. The structural properties of the

ferroelectric BaTiO3 substrate are established as a function of the electric field by high

resolution X-ray diffraction (HRXRD). The effect of the electric field on the static

magnetic properties is evaluated using superconducting quantum interference device

(SQUID) magnetometry. Finally, to determine the dynamic converse magnetoelectric

effect, we rely on ferromagnetic resonance (FMR) measurements.

7.1 Introduction

The effect of an electric field on the magnetization is referred to as the converse mag-

netoelectric effect (cf. Chapter 2). From a technological point of view, it is the most

89
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important multiferroic property, as it allows to control the magnetization by an elec-

tric field which is considered a milestone on the way to functional multiferroic devices.

The physical origin of the (converse) magnetoelectric effect in single-phase multifer-

roics is vastly different from that in heterostructures [32]. The discussion in this thesis

is limited to the converse magnetoelectric effect in multiferroic heterostructures. Only

such heterostructures show robust multiferroic properties at room temperature and

thus are relevant technologically [5].

7.1.1 The converse magnetoelectric effect in multiferroic

heterostructures

To understand the converse magnetoelectric effect in heterostructures consisting of a

ferromagnetic thin film deposited onto a ferroelectric substrate, we have to consider

the coupling of the ferroelectric and the ferromagnetic phase.

In multiferroic heterostructures, mechanical coupling is the dominant effect [95, 26,

96, 97]. The mechanical coupling results in a strain transmission from the ferroelec-

tric phase to the ferromagnetic phase. Thus, it involves the piezoelectric effect in

the ferroelectric phase and the magnetoelastic effect in the ferromagnetic phase (cf.

Chapter 2). Apart from the piezoelectric effect, which describes the macroscopic de-

formation of the ferroelectric phase as a function of electric field, the clamping of the

ferromagnetic film to the ferroelectric substrate may yield considerable locale strains

if the ferroelectric domain structure is changed [20].

Non-strain-mediated converse magnetoelectric effects in multiferroic heterostruc-

tures have been predicted [98], however to our knowledge no sizable non-mechanical

effect in heterostructures so far has been reported.

7.1.2 Sample

Stephan Geprägs fabricated a multiferroic heterostructure consisting of an approxi-

mately 100 nm thick film of Fe3O4 grown on an approximately 400 µm thick BaTiO3

substrate by pulsed laser deposition at a growth temperature T = 593 K. As the

lattice mismatch of BaTiO3 and Fe3O4 amounts to approximately 5% (cf. Chapter 3)

at the growth temperature, the magnetite film relaxes after a few monolayers. Due

to interface roughness [99], the exact thickness of the Fe3O4 film could not be deter-

mined. The lateral dimensions of the samples are A = 5× 5 mm2. We use one of these
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Figure 7.1: (a) Coordinate system and schematic view of the sample used for all measure-
ments in this Chapter. (b) Schematic random unit cell distribution into a- and
c-domains in the BaTiO3 substrate if no electric field is applied. (c) Expected
single domain state for an electric field E > Ec.

samples, which is schematically shown in Fig. 7.1(a). On the substrate side of the

sample, an approximately 200 nm thick Au electrode is sputter-deposited. To control

the polarization of the substrate, an electric field E is applied in the [001] direction

by applying a voltage VBTO to the sample. This is done using the Fe3O4 film and

the Au film as electrodes with the gold electrode connected to ground and the Fe3O4

electrode connected to potential (cf. Fig. 7.1(a)). The basic properties of Fe3O4 and

BaTiO3 are discussed in Chapter 3.

Prior to the experiments, the sample was cut in two pieces that were afterwards

polished to lateral dimensions of Aa = 2× 5 mm2 (referred to as MB1a) and Ab =

1.5× 1.5 mm2 (referred to as MB1b), respectively.

7.2 Polarization in the ferroelectric BaTiO3 phase

At room temperature, BaTiO3 is in its tetragonal phase with lattice constants a =

0.3993 nm and b = 0.4034 nm (cf. Fig. 3.1). BaTiO3 can thus form either a1-, a2- or

c-domains as shown in Fig. 3.3.

The application of an electric field E3 to the ferroelectric BaTiO3 substrate in-
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duces a polarization P3. The resulting hysteretic P (E)-loop is schematically shown

in Fig. 2.1(b). In Chapter 2, the P (E)-loop was found to be a result of ferroelectric

domain (re)formation to minimize the total free energy of the crystal as a function

of electric field. Thus, we expect that the BaTiO3 substrate can be tuned from a

multi-domain state to a single-domain state by applying electric fields |E| > |Ec| with

the coercive field Ec. If no external electric field is applied and the crystal is thus in

a multi-domain state with a- and c-domains, Jona and Shirane [19] showed that close

to the 90◦ domain walls between a- and c-domains, the unit cells in the a-domain

are tilted, which is schematically depicted in Fig. 7.1(b). Upon the application of an

external electric field E > Ec we expect the BaTiO3 crystal to enter a single c-domain

state as depicted in Fig. 7.1(c).

7.3 HRXRD measurements

To prove that the BaTiO3 crystal can reversibly be tuned from a multi-domain to a

single-domain state by the application of an electric field, we used high resolution X-

ray diffraction (HRXRD) to establish the lattice parameters as a function of electric

field at room temperature. To this end, the symmetric BaTiO3 (002) reflection was

mapped in reciprocal space (as explained in Chapter 4) for −120 V ≤ VBTO ≤ +120 V.

This enables us to determine the BaTiO3 out-of-plane lattice constant(s). The mea-

surements were carried out using a Bruker AXS-D8 Discover four circle diffractometer

that was already introduced in Chapter 4.

Sample MB1a (Aa = 2× 5 mm2) was used in HRXRD measurements. The poling

voltage VBTO was provided by a Keithley 2410 high voltage sourcemeter. Reciprocal

space maps (RSMs) were recorded for −120 V ≤ VBTO ≤ +120 V which corresponds

to an electric field of approximately −300 V/mm ≤ E ≤ 300 V/mm. This voltage

range comprises the coercive fields of BaTiO3 single crystals which are expected to

be |Ec| ≈ 100 V/mm [100].

As the BaTiO3 thickness is only known to a precision of ±50 µm all measurement

results will display the precisely known applied voltage VBTO instead of the electric

field.
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Figure 7.2: Reciprocal space mapping of the BTO (002) reflection for voltages of (a)
VBTO = +20 V and (b) VBTO = +120 V. The color scale is logarithmic and
ranges from 0 cps (blue) to 144000 cps (red).

7.3.1 Measurement results

Prior to the actual measurements, the diffractometer alignment was carried out using

the BaTiO3 (002) reflection at VBTO = 0 V. The first measurement was recorded at

the highest investigated electric field VBTO = +120 V. Subsequently, the voltage was

successively reduced to VBTO = −120 V and raised back to VBTO = +120 V.

We show two exemplary reciprocal space maps of this measurement series, both

recorded at increasing voltage. In Fig. 7.2(a), the raw data obtained for VBTO = +20 V

is displayed and in Fig. 7.2(b) the raw data obtained for VBTO = +120 V is displayed.

In Fig. 7.2(a) we can easily identify four reflections. We observe one reflection at

q⊥ = 0.382 rlu and three reflections at q⊥ = 0.386 rlu. In Fig. 7.2(b) only a single

reflection of sizable intensity at q⊥ = 0.382 rlu is visible.

7.3.2 Discussion

As we investigate the symmetric BaTiO3 (002) reflection, the out-of-plane lattice

constant can be calculated with Eq. (4.21) for each reflection. We obtain a = 0.399 nm

for the reflections at q⊥ = 0.386 rlu and c = 0.404 nm for the reflection at q⊥ =
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Figure 7.3: (a) Total intensity accounted to c and a domains, respectively. (b) Fraction
of a domains and total intensity as a function of VBTO. The lines are guides
to the eye.

0.382 rlu. These lattice parameters are in good agreement with the expected lattice

constants for a- and c-domains respectively (cf. Fig. 3.1). Thus a multi-domain state

is observed in Fig. 7.2(a). In Fig. 7.2(b) one sees only a single reflection of sizable

intensity, thus we observe a single c-domain state.

The splitting of the a-domain reflections in Fig. 7.2(a) is attributed to the afore

mentioned unit cell tilting (cf. 7.1(b)). A slight splitting of the c-domain reflections is

observed as well for small fields, but vanishes as the field is increased. This indicates

a slight tilting of some c-domains at small electric fields.

To visualize the evolution of domain fractions with electric field, the integrated

intensity I(q⊥ > 0.384 rlu) = Ia for all points with coordinates (q⊥ > 0.384 rlu|q‖) in

each RSM is attributed to a-domains whereas I(q⊥ < 0.384 rlu) = Ic is attributed to

c-domains. This results in the integrated intensities shown in Fig. 7.3(a) as a function

of VBTO. In Fig. 7.3(b) the normalized total intensity Itot = (Ia + Ic)/(I
0V
a + I0V

c ) and

the fraction I frac
a = Ia/(Ia + Ic) of a-domains are depicted as a function of VBTO.

The loss of total intensity for negative voltages VBTO (cf. Fig. 7.3(b)) was not

expected. It may however be explained by the change of the structure factor with the
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displacement of the Ti4+ ion that amounts for a change of approx. 3% in intensity

in thin films [101], and more importantly a diffractometer misalignment due to the

structural change in the substrate as soon as the voltage is changed from the alignment

voltage VBTO = 0 V.

In Fig. 7.3(b) it is further evident that we are able to almost completely and re-

versibly pole the ferroelectric BaTiO3 substrate with a calculated a-domain fraction

of less than 3% at high electric fields and a distribution of about 45% a-domains to

55% c-domains in the multi-domain state. These absolute values are to be taken as a

coarse approximation as the alignment was not carried out for single a- and c-domain

states as no pure a-domain state can be achieved with the current sample setup. Thus

the absolute values of the reflection intensities for a- and c-domains are afflicted with

alignment errors that may reach several percent. Nevertheless, the obtained results

are clear evidence for the reversible poling of the ferroelectric BaTiO3 substrate as a

function of electric field.

7.4 Magnetization in the ferromagnetic Fe3O4 phase

The magnetization is related non-linearly to an external magnetic field as schemati-

cally shown in Fig. 2.1(b). Due to the magnetic anisotropy, the shape of this hysteretic

M(H)-loop is a function of the orientation of the sample in the external magnetic

field [30]. Hence, if the magnetic anisotropy is changed, the shape of the M(H)-loop

changes as well. We will now investigate whether the application of an electric field

to our sample results in a change of the magnetic anisotropy of the Fe3O4 film.

To this end, we carried out SQUID measurements to establish the static magnetic

response as a function of external magnetic and electric fields which will be presented

and evaluated in the following.

7.5 SQUID measurements

All measurements were carried out by Stephan Geprägs using a Quantum Design

MPMS XL-7 SQUID magnetometer and a sample holder he specifically designed to

provide electrical contacts in the sample space. The poling voltage VBTO was provided

by a Keithley 2410 high voltage sourcemeter, which was additionally used to record

the current flowing between the electrodes in-situ. The same sample that was used
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Figure 7.4: (a) M(H)-loop of the Fe3O4/BaTiO3 heterostructure at saturation and co-
ercive electric fields (see text) with the magnetic field along [100]. (b) Dia-
magnetic response of a pure BaTiO3 substrate without ferromagnetic film, the
inset shows that the diamagnetism is not electric field dependent. The lines
are guides to the eye.

for the HRXRD measurements (MB1a) was investigated. To fit it into the SQUID

sample holder its lateral dimensions were reduced to 2× 1.5 mm2.

The projection m of the total magnetic moment m =
∫

V
µdV onto the direction of

the external magnetic field µ0H was recorded as a function of the poling voltage VBTO

and external magnetic field µ0H. As the exact film thickness and thus its volume V

is unknown, no absolute values of the magnetization M = m/V can be given.

M(H)-loops were recorded for −7 T ≤ µ0H ≤ 7 T with H || [100] and H || [001]

at constant poling voltages −150 V ≤ VBTO ≤ +150 V. Furthermore, the magnetic

moment was recorded as a function of the poling voltage VBTO at constant external

magnetic field −1 T ≤ µ0H ≤ 1 T. These M(E)-loops were carried out for H || [100]

and H || [001], respectively. Additionally, M(H)- and M(E)-loops of a BaTiO3 single

crystal with two gold electrodes were recorded. All measurements were carried out at

room temperature.

7.5.1 Measurement results

Firstly, we will present some of the measurements that were performed with H || [100].
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Figure 7.5: (a)-(c) show the projection of the magnetization vector onto the [100] axis for
external magnetic fields from 1T to 0T along the [100] axis. (d) shows that
the loop is inverted if the external magnetic field is applied along [100]. The
lines are guides to the eye. Also shown is the current flowing between the
electrodes (red, right scale).
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Figure 7.6: Symmetric and antisymmetric contribution to the measured magnetization for
H || [100] (µ0H = 100 mT) as a function of VBTO. The lines are guides to the
eye.

Figure 7.7: Relative change ∆m/m (see text) in the symmetric and antisymmetric con-
tribution to m as a function of external magnetic field µ0H. Fit calculated
according to Eq. (7.1).
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In-plane measurement results

The M(H)-loops that are shown in Fig. 7.4(a) were recorded (in this order) at VBTO =

+150 V, VBTO = −25 V and VBTO = −150 V. A clear influence of the electric field on

the shape of the M(H)-loops is observed, whereas the coercive field µ0Hc = 25.5 mT

remains identical within the resolution of the experiment. At VBTO = −25 V we

observe a remanent magnetic moment m−25V
R = 52× 10−6 emu, at VBTO = −150 V

we observe m−150V
R = 58× 10−6 emu and at VBTO = +150 V we observe m+150V

R =

63× 10−6 emu.

A M(H)-loop of the diamagnetic BaTiO3 substrate at VBTO = 0 V is displayed in

Fig. 7.4(b). As the inset shows, the diamagnetic response is independent of VBTO.

Exemplary M(E)-loops are presented in Fig. 7.5 for constant external magnetic

field −100 mT ≤ µ0H ≤ 1 T. Prior to the recording of each M(E)-loop, the external

magnetic field was set to µ0H = 7 T. All M(E)-loops show a qualitatively identical

hysteretic behavior and the peaks in the current coincide with the extrema of the

hysteresis loops. The influence of the electric field on m is reduced as the magnetic

field is increased.

Fig. 7.6 shows the symmetric (M(E) = M(−E)) and antisymmetric (M(E) =

−M(−E)) contribution to the M(E)-loop at µ0H = 100 mT (cf. Fig. 7.5(b)).

Finally, in Fig. 7.7 the symmetric and antisymmetric contribution to the maximum

relative change1 ∆m
m

in m in the voltage range −150 V ≤ VBTO ≤ +150 V is displayed

as a function of external magnetic field µ0H. We observe an exponential decay of

both the symmetric and the antisymmetric contribution to ∆m
m

as a function of µ0H.

For µ0H ≥ 500 mT the relative change in m saturates. Furthermore, regardless of

the magnitude of the external magnetic field, the symmetric contribution is always

stronger than the antisymmetric contribution by a factor of approximately 3. The

exponential decay in Fig. 7.7 is fitted by:

∆m

m
=

∆m

m

∣∣
µ0H=0

exp(−βµ0H) +
∆ms

ms

, (7.1)

which yields ∆ms

ms
= 0.5% for the symmetric and ∆ms

ms
= 0.1% for the antisymmetric

contribution.

1For the symmetric contribution we use ∆m = |m(20 V) − m(150V)| and for the antisymmetric
contribution we use ∆m = |m(−150 V)−m(+150 V)|.
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Figure 7.8: (a) M(H)-loop of the Fe3O4/BaTiO3 heterostructure at saturation and coer-
cive electric fields (see text) with H || [100]. (b) m as a function of VBTO for
H || [001] with µ0H = 100 mT. The lines are guides to the eye.

Out-of-plane measurement results

M(H)-loops for H || [001] that were recorded (in this order) at VBTO = +150 V,

VBTO = −25 V and VBTO = −150 V are shown in Fig. 7.8(a). The influence of the

electric field on m is only apparent if M(E)-loops are considered. Such an M(E)-loop

at µ0H = 100 mT is displayed in Fig. 7.8(b). It shows an inverted effect of the electric

field on m if compared to the in-plane measurements (cf. Fig. 7.5).

7.5.2 Discussion

We clearly observe a converse magnetoelectric effect as m is a function of the electric

field. As can already be seen in the M(H)-loop in Fig. 7.4(a), this effect is most

distinct at small external magnetic fields. This is interpreted as a result of the fact

that an external magnetic field aligns the magnetic moments to its direction. Thus,

the larger the magnetic field, the smaller the influence of the electric field.

We now consider two possible causes of the electric field dependence of m: As m

is the projection of the vector m to the direction of the external magnetic field µ0H,

we may observe a change of m in either magnitude or orientation (or both). The

magnitude of m is given by the saturation magnetic moment ms and the orientation
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of m is defined by the magnetic anisotropy.

We will now first assume that either ms or the orientation of m changes, but not

both. Now, if ms was a function of the electric field, we would expect the same

symmetry of the M(E)-loops regardless of the orientation of H as the saturation

magnetization is a scalar property. In particular, we would expect the same symmetry

for H || [100] and H || [001]. Comparing the in-plane (cf. Fig. 7.5) and out-of-

plane (cf. Fig. 7.8(b)) measurements we however find that the symmetry of both the

antisymmetric and symmetric contribution to the M(E) loop is inverted: Whereas

the peaks in the hysteresis loops are directed downwards for H || [100], they are

directed upwards for H || [001] and whereas we observe a large absolute value of m at

VBTO = +150V for H || [100], we observe a small absolute value of m at VBTO = +150V

for H || [001]. Thus, we can rule out changes of ms as the dominant effect.

Furthermore, if the saturation magnetization was dominantly affected by the elec-

tric field, the change in m would be expected to saturate at a magnetic field of

approximately µ0H = µ0Hc = 25.5 mT for H || [100] (which will later be shown to

be an easy axis). However, we observe such a saturation only at much larger mag-

netic fields µ0H ≥ 500 mT (cf. Fig. 7.7). Again, an effect of VBTO purely on ms

thus is not appropriate to describe the data. Only a small effect of ∆ms

ms
≈ 0.6% (cf.

Eq. (7.1)) is in accordance with the experiment. Hence we conclude that the electric

field dominantly affects the magnetic anisotropy of the Fe3O4 thin film rather than

its saturation magnetization.

As ferromagnetic resonance (FMR) is a very precise means to determine the mag-

netic anisotropy, we will evaluate whether FMR yields results that underline this

assumption before giving a theoretical description of its physical origin.

7.6 FMR measurements

The ferromagnetic resonance measurements were carried out at room temperature

using the already introduced Bruker ESP 300 spin resonance spectrometer at a mi-

crowave power of 0.8 mW and a microwave frequency of νMW = 9.3 GHz in a TE102

cavity. A description of the setup can be found in Chapter 4.

Prior to the FMR measurements presented in the following, the leakage current was

recorded in-situ (at a magnetic field of 100 mT and a microwave power of 0.8 mW) as

a function of VBTO with a Keithley 2400 sourcemeter.
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For the ferromagnetic resonance measurements, we used sample MB1b with lateral

dimensions Ab = 1.5× 1.5 mm2 (cf. Fig. 7.1(a)). A sample this small was used as the

high dielectric constant of BaTiO3 (cf. Chapter 3) affects the microwave E1 field in

the cavity, and thus for larger samples no stable microwave tuning could be achieved.

Furthermore, no stable microwave tuning could be achieved if an electric field was

applied to the sample MB1b in the in-plane configuration (H0 in the (001) plane). Due

to the limited time allocated to this thesis, the measurements could not be repeated

with a smaller sample, which is expected to rule out the microwave tuning problems.

Therefore, no complete set of anisotropy constants as a function of electric field could

be obtained and all measurements recorded at VBTO 6= 0 V were performed in the

out-of-plane configuration, thus with H0 in the (010) plane.

The FMR measurements were carried out starting at a poling voltage VBTO =

+120 V which was subsequently reduced stepwise to VBTO = −120 V and raised back

again to VBTO = +120 V to record the complete hysteresis. The poling voltage VBTO

was provided by a Keithley 237 sourcemeter.

7.6.1 Measurement results

Firstly, we present the results obtained for H0 || [100].

Poling results for H0 || [100]

The raw spectra for the extreme bias voltages VBTO = ±120 V as well as for VBTO =

0 V are displayed in Fig. 7.9. The spectra each show one broad FMR line with the

resonance field in the vicinity of µ0H = 100 mT as well as ESR lines, that originate

from impurities in the BaTiO3 substrate (see next Chapter for details on paramagnetic

impurities in BaTiO3). Within the resolution of the experiment, the ESR lines show

no voltage-dependent shift. The FMR line, however, shows a shift of ∆µ0Hres ≈ 10 mT

for −120 V ≤ VBTO ≤ +120 V.

The ferromagnetic resonance fields as well as the corresponding leakage current are

shown in Fig. 7.10(a) for H0 || [100] as a function of VBTO. We observe a hysteretic

behavior of µ0Hres. The linewidth µ0∆Hpp of the FMR line as well as the magnetic

field corresponding to the maximum and minimum of the FMR line as a function of

VBTO are provided in Fig. 7.10(b). The symmetric and antisymmetric contributions

to µ0Hres(VBTO) are displayed in Fig. 7.11.
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Figure 7.9: FMR spectra recorded with H0 || [100] at maximum poling voltages VBTO =
±120 V and VBTO = 0V.

Poling results for H0 || [001]

Raw spectra for VBTO ∈ {−120 V, 0 V, +120 V} for the measurement with H0 || [001]

are presented in Fig. 7.12. The raw spectra show the emergence of a second FMR

line at negative poling voltages. As the two FMR lines can not unambiguously be

distinguished, it is not possible to calculate reliable FMR resonance fields at this

orientation of H0.

Finally, we present the results obtained for the rotations of the sample in the ex-

ternal magnetic field at VBTO = 0 V.

In-plane and out-of-plane rotations

From the in-plane rotation displayed in Fig. 7.13(a) we observe a purely cubic anisotropy

at VBTO = 0 V with the easy axes in the [100] and [010] directions. The out of-

plane-rotation (cf. Fig. 7.13(b)) shows a FMR resonance field of approximately

µ0Hres = 970 mT for H0 || [001].
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Figure 7.10: (a) Ferromagnetic resonance fields µ0Hres and leakage current I as a function
of the applied poling voltage VBTO with H0 || [100] (open symbols: increasing
voltage, solid symbols: decreasing voltage).(b) Corresponding ferromagnetic
resonance linewidth µ0∆Hpp and magnetic field value of minima (µ0Hmin)
and maxima (µ0Hmax) of the spectra. The lines are guides to the eye.
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Figure 7.11: Symmetric and antisymmetric contributions to the electric field dependent
shift of the ferromagnetic resonance fields for H0 || [100] (the lines are guides
to the eye).

[100] [010]

[001]

H

Figure 7.12: Spectra recorded with H0 || [001] at maximum poling voltages VBTO =
±120 V and VBTO = 0 V. The emergence of a second FMR line at VPiezo =
−120 V is clearly visible.
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Figure 7.13: (a) FMR resonance fields µ0Hres obtained for the rotation of H0 in the (001)
plane. (b) µ0Hres obtained for the rotation of H0 in the (010) plane.

g-factor Kc1

Ms
(mT)

Ku,[010]

Ms
(mT)

Ku,eff,[001]

Ms
(mT)

2.12 13 0 390

Table 7.1: Anisotropy constants of Fe3O4/BaTiO3 at VBTO =0V determined from numer-
ical simulations.

7.6.2 Discussion

We use the free energy Ftot from Eq. (6.3) and perform numerical simulations to

determine the anisotropy constants of the Fe3O4 film at VBTO = 0 V. The procedure

is identical to that described in Chapter 6, and thus only the calculated anisotropy

fields are presented here in Tab. 7.1. The g-factor in Tab. 7.1 is identical to the bulk

value found in Tab. 3.4 and similar cubic anisotropy fields were reported for Fe3O4 on

MgO in [56].

From the measurements performed with H0 || [100] (cf. Fig. 7.10(a)) we see that we

are able to reversibly tune the FMR resonance field by up to 15 mT by the application

of an electric field. As the voltage dependent change in linewidth is no more than

5 mT, a change of lineshape can be ruled out as the origin of the voltage dependent

shift of the FMR resonance field. Furthermore, given the systematic evolution of the
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resonance field as a function of VBTO, spurious effects such as temperature drift can

be excluded. The microwave frequency was stable to 1 × 10−4, thus frequency drift

also cannot be the cause for the FMR resonance field shift. Moreover, possible effects

of the voltage dependent dielectric constant of BaTiO3 [102] on the microwave field

in the cavity [103] can be excluded as the cause for resonance field shift as well due

to the independence of the ESR resonance fields from VBTO.

Fig. 7.11 shows that the antisymmetric contribution dominates by a factor of ap-

proximately 2 over the symmetric contribution for the in-plane FMR measurements.

The shoulders in the recorded current (cf. Fig. 7.10(a)) correspond to the displace-

ment currents accompanying any polarization change in the BaTiO3 substrate. The

asymmetry of the current is not observed if two electrodes of identical material are

used to pole a BaTiO3 crystal. Thus the asymmetry is attributed to an electrode

effect, probably caused by a space charge region.

Assuming that we observe a change in magnetic anisotropy as a function of VBTO,

we conclude that the [100] axis is magnetically harder for VBTO < 0 V than it is for

VBTO > 0 V. Regarding only the symmetric contribution (cf. Fig. 7.11) the [100]

direction is harder in the BaTiO3 multi-domain state than in the single-domain state.

In conclusion, the FMR measurements corroborate the conclusion drawn from the

SQUID data: We observe a converse magnetoelectric effect which dominantly affects

the magnetic anisotropy of the Fe3O4 film.

7.7 Theoretical description

In the introductory remarks to this Chapter we mentioned that the converse magne-

toelectric effect in multiferroic heterostructures is dominantly strain-mediated. Two

different effects for a strain-mediated influence of the electric field on the magnetiza-

tion were proposed: The piezoelectric effect, describing the macroscopic deformation

of the ferroelectric phase (and thus the compound) as a function of electric field, and

ferroelectric domain (re)formation that leads to local strains.

As both effects are expected to be purely symmetric with respect to the external

electric field, both models presented in the following can only explain influences on

the magnetization that are symmetric as well.

The observed contribution antisymmetric to the influence of the electric field on

magnetization can thus not be explained in the context of the following theories.
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Figure 7.14: (a) Side view and (b) top view of our heterostructure. The dotted lines show
the macroscopic deformation of the heterostructure in an external electric
field. This deformation is isotropic in the film plane.

In the last section of this Chapter, possible causes for the antisymmetric effect are

summarized.

7.7.1 Linear piezoelectric effect

The piezoelectric effect describes the expansion (or contraction) of a single domain

ferroelectric crystal as a function of electric field (cf. Chapter 2). As the electric field

in our case is applied perpendicular to the sample plane, a piezoelectric d31-effect is

expected. This is schematically shown in Fig. 7.14. Hence, we expect the piezoelectric

d31-effect to result in a uniform, voltage dependent in-plain strain ε1 = ε2 = ε‖ that

is expected to be losslessly transferred into the Fe3O4 film.

The magnitude of this strain can be described by the magnitude of the linear

piezoelectric d31-effect of BaTiO3 for E > −Ec (or E < Ec, with the symmetry

ε‖(E) = ε‖(−E)):

ε‖ = d31E3 = d31
VBTO

xBTO

, (7.2)

with d31 from Tab. 3.5 and the substrate thickness xBTO ≈ 400 µm. The thus cal-

culated in-plane strain ε‖ is shown in Fig. 7.15 as a function of VBTO. According to

elastic theory, the in-plane strain ε‖ results in an out-of-plane strain ε⊥ in the mag-

netite film that can be calculated according to Chapter 5. We once again assume that

the film can freely expand in the out-of-plane direction, thus no out-of-plane stress is
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Figure 7.15: The electric field E is applied perpendicular to the sample plane. We thus
observe a d31-effect at the Fe3O4/BaTiO3 interface.

present: σ⊥ = 0. This yields the out-of-plane strain

ε⊥(VBTO) = −cFe3O4
12

cFe3O4
11

(ε1 + ε2) (7.3)

= −2
cFe3O4
12

cFe3O4
11

ε‖ .

With the Fe3O4 elastic moduli taken from Tab. 3.4 we can calculate the strain ∆ε in

the film if VBTO is lowered from its extreme value VBTO =+120 V to VBTO =−25 V:

∆ε‖ = ε‖(−25 V)− ε‖(+120 V) = 1.2× 10−5 (7.4)

∆ε⊥ = −9.3× 10−6 .

This strain corresponds to the largest piezoelectric stroke in the voltage range−120 V ≤
VBTO ≤ +120 V (cf. Fig. 7.15). Thus it gives an approximation of the largest expected

effect due to the piezoelectric-magnetoelastic coupling.

We can now apply magnetoelastic theory and calculate the magnetoelastic anisotropy

constants. In the previous Chapter, the expressions for the magnetoelastic anisotropy

constants were derived in Eq. (6.11). Considering the appropriate material constants
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and the isotropic in-plane strain ε1 = ε2 = ε‖, the following expressions can easily be

derived with the strains from Eq. (7.4):

Ku,magel,[010] =
3

2
λFe3O4

100 (cFe3O4
12 − cFe3O4

11 )(ε2 − ε1) (7.5)

=
3

2
λFe3O4

100 (cFe3O4
12 − cFe3O4

11 )(∆ε‖ −∆ε‖) = 0

Ku,magel,[001] =
3

2
λFe3O4

100 (cFe3O4
12 − cFe3O4

11 )(ε3 − ε1)

=
3

2
λFe3O4

100 (cFe3O4
12 − cFe3O4

11 )(∆ε⊥ −∆ε‖) = −106.7 N/m2 .

The anisotropy constant Ku,magel,[001] in this equation corresponds to the anisotropy

field Ku,magel,[001]/Ms = −0.35 mT calculated with a saturation magnetization Ms =

305 kA/m reported for similar films [56] (as the film thickness is unknown, Ms could

not be calculated from SQUID measurements). Comparison of this value to the net un-

strained anisotropy yields a negligible contribution to the out-of-plane anisotropy field

which was determined from measurements at VBTO = 0 V to Ku,[001]/Ms = 390 mT.

Furthermore, the piezoelectric effect predicts no magnetoelastic contribution to the

in-plane anisotropy: Ku,magel,[010] = 0 (cf. Eq. (7.5)). Thus the in-plane anisotropy is

independent of VBTO in this model.

We however clearly observe an effect of VBTO on the in-plane magnetization in

SQUID measurements, that was accounted to a change in magnetic anisotropy as a

function of VBTO. This effect can not be explained by the piezoelectric effect. Instead

of considering macroscopic deformations due to the piezoelectric effect, we thus now

will investigate the domain-related strains in the heterostructure.

7.7.2 Domain effects

The magnetite unit cell (aFe3O4=0.8396 nm) comprises slightly more than four barium

titanate unit cells (aBTO = 0.399 nm and cBTO = 0.404 nm) at the Fe3O4/BaTiO3

interface. For the sake of simplicity, in the following, we will neglect the lattice

mismatch and assume the Fe3O4 unit cell to span exactly four BaTiO3 unit cells.

We furthermore assume that the strain transmission is lossless, so that the results

obtained in the following are an approximation of the maximum expected effect.

At room temperature, each BaTiO3 tetragonal unit cell may show a rectangular

(a-domain) or square (c-domain) surface to the magnetite film (cf. Fig. 7.16(a)). We
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BaTiO3 domain ε1 ε2 ε3
Ku,magel,[010]

Ms
(mT)

Ku,magel,[001]

Ms
(mT)

c 0 0 0 0 0

a1 0 0.0125 -0.0048 211 -82

a2 0.0125 0 -0.0048 -211 -293

Table 7.2: Local strains and magnetoelastic anisotropy constants.

will now consider the strains in the a1-, a2 and c-domains.

In c-domains – that show a square surface to the magnetite film – only isotropic

strains are present in our simplified model. These isotropic strains do not alter the

in-plane magnetic anisotropy. Due to the net cubic crystalline anisotropy of Fe3O4

(cf. Fig. 7.13(a)) the easy axes are along the [100] and [010] directions. Hence in

those regions where the Fe3O4 film is clamped to BaTiO3 c-domains, the easy axes

will be unaffected. This is schematically shown in Fig. 7.16(a).

In contrast, a-domains induce anisotropic strains into the respective regions of the

Fe3O4 film. Because of the negative magnetostrictive constant λ = −20 × 10−6 of

Fe3O4, the BaTiO3 a1-domains induce an easy axis along the [100] direction into the

magnetite film (cf. Fig. 7.16(a)). In BaTiO3 a2-domains an easy axis along the [010]

direction is induced into the magnetite film.

In the following, we calculate the magnitude of this strain-induced, domain-wise

anisotropy. The local strains ε1 || [100] and ε2 || [010] are {ε1 = 0, ε2 = (cBTO −
aBTO)/aBTO} in a1 domains and {ε1 = (cBTO − aBTO)/aBTO, ε2 = 0} in a2-domains

(cf. Fig. 7.16(a)). The out-of-plane strain ε⊥ = ε3 is calculated according to Eq. (7.3).

To estimate the strain-induced anisotropy fields Ku,magel,[010]/Ms and Ku,magel,[001]/Ms

we use Eq. (7.5). Tab. 7.2 shows the strains in the three possible BaTiO3 domains and

the thus calculated magnetoelastic anisotropy constants of the regions of the Fe3O4

film clamped to each respective BaTiO3 domain.

We will now evaluate whether this domain-wise magnetoelastic model is capable

of explaining the SQUID-measurements with H || [100]. Due to the anisotropy field

Ku,magel,[010]/Ms = −211 mT (cf. Tab. 7.2), there is a finite angle between the [100]

direction and m even at fields larger than µ0H = 100 mT in a2-domains. As the

SQUID-magnetometer is only sensitive to the projection m of m to [100], any a2-

domain will reduce the observed magnetization as depicted in Fig. 7.16(b). Due to

the P (E)-hysteresis, this model thus predicts an M(E)-loop as shown in the right of
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Figure 7.16: (a) BaTiO3 domain surfaces (brown) at the Fe3O4/BaTiO3 interface in the
unpoled state and clamped Fe3O4 unit cells (black). In the poled BaTiO3

state, only c-domains are present. At c-domain surfaces, no anisotropic strain
is transmitted to Fe3O4. At a-domain surfaces, local uniaxial strains in the
order of 1% cause a strong uniaxial anisotropy in the Fe3O4 film. (b) If the
fraction of a2-domains is increased due to a reduction of the external electric
field, the projection m of m to H || [100] diminishes. This results in the
hysteretic behavior of m as a function of electric field shown to the right.
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Fig. 7.16(b). This M(E)-loop is in good qualitative agreement with the symmetric

contribution to the SQUID measurements (cf. Fig. 7.6).

A rough approximation for the predicted magnitude of the symmetric contribution

to the M(E)-loop will now be given at zero external magnetic field. HRXRD mea-

surements showed that there are approximately 40% a-domains in the multi-domain

state (cf. Fig. 7.3(b)). Assuming an equal amount of a1- and a2-domains, this yields

20% of the Fe3O4 film clamped to a2-domains, thus with the magnetization at an

equilibrium orientation along [010] (cf. Fig. 7.16(a)). Hence the maximum observable

effect on the magnetization projected to [100] is a reduction of 20%. In Fig. 7.7, an

effect of approximately 10% can be seen, corroborating our model, considering its

simple approach and the unknown distribution of a-domains into the a1 and a2 type.

We note that the 10% effect observed in Fig. 7.7 can be explained in the context of

this model, if 10% a2-domains and 30% a1-domains are assumed in the multi-domain

BaTiO3 state.

If we regard the magnetization projection to the [001] direction, we expect all a-

domains to result in an easier axis out of plane due to the negative anisotropy fields

Ku,magel,[001]/Ms < 0 (cf. Tab. 7.2). This is in qualitative accordance with the SQUID-

measurements performed with H || [001] (cf. Fig. 7.8(b)) that showed that m rotates

towards [001] in the multi-domain state.

However, there are clear indications that the model fails to quantitatively ac-

count for all experimental observations. According to Morrish [30], for H || [100],

the magnetization is expected to saturate at a magnetic field of µ0H = 2K/Ms ≈
2Ku,magel,[010]/Ms = −422 mT. Thus for µ0H ' 422 mT the magnetization is pre-

dicted to be aligned along [100] even in a2-domains. However, at µ0H = 1 T we

still observe a 0.5% effect (cf. Fig. 7.7). This effect is very probably caused by the

influence of VBTO on ms discussed above that is not included in this model.

Taken together, for the SQUID measurements, we find that this domain-wise strain

model is capable of explaining the observed symmetric contribution to the M(E)-loops

in good qualitative and quantitative agreement.

We will now investigate whether this model also accounts for the symmetric effect

observed in FMR measurements for H0 || [100] (cf. Fig. 7.11). FMR is sensitive to

the magnetic hardness in the direction of the applied external magnetic field µ0H0.

Assuming an equal amount of a1- and a2-domains, the in-plane anisotropy of the

entire film thus is independent of the fraction of a-domains and thus of the electric
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field. Hence in this model we can explain the symmetric contribution to the FMR

measurement (cf. Fig. 7.11) only for an unequal distribution of a-domains in the a1-

and a2-type.

Note that the shoulders in the antisymmetric contribution to both SQUID and

FMR measurements (cf. Figs. 7.6 and 7.11) can be explained as well if the fraction

of a1- to a2-domains is different for increasing and decreasing VBTO.

In conclusion, our simple, domain-wise model yields qualitative agreement to the

symmetric contribution in all SQUID M(E)-loops for H || [100] and H || [001] as well

as the FMR measurements for H0 || [100]. If the distribution of a-domains into a1-

and a2-domains is considered as a free parameter, even an exact quantitative match

of theory and the experimentally derived symmetric contribution can be achieved.

7.7.3 Possible antisymmetric effects

The origin of the antisymmetric contribution to the M(E)-loops (cf. Fig. 7.6) and

FMR measurements (cf. Fig. 7.11) can neither be explained by the domain-wise strain

model (except for the shoulders) nor by the piezoelectric effect, as they both predict

a symmetric dependence of magnetization on electric field.

We will now consider possible causes for the antisymmetric contribution to the

SQUID M(E)-loops and the FMR measurements.

A tilting of the sample in the SQUID magnetometer’s sample space in such a way

that the external magnetic field H and the sample’s [100] (or [001]) direction enclose

a finite angle can not explain the antisymmetric contribution: Large electric fields of

either sign both induce a single c-domain in the BaTiO3 substrate. Thus the magnetic

anisotropy is expected to be identical for both large positive and large negative electric

fields and any projection of the magnetization vector will yield the same result for

both single c-domain states.

If we stick to the model of solely strain-induced effects, the observed antisymmetric

behavior implies different saturated domain configurations at high negative and high

positive electric fields. This was proven to be false in the bulk of the substrate by the

purely symmetric HRXRD measurements. This leaves only local differences at the

interface of substrate and film as a possible explanation.

A non strain-mediated magnetoelectric effect in heterostructures was predicted in

Fe/BaTiO3 heterostructures by Duan et al. [98], which they account to the polar-

ization dependent interface bonding that alters the saturation magnetization of the
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ferromagnetic film. In conclusion, they predict an effect in the same order of magni-

tude as the strain dependent coupling at room temperature, but with the symmetry of

polarization. As it is an interface effect due to the overlap of atomic orbitals and was

predicted for a ferromagnetic Fe-film with a thickness of 1 nm, it is however unlikely

that it still has an observable effect on the magnetization of our approximately 100 nm

thick Fe3O4 film. Furthermore, in Section 7.5.2, we already pointed out that we dom-

inantly observe a change of magnetic anisotropy and not of the Fe3O4 saturation

magnetization.

In conclusion, the physical origin of the antisymmetric contribution is beyond the

explanations so far discussed in this thesis. We however already showed that it is

dominantly an effect of the magnetic anisotropy and not of saturation magnetization.

We will now point out that the antisymmetric effect may be caused by an influence of

the carrier density n in the Fe3O4 film on its magnetic anisotropy K. The argument

goes as follows: We observe an effect antisymmetric to the electric field E. The

ferromagnetic phase (Fe3O4) is described by the order parameter M and the external

field H, both of which are independent of E apart from the symmetric strain-mediated

converse magnetoelectric effect. However, the polarization P in the ferroelectric phase

(BaTiO3) shows the correct antisymmetric dependence on the electric field E (cf.

Fig. 2.1(b)). Now P induces surface charges σBTO at the interface of Fe3O4 and

BaTiO3:

σBTO = P3 . (7.6)

Within the Thomas-Fermi screening length, these polarization charges are compen-

sated by free charge carriers in the Fe3O4 film. Thus the Fe3O4 charge carrier den-

sity n is a function of P . Note that n(P ) is antisymmetric to the electric field

(n(E3) = −n(−E3)) due to the antisymmetry of P to E. Hence we propose that

the magnetic anisotropy K of Fe3O4 is not only dependent on the strain ε, but on the

free charge carrier density n in Fe3O4 as well. Thus the Taylor expansion of K(n, ε)

to the first order is:

K(n, ε) = K0 +
∂K(n, ε)

∂n
n +

∂K(n, ε)

∂ε
ε . (7.7)

Effects of the charge carrier density on magnetic anisotropy have been predicted [104],

but so far no experimental evidence of an effect in the order of magnitude that we

observe is known to us. As the Thomas-Fermi screening length is expected to be in
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the nm scale due to the high charge carrier density of Fe3O4, the term proportional

to n in Eq. (7.7) is a function of the Fe3O4 film thickness. To validate the proposed

effect of the charge carrier density on the magnetic anisotropy of Fe3O4, first of all

further similar samples need to be investigated to confirm that we observe a generic

effect. Samples with varying film thickness could provide information on the screening

length, as the antisymmetric contribution is expected to decrease with increasing film

thickness. Secondly, samples with smaller lateral dimensions that allow for a full de-

termination of in-plane magnetic anisotropy by FMR are of great importance. Thus

this heterostructure offers great potential fur further experimental and theoretical

investigations of its intriguing converse magnetoelectric effect.



Chapter 8

Temperature dependent magnetic

resonance in Fe3O4/BaTiO3

heterostructures

In the previous Chapter, the converse magnetoelectric effect in the magnetite (Fe3O4)

/ barium titanate (BaTiO3) heterostructure was investigated at room temperature,

that is in the tetragonal ferroelectric BaTiO3 phase. If the temperature is lowered,

barium titanate exhibits two more ferroelectric phases. The lattice parameters of

BaTiO3 thus show a distinct temperature dependence and it is hence expected that

a significant stress can be exerted on the Fe3O4 film as a function of temperature.

The temperature dependence of ferromagnetic and paramagnetic resonances of the

heterostructure is presented and it is shown that the structural phase transitions of

BaTiO3 have a distinct influence on the electron spin resonance (ESR) and ferromag-

netic resonance (FMR) of the compound. The magnetic anisotropy of the Fe3O4 film

is derived in each investigated BaTiO3 phase and it is verified whether its temperature

dependence can be explained by magnetoelastic theory.

8.1 Introduction

We investigate a sample consisting of an approximately 100 nm thick Fe3O4 film de-

posited by Stephan Geprägs on an approximately 400 µm thick BaTiO3 substrate with

lateral dimensions of 2× 2 mm2 by pulsed laser deposition. The sample is schemat-

ically shown in Fig. 8.1(a). It is similar to the samples investigated in the previous

Chapter, but no gold electrode is present here and all measurements were carried out

117
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Figure 8.1: (a) Schematic view of the Fe3O4/BaTiO3 heterostructure. (b) BaTiO3 lattice
parameters as a function of temperature [71] (solid lines: increasing tempera-
ture, dotted lines: decreasing temperature). The three marked transition tem-
peratures are the Curie temperature Tc, the transition between the tetragonal
and the orthorhombic ferroelectric phase at T1 and between the orthorhombic
and rhombohedral phase at T2. Transition temperatures are hysteretic (ver-
tical dotted blue lines). The color code for the four BaTiO3 phases is used
throughout this Chapter.

at zero electric field. The BaTiO3 substrate thus was always in the unpoled state (cf.

Chapter 7).

In Chapter 3, the structural phase transitions of barium titanate were already in-

troduced. Whereas at the Curie temperature Tc = 390 K, a transition from the

paraelectric cubic phase to the ferroelectric tetragonal phase occurs, barium titanate

exhibits two more ferroelectric phases at lower temperatures. At a temperature of

approximately T1 = 280 K a phase transition from the tetragonal to the orthorhombic

state occurs, and at a temperature of approximately T2 = 185 K a phase transition

from the orthorhombic to the rhombohedral state occurs (Tc, T1 and T2 are hysteretic,

cf. Fig. 8.1(b)). These phase transitions are accompanied by an abrupt change in the

lattice parameters as can be seen in Fig. 8.1(b). The BaTiO3 lattice strain accompa-

nying the phase transitions is expected to be transferred into the ferromagnetic thin
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film and alter its magnetic anisotropy via magnetoelastic interactions.

The aim of this Chapter hence is to determine the magnetic anisotropy of the affixed

Fe3O4 thin film as a function of the stress exerted by the BaTiO3 substrate. To this

end, we rely on ferromagnetic resonance measurements which will be discussed in the

following.

8.2 Measurement results

All ESR and FMR measurements shown in this Chapter were carried out at a mi-

crowave frequency of 9.3 GHz using a Bruker ESP 300 spin resonance spectrometer

that is described in Chapter 4. To allow for a precise temperature control in the range

of 100 K ≤ T ≤ 400 K a nitrogen cryostat was used. A liquid nitrogen reservoir was

connected to the cryostat and the temperature was regulated using two heaters, one

to control the N2 gas flow and the second one to heat the gas. The temperature was

stable in all measurements within ±2 K as checked with a temperature sensor in the

sample space.

8.2.1 ESR spectra of barium titanate

Prior to the determination of the ferromagnetic resonance of the heterostructure,

we investigated the electron spin resonance (ESR) of a pure BaTiO3 crystal to ver-

ify whether the structural phase transitions of BaTiO3 as a function of temperature

affect its dynamic paramagnetic response. In Fig. 8.2, ESR spectra of the nomi-

nally undoped BaTiO3 crystal at two temperatures, in the tetragonal (300 K) and

orthorhombic (235 K) BaTiO3 phase, are displayed for magnetic field orientations

along the cartesian axes of the sample coordinate system (cf. Fig. 8.1(a)). At identi-

cal magnetic field orientations, a clear difference in the ESR spectra of the tetragonal

and orthorhombic phase can be seen.

The first observation of paramagnetic resonances in BaTiO3 was reported by Hornig

et al. [105, 106], who accounted the resonances to Fe3+ impurities located at the

titanium position in the BaTiO3 unit cell. Also at the beginning of the investigation

of paramagnetic resonances in BaTiO3, Low and Shaltiel stated in their investigation

of single crystal samples [107] that the high intensity of the ESR lines, as well as their

dependence on the crystalline phase and polarization of BaTiO3, is a strong indication

that the ESR originates from BaTiO3 itself and not from impurities.
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Figure 8.2: ESR spectra of BaTiO3 in the tetragonal (300 K) and orthorhombic (235K)
phase with H0 || [100] (in-plane), H0 || [010] (in-plane) and H0 || [001] (out-
of-plane).

As we have (as will be discussed later) clear evidence of an irreversible change in

the domain structure of BaTiO3 upon a phase transition, but nevertheless observe

very similar ESR spectra for each crystalline phase (cf. Fig. 8.5) – even if the sample

underwent several phase transitions in between two measurements – we account the

ESR lines to impurities. This is strongly underlined by the facts that calculations of

the expected resonance fields for Fe3+ impurities in the rhombohedral phase match the

experimental data for similar BaTiO3 crystals [108] and that the paramagnetic reso-

nances originating from the Ti4+ ion are only visible at temperatures below 35 K [109].

As the paramagnetic defects’ nature and concentration may vary for different crystals,

no exact match of the here observed paramagnetic resonances to those of the sample

used for further measurements is observed.

8.2.2 Temperature dependence of FMR

We now investigate the ferromagnetic resonance (FMR) of the Fe3O4/BaTiO3 het-

erostructure as a function of temperature at zero applied electric field. The sample

shown in Fig. 8.1(a) was mounted in the in-plane configuration to allow for a rotation
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Figure 8.3: ESR spectra as a function of temperature for (a) H0 || [100] and (b) H0 || [010].
Color coding denominates the tetragonal, orthorhombic and rhombohedral
phase according to Fig. 8.1(b).

of the magnetic field H0 in the (001) plane. At any selected temperature in the range

93 K ≤ T ≤ 373 K two ESR spectra were recorded with the magnetic field along

the [100] and [010] direction, respectively. This temperature range encloses all three

ferroelectric BaTiO3 phases (cf. Fig. 8.1(b)). Unfortunately, no measurements in the

cubic paraelectric phase could be carried out, as no stable microwave tuning could

be achieved for T > 390 K. This is likely due to the order-disorder phase transition

at T = Tc that causes a discontinuity of the dielectric constant [11] in the BaTiO3

substrate. It is hence proposed that a smaller sample would yield a stable microwave

tuning even for T ≥ Tc. However, due to time constraints, the measurements pre-

sented in this Chapter could not be repeated with a smaller sample.

In the ferroelectric phases, one measurement series was performed at increasing and

one at decreasing temperature. The raw data for the measurement series recorded at

decreasing temperature is shown in Fig. 8.3(a) for H0 || [100] and in Fig. 8.3(b) for

H0 || [010]. Each single spectrum shows one broad line that is clearly identified as a

ferromagnetic resonance and is missing in the spectra obtained from the pure BaTiO3

crystal (cf. Fig. 8.2). We observe that the ESR lines do not match those acquired for

the pure BaTiO3 sample, indicating differences in the impurities of the two crystals.

One can clearly see the qualitative change in the spectra at temperatures T1 = 280 K

and T2 = 185 K. The transition temperatures T1 and T2 are in reasonable agreement
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Figure 8.4: Ferromagnetic resonance fields as a function of temperature (the lines are
guides to the eye only).

with the expected transition temperatures displayed in Fig. 8.1(b) and hence the

qualitative change in the spectra can clearly be attributed to the structural phase

transitions of BaTiO3. The shift of the BaTiO3 transition temperatures in crystals of

high crystalline quality with respect to the values commonly referred to in literature

was reported in [110] as well. Similar transition temperatures can be found in the

thesis of Matthias Althammer [111].

We now extract the FMR resonance field µ0Hres from the ESR spectra obtained for

increasing (not shown) and decreasing (cf. Fig. 8.3) temperature. The result is shown

in Fig. 8.4. One can clearly observe the discontinuous shift of the FMR resonance

field at the BaTiO3 transition temperatures, whereas the resonance field varies only

slowly within one BaTiO3 phase. This is a clear proof of the influence of the structural

phase transitions on the magnetization of the ferromagnetic film. We observe a small

temperature hysteresis at the lower transition temperature T2 but none at T1.

Furthermore, we observe that the resonance fields for increasing and decreasing

temperature do not coincide for H0 || [100] (cf. Fig. 8.4). Thus we assume that

the magnetization is irreversibly changed upon a BaTiO3 phase transition. Similar

results (including the irreversible magnetization change) were recently obtained for

films of ferromagnetic CoFe2O4 on BaTiO3 [112] and Fe films on BaTiO3 [113]. Both
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publications attribute the change of magnetization at the structural phase transitions

of BaTiO3 to interface strain coupling. The irreversible change of magnetization is

hence a clear indication of an irreversible change in the BaTiO3 domain structure

upon a phase transition.

Further evidence for a new domain formation upon every phase transition was found

by a second run (not shown) of the measurement series shown in Fig. 8.4 that yielded

non-comparable FMR resonance fields, while still showing discontinuous resonance

field jumps at the BaTiO3 transition temperatures.

8.2.3 Magnetic anisotropy of the Fe3O4 film as a function of the

BaTiO3 crystalline phase

After finding strong evidence for strain coupled effects of the BaTiO3 structural phase

transitions on the magnetization of the Fe3O4 thin film, we now quantitatively deter-

mine the magnetic anisotropy in each BaTiO3 structural phase. As each crystalline

phase transition evokes a distinct change in lattice constants (cf. Fig. 8.1(b)), a sig-

nificant amount of strain is expected to be transmitted into the magnetite thin film

upon a barium titanate phase transition. For a single domain substrate, the lattice

constant change would according to Fig. 8.1(b) induce uniaxial strains in the film

plane in the order of one percent. Strains within one phase are one order of magni-

tude smaller but thus still in the order of strains exerted by piezoelectric actuators

(cf. Chapter 6). However, as no electric field is applied to the ferroelectric BaTiO3

substrate, it remains in an unpoled multidomain state in all ferroelectric phases.

We recorded the full magnetic anisotropy for temperatures in all three BaTiO3

ferroelectric phases. Raw data of the measurements performed in the in-plane config-

uration (H0 rotated in the (001) plane) at temperatures ranging from the tetragonal

to the rhombohedral substrate phase are shown in Fig. 8.5. It is noteworthy that only

the measurements at T = 258 K and T = 288 K were performed in direct succession

while the sample was exposed to room temperature in between all other measurements.

One can clearly see that the spectra change qualitatively upon a phase transition but

remain qualitatively the same at two different temperatures within one BaTiO3 phase.

To determine the FMR resonance field, two attempts were made. Besides the so far

applied procedure of determining the minimum and maximum magnetic field of the

FMR resonance and calculating the resonance field to the mean value of the extrema,

we assumed an angular independent linewidth and only determined the minimum
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Figure 8.5: Angular dependence of ESR spectra in the different BaTiO3 crystalline phases.
First row: tetragonal phase, middle row: orthorhombic phase, bottom row:
rhombohedral phase. The blue symbols depict the ferromagnetic resonance
field obtained from the minimum of the ferromagnetic resonance line (green
symbols) by the assuming an angular independent linewidth.
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Figure 8.6: In-plane angular anisotropy of the ferromagnetic resonance fields of
Fe3O4/BaTiO3 in the different BaTiO3 crystalline phases.

(green symbols in Fig. 8.5) of the FMR line and calculated the maximum (red symbols)

and the resonance field (blue symbols). This approach was used as the maximum of

the FMR line could not unambiguously be determined at certain temperatures and

magnetic field orientations. The thus calculated maxima (red symbols in Fig. 8.5) are

in good agreement with the experimental data.

The FMR resonance fields obtained with the latter approach are displayed in

Fig. 8.6. We observe a dominant cubic anisotropy in the rhombohedral BaTiO3

phase (blue symbols in Fig. 8.6). In the tetragonal phase (green symbols) we ob-

serve very similar results for 288 K ≤ T ≤ 358 K (spectra at T = 358 K not shown in

Fig. 8.5). All measurements in the tetragonal phase show a global minimum of the

FMR resonance field at H0 || [010], thus a uniaxial in-plane anisotropy is present. In

the orthorhombic phase, the anisotropy shows a qualitative change as a function of

temperature that will be investigated in more detail in the next Section.

We will now quantify the magnetic anisotropy as a function of temperature by

performing numerical simulations of the resonance fields.
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Figure 8.7: Anisotropy fields of Fe3O4/BaTiO3 as a function of temperature (the lines are
guides to the eyes).

8.3 Numerical simulations

We perform numerical simulations of the resonance fields shown in Fig. 8.6 to obtain

the anisotropy fields. To this end, we use the magnetic free energy density Ftot from

Eq. (6.3). The procedure is identical to that described in Chapter 6, thus we will

only present the results. Eq. (6.3) yields four fitting parameters Kc1/Ms, Ku,[010]/Ms

and Ku,eff,[001]/Ms and the g-factor. The resulting anisotropy fields, that gave a good

agreement of simulated and experimentally derived resonance fields, are displayed in

Fig. 8.7. One clearly sees a qualitative change in magnetic anisotropy at the transition

from the tetragonal to the orthorhombic state at T = T1. Whereas in the tetragonal

phase the magnetic anisotropy shows similar cubic and uniaxial contributions, it is

dominantly cubic in the orthorhombic phase. No qualitative change of magnetic

anisotropy upon the second phase transition at T = T2 is observed. The g-factor was

assumed to be g = 2.12 = const. and corresponds to the bulk value for Fe3O4 (cf.

Tab. 3.4).
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8.4 Theoretical description

In the following, we attempt to describe the change in magnetic anisotropy as a

function of temperature using magnetoelastic theory. We neglect the temperature

dependence of the magnetite cubic anisotropy constant Kc1 in the temperature range

123 K ≤ T ≤ 358 K . While a cubic anisotropy constant that is independent of

temperature was reported for magnetite thin films on MgO substrates for 5 K ≤ T ≤
300 K [56], it is only a coarse approximation in our case, as the cubic anisotropy is

clearly temperature dependent (cf. Fig. 8.7).

As all in-plane uniaxial anisotropies in cubic thin films are considered as a result of

strain in the scope of this thesis, we model the entire change of anisotropy as a result

of the strain transferred from the barium titanate to the film. In this simple model,

the in-plane strains ε1 || [100] and ε2 || [010] are calculated as the average strain in

the ferromagnetic thin film in the respective direction. No stress perpendicular to

the sample is assumed and thus the out-of-plane strain ε3 in the Fe3O4 film can be

calculated according to Eq. (5.3).

Utilizing the additivity of the free energy density Ftot,magel(T ) = Ftot(T
?)+Fmagel(T ),

we can start from the total free energy density Ftot(T
?) from Eq. (6.3) at any given

temperature T ? and add the magnetoelastic free energy density Fmagel(T ):

Fmagel(T ) = Ku,magel,[001](T ) sin2 Θ cos2 Φ + Ku,magel,[010](T ) cos2 Φ (8.1)

−1

2
λFe3O4

(
cFe3O4
12 − cFe3O4

11

)
(ε1(T ) + ε2(T ) + ε3(T )) ,

with Fmagel(T
?) = 0. The temperature dependence of the anisotropic terms in Eq. (8.1)

is given by the two magnetoelastic anisotropy constants:

Ku,magel,[010](T ) =
3

2
λFe3O4

100 (cFe3O4
12 − cFe3O4

11 )(ε2(T )− ε1(T )) (8.2)

Ku,magel,[001](T ) =
3

2
λFe3O4

100 (cFe3O4
12 − cFe3O4

11 )(ε3(T )− ε1(T ))

=
3

2
λFe3O4

100 (cFe3O4
12 − cFe3O4

11 )

(
−cFe3O4

12

cFe3O4
11

(ε1(T ) + ε2(T ))− ε1(T )

)
.
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Adding Fmagel(T ) to Ftot(T
?) results in the total free energy density:

Ftot,magel(T ) = −µ0MH0 (sin Θ sin Φ sin θ sin φ + cos Θ cos θ + sin Θ cos Φ sin θ cos φ) +
(
Ku,eff,[001](T

?) + Ku,magel,[001](T )
)
sin2 Θ cos2 Φ +

(
Ku,[010](T

?) + Ku,magel,[010](T )
)
cos2 Θ +

1

4
Kc1(T

?)
(
sin2 (2Θ) + sin4 Θ sin2 (2Φ)

)
, (8.3)

with the side condition Ku,magel,[001](T
?) = Ku,magel,[010](T

?) = 0. In Eq. (8.3), isotropic

terms are neglected as they do not influence the FMR resonance field (cf. Eqs. (4.5)

and (4.6)).

In the following, we present a comparison of the measurements and magnetoelastic

theory. In the theoretical description, the strains ε are free parameters, thus we will

first present the free energy surfaces phenomenologically calculated from the exper-

imentally determined resonance fields and then iteratively adjust the strains to give

the best possible fit of magnetoelastic theory and experiment.

We calculate the free energy surfaces for 123 K ≤ T ≤ 358 K from Ftot (cf. Eq. (6.3))

using the phenomenologically obtained anisotropy fields displayed in Fig. 8.7. This

yields the simulation of the free energy depicted in Fig. 8.8 by solid lines.

In the next step, we attempt to find the best possible fit to these free energy

surfaces in the context of the so far derived magnetoelastic theory. To this end we use

Ftot,magel(T ) and arbitrarily choose T ? = 300 K as the reference temperature. Thus

we obtain Ku,eff,[001](T
?)/Ms = 278.5 mT, Ku,[010](T

?)/Ms = −22.5 mT and Kc1/Ms =

14.4 mT (cf. Fig. 8.7).

These values are inserted into Eq. (8.3) and Ku,magel,[001](T )/Ms and Ku,magel[010](T )/Ms

are iteratively adjusted to give the best fit of Ftot,magel(T ) to the afore phenomenologi-

cally calculated Ftot(T ) at any temperature T with the anisotropy constants displayed

in Fig. 8.7.

The resulting free energy contours of Ftot,magel(T ) in the (001) plane are depicted

by the dotted lines in Fig. 8.8. The respective magnetoelastic anisotropy fields

Ku,magel,[010](T )/Ms and Ku,magel,[001](T )/Ms are displayed in Fig. 8.9(a) as a function

of temperature. One sees that magnetoelastic theory in general is capable of describ-

ing the change in the magnetic anisotropy of the Fe3O4 film in good approximation

for most temperatures. However, as the change in the cubic anisotropy is neglected,

no perfect match is obtained in the orthorhombic phase (T = 200 K and T = 258 K)
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Figure 8.8: Free energy contours in the (001) plane obtained from simulation with the phe-
nomenologically determined anisotropy constants displayed in Fig. 8.7 (solid
lines) and free energy obtained from magnetoelastic theory (dotted lines).

and at T = 163 K. For these temperatures, the cubic anisotropy differs significantly

from the cubic anisotropy at T ? = 300 K (cf. Fig. 8.7).

As the only free variables contributing to the magnetic anisotropy in Eq. (8.3) are

the in-plane strains ε1 and ε2, they can easily be derived from the system of equa-

tions (8.2). The material constants taken from Tab. 3.4 are inserted and a saturation

magnetization of Ms = 305 kA/m (reported for similar Fe3O4 films on MgO sub-

strates [56]) is assumed. The thus calculated strains are displayed in Fig. 8.9(b) as

a function of temperature. To explain the change in the uniaxial anisotropy as a

function of temperature by magnetoelastic theory, hence net strains of up to 0.35%

are necessary.

The delicate question arising at this point is whether these strains are feasible in

our heterostructure. This can only be checked if a possible domain configuration that

may lead to these strains is derived for each measurement. It is important to note

here that not all measurements were performed in succession. We already know that

the BaTiO3 substrate undergoes irreversible domain configuration changes upon a

phase transition. We thus can not rely on the domain configuration being identical
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Figure 8.9: (a) Magnetoelastic anisotropy fields as a function of temperature. (b) In-plane
strains as a function of temperature. The lines are guides to the eyes.

for all measurements performed in one BaTiO3 phase if a phase transition occurred

in between measurements.

If the strains displayed in Fig. 8.9(b) are to be explained by a certain BaTiO3

domain configuration, we have to take into account the domain configuration at T =

T ? = 300 K, i.e. in the tetragonal phase, as well as the domain configuration in the

phase corresponding to the measurement temperature. Furthermore, it has to be

considered that not all domain transitions are allowed upon a phase transition (cf.

Fig. 3.3).

For a single domain (sd) all possible strain pairs {εsd
1 , εsd

2 } are given by the dif-

ference in lattice constants between the reference temperature T ? = 300 K and the

measurement temperature T . Still assuming a single domain, this already yields sev-

eral possibilities. For example, a tetragonal c-domain at T = T ? may transform

into an orthorhombic c1- or c2-domain (but not into an a-domain) if T is in the or-

thorhombic phase. All possibilities are marked by arrows in Fig. 3.3. Hence, even in

the simple case of a single domain BaTiO3 crystal, no unique set of expected strains

can be calculated. We rather obtain two independent transition probabilities for

possible domain formations upon the phase transition from the cubic to the tetrago-

nal phase plus three independent transition probabilities from the tetragonal to the

orthorhombic phase (cf. Fig. 3.3). Furthermore, domain walls may evolve, vanish
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or move upon phase transitions, thus for example a single tetragonal c-domain may

divide into orthorhombic c1- and c2-domains.

Hence, for completely unknown domain configurations, we have a huge set of free

variables which can not be solved unambiguously to explain the strains in Fig. 8.9(b).

As no in-situ study of the BaTiO3 domain distributions could be performed, no con-

cluding remark whether the calculated strains are feasible can be made. In future

experiments, it is desirable to prepare a BaTiO3 single-domain state at all temper-

atures by the application of an external electric field. In this case, magnetoelastic

theory can directly be applied to calculate the expected strains and thus free energy

surfaces that can be compared to those obtained from simulations of the measure-

ments. However, the change of the cubic anisotropy with temperature – that is not

expected in the magnetoelastic model – already clearly shows that an advanced model

for this material system needs to be derived if the change of anisotropy as a function

of the BaTiO3 lattice parameters is to be fully understood.
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Chapter 9

Summary and Outlook

The ability to control the magnetization by means other than magnetic fields is of

vast technological and fundamental interest. Intrinsic multiferroic materials, which

unite ferromagnetic and ferroelectric properties in a single phase, show rather weak

magnetoelectric interaction phenomena that can only be observed at low temper-

atures [114]. Thus they are of great fundamental interest, but difficult to use in

everyday applications. Multiferroic heterostructures, however, exhibit room temper-

ature magnetoelectric effects that are primarily due to interface strain at the ferroic

phase boundary [95, 26, 96, 97].

In heterostructures of a ferromagnetic thin film deposited onto a ferroelectric sub-

strate, the piezoelectric effect – which is inherent to all ferroelectric materials – can

be utilized to apply an electric field-induced stress to the ferromagnetic thin film. The

resulting strain influences the magnetic anisotropy of the magnetostrictive ferromag-

netic phase and thus its magnetization. Hence, multiferroic heterostructures are very

promising for realizing a voltage-strain-control of magnetization. With appropriately

chosen ferroic constituents, giant and reversible converse magnetoelectric effects can

be achieved at room temperature.

9.1 Summary

Magnetoelastic and magnetoelectric interactions in multiferroic heterostructures were

investigated in this thesis. To this end, two classes of samples were prepared. Firstly,

polycrystalline ferromagnetic thin films of cobalt or nickel were evaporated on piezo-

electric PZT actuators by Andreas Brandlmaier. Secondly, ferromagnetic magnetite

thin films were deposited on ferroelectric barium titanate substrates by pulsed laser

133
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Figure 9.1: Inversion of the in-plane angular anisotropy of FMR resonance fields upon the
application of positive and negative voltages to the actuator.

deposition by Stephan Geprägs. Whereas in the first class of samples, the two ferroic

phases are separated by a non-ferroic polymer layer, in the latter class a direct ferroic

phase boundary exists. In the following, a summary of the most important findings

in these heterostructures is given.

9.1.1 Strain-induced magnetization switching in ferromagnetic

thin films

The actuator-based samples were investigated by ferromagnetic resonance (FMR)

measurements using an X-band (9.3 GHz) spin resonance spectrometer. The samples’

magnetic anisotropy was determined as a function of the voltage applied to the ac-

tuators and compared to the results expected from the application of magnetoelastic

theory to a uniformly strained ferromagnetic thin film.

We observed linear and reversible shifts of the ferromagnetic resonance field in the

order of several mT as a function of the voltage applied to the actuator. We found that

the FMR resonance field shift as a function of actuator voltage is dependent on the

orientation of the sample in the magnetic field. The two orthogonal in-plane directions
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H0 || [100] and H0 || [010] showed opposed shifts as a function of actuator voltage.

The in-plane FMR resonance fields obtained for a Ni film evaporated on a piezoelectric

actuator are shown in Fig. 9.1 for a negative and a positive voltage applied to the

actuator. A clear in-plane uniaxial contribution to the magnetic anisotropy of the

ferromagnetic thin film is induced by the stress exerted by the actuator. Upon the

reversal of the polarity of the voltage applied to the actuator, the sign of this uniaxial

contribution is inverted as well.

In the nickel film samples – which showed no net in-plane crystalline anisotropy after

deposition– we are thus able to reversibly invert the magnetic free energy density and

hence the equilibrium orientation of the magnetization by the application of voltages

of different polarity to the actuator. In the cobalt film samples, we found a net

uniaxial in-plane anisotropy after deposition. Still, the magnetic anisotropy of the

cobalt samples could be tuned to a vast extent, but no inversion of anisotropy was

observed.

The influence of external magnetic fields on the magnetization switching behavior

of the nickel films was investigated theoretically. We found that small magnetic fields

can be used to override the degeneracy of the free energy minima and to control the

direction and magnitude of the magnetization switching. In the Ni films, magneti-

zation switching by an angle of up to 80◦ in a magnetic field of 1 mT was predicted.

Thus, these multiferroic heterostructures proved to be qualified for the application in

voltage-controlled magnetization switching devices.

We finally also investigated an application of this voltage-strain-control of magnetic

anisotropy: We replaced the conventional magnetic field modulation of the FMR

setup by a strain modulation of the sample itself. This so called piezomodulated

FMR (PMFMR) utilizes that the ferromagnetic resonance field is strain-dependent

and anisotropic. The application of an AC voltage to the actuator hence results in

an anisotropic signal modulation. PMFMR spectra at different modulation ampli-

tudes and frequencies were recorded. We found that – due to the high number of

magnetostrictive cycles carried out during one PMFMR measurement – PMFMR is

a sensitive and fast way to measure very small strain-induced shifts of ferromagnetic

resonance fields.
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Figure 9.2: BaTiO3 a-domain fraction determined by HRXRD (green), Fe3O4 FMR res-
onance field (blue) and M(E)-loop (red) as a function of electric field (lines
are guides to the eyes only).

9.1.2 Converse magnetoelectric effect in Fe3O4/BaTiO3

heterostructures

In a complementary line of experiments, the effect of an electric field on the magne-

tization of multiferroic Fe3O4/BaTiO3 heterostructure was investigated. To this end,

thin films of Fe3O4 were deposited on BaTiO3 substrates by Stephan Geprägs. The

domain formation in the BaTiO3 substrate was investigated by HRXRD measure-

ments as a function of applied electric field. The effect of the electric field on the

magnetization of the magnetite thin film was quantified by SQUID magnetometry

and FMR measurements.

By applying an electric field perpendicular to the ferroelectric BaTiO3 substrate, we

could show that we are able to completely and reversibly tune the BaTiO3 substrate

from a single c-domain state at high electric fields to a multi-domain state at no

electric field. In these experiments, HRXRD measurements were utilized to establish

the ferroelectric domain structure (cf. green symbols in Fig. 9.2).

SQUID magnetometry was used to record the magnetization as a function of exter-
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nal magnetic and electric fields. Analyzing the experimental data provided by Stephan

Geprägs, we found a distinct influence of the electric field on the M(H)-loops. The

effect was investigated in more detail by recording the magnetization as a function

of electric field at constant magnetic fields. These M(E)-loops showed contributions

symmetric and antisymmetric to the electric field. An example loop for H || [100] is

depicted by the red symbols in Fig. 9.2. The symmetric contribution qualitatively re-

minds of a ferroelectric strain-electric field butterfly loop, which is a strong indication

for a strain-coupled converse magnetoelectric effect. However, the observed effect on

magnetization is much larger than expected from the macroscopic deformation of the

heterostructure upon the application of an electric field. Its magnitude can though be

understood if the ferroelectric domains are regarded as elastic domains and magne-

toelastic theory is applied domain-wise. The local, uniaxial strains in a-domains are

in the order of 1% and can explain the observed symmetric effect.

FMR measurements were carried out to determine the ferromagnetic resonance

field as a function of the electric field. The results for H0 || [100] are depicted by blue

symbols in Fig. 9.2. The results are comparable to those obtained by SQUID mea-

surements, though the symmetric contribution is suppressed in FMR measurements

as compared to the SQUID results. This is in accordance with the expectations from

the multi-domain strain model discussed in Chapter 7.

Several possible causes of the considerable antisymmetric contribution to the M(E)-

loops and the FMR resonance fields were considered. Sample misalignment was ruled

out as its origin. As the antisymmetric contribution is visible in both SQUID and

FMR measurements, artifacts associated with the respective measurement technique

can be excluded as well. The HRXRD measurements clearly show that the domain

formation is symmetric to the electric field, thus all strain effects are expected to

be symmetric as well. A change of saturation magnetization was ruled out due to

symmetry considerations. Hence, so far, the physical origin of the antisymmetric

contribution is not understood, unless we observe a-domains directly at the ferroic in-

terface even at high electric fields. We however proposed that the magnetic anisotropy

in magnetite is a function of the free charge carrier density which in turn is influenced

by the polarization of the ferroelectric BaTiO3.
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Figure 9.3: (a) Temperature dependence of FMR resonance field. The three ferroelectric
BaTiO3 phases are shaded in green (tetragonal), magenta (orthorhombic) and
blue (rhombohedral). (b) In-plane anisotropy of resonance fields in the three
ferroelectric BaTiO3 phases. All lines are guides to the eyes only.

9.1.3 Temperature dependent magnetic resonance in

Fe3O4/BaTiO3 heterostructures

We finally investigated the effect of temperature on the magnetization of Fe3O4/BaTiO3

heterostructures. Though, for application purposes, temperature is not a convenient

control parameter for the magnetization, the temperature dependent magnetic behav-

ior of this heterostructure is of fundamental interest due to the prominent temperature

dependent properties of the BaTiO3 substrate itself.

BaTiO3 exhibits three ferroelectric phases below its Curie temperature Tc = 390 K.

For T1 ≈ 280 K ≤ T < Tc it is in its tetragonal phase, for T2 ≈ 185 K ≤ T < T1

in its orthorhombic phase and for T < T2 in its rhombohedral phase. The phase

transitions are accompanied by discontinuities in the BaTiO3 lattice constants and

domain (re)formations as a function of temperature.

By FMR measurements, we observed discontinuous jumps of the Fe3O4 FMR res-

onance fields at the BaTiO3 transition temperatures T1 and T2. This is shown in
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Fig. 9.3(a). The influence of temperature on the FMR resonance fields was found to

be irreversible if the BaTiO3 substrate underwent a phase transition. Thus, we con-

cluded that the BaTiO3 substrate undergoes irreversible domain configuration changes

upon a phase transition that transmit a strain into the ferromagnetic thin film and

alter the magnetization through magnetoelastic interactions.

The magnetic anisotropy of the magnetite thin film was recorded in all three fer-

roelectric BaTiO3 phases by FMR. Experimentally determined resonance fields are

shown in Fig. 9.3(b) for one exemplary temperature per phase. Using magnetoelastic

theory, the temperature dependence of magnetic anisotropy can be described approx-

imately by considering the strain in the ferromagnetic thin film as a function of the

BaTiO3 lattice parameters and thus of temperature. However, in the unpoled state,

no set of strains can theoretically be predicted, as the BaTiO3 domain configuration

is completely unknown and not reproducible upon phase transition. Due to the lim-

ited time allocated to this thesis, systematic temperature dependent experiments with

simultaneous electrical poling of the ferroelectric substrate could not be carried out.

9.2 Outlook

The magnetization control in multiferroic heterostructures was described in two en-

tirely different material systems in this thesis. We will now give an outlook on possible

further applications and fundamental studies based on the results obtained.

For further applications, the possibility to switch the magnetization and the corre-

sponding magnetic fields B = µ0M in the actuator-based heterostructures is of great

interest, as large, switchable magnetic fields have a great application potential. For

instance, the generation of controllable magnetic fields is a fundamental problem in

the realization of spintronic devices. An estimate of the magnitude of the switchable

magnetic field for the Ni samples yields values of µ0Ms ≈ 0.5 T in the film. This

magnetic field decays as 1/r3 into the space around the ferromagnet. This magnetic

stray field could be measured, which would yield information about its magnitude

and possible magnetization loss due to repeated switching processes.

Strain modulated FMR is a well-known technique to determine magnetostrictive

constants. The approach to introduce the strain device (the piezoelectric actuator)

into the FMR cavity itself, presented in this thesis, offers new perspectives: It is pos-

sible to rotate the sample in the magnetic field and thus anisotropic properties can
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be investigated using strain-modulation. If precise means of determining strains are

applied, PMFMR could be used for the determination of anisotropic magnetostric-

tive constants. The strains in the ferromagnetic film could be measured ex-situ by

HRXRD, or more conveniently in-situ by laser interferometry.

Furthermore, it is desirable to evaporate ferromagnetic thin films on actuators that

are switchable at frequencies in the MHz regime. At this frequencies it becomes

possible to replace the microwave field used in FMR by the AC magnetic field of the

actuator while still obtaining magnetic resonance fields in the order of several mT.

Regarding the Fe3O4/BaTiO3 heterostructure, smaller samples need to be fabri-

cated to allow for the determination of in-plane anisotropy as a function of electric

field. This will give valuable information on the electric field-control of the magnetic

anisotropy in this heterostructure. As domain effects are a very important aspect to

this heterostructure, means to spatially resolve magnetization orientation are needed.

The magnetooptical Kerr effect (MOKE) [115] allows for such a spatially resolved

determination of magnetization orientation. Furthermore, magnetic force microscopy

(MFM) [116] could be used to gather qualitative information on the magnetization

orientation at length scales below 1 µm.

Very promising is the combination of both FMR and MOKE in a single setup as de-

scribed in [117], as this would allow to measure the macroscopic magnetic anisotropy

while at the same time gathering information on ferromagnetic domains. A combined

FMR/MOKE setup that allows for a temperature control, such as currently in devel-

opment at the Walther-Meissner-Institut, is auspicious as well for further investiga-

tions of the temperature dependent properties of the Fe3O4/BaTiO3 heterostructure.

Additionally, the temperature dependent properties of this heterostructure need to

be investigated again in a single-domain substrate state, thus with an applied electric

field. With this experiment, a reversible effect on the magnetization is expected.

Apart from these complementary investigations of the heterostructures described in

this thesis, new multi-phase multiferroic material systems could be studied. Basically,

two systems are of technological and fundamental interest: Bilayer structures with one

ferromagnetic and one ferroelectric phase as well as multilayer structures.

For new bilayer structures, it is desirable to combine a ferroelectric substrate show-

ing a distinct piezoelectric effect with a ferromagnetic thin film with huge magne-

tostriction and small net crystalline anisotropy. If the electric field is applied parallel



Section 9.2
Outlook 141

Ferromagnet 2

Ferromagnet 1

Ferroelectric

Insulator

E

TMR

Figure 9.4: Possible multiferroic multilayer.

to the sample plane, the piezoelectric d33-effect can be utilized to switch the magne-

tization of the ferromagnetic film.

Due to its large d33-effect, PZT (cf. Chapter 3) is a very desirable ferroelectric

substrate. In the paraelectric cubic phase, the lattice constant of pure PbTiO3 is

0.397 nm [118] and the lattice constant of pure PbZrO3 is 0.415 nm [119]. Reports

of Ni/PZT heterostructures exist [120] and are expected to show magnetoelastic be-

havior similar to the Ni/piezoactuator heterostructures investigated in this thesis.

Furthermore, with the successful deposition of Fe3O4 on BaTiO3, deposition of Fe3O4

on PZT is expected to be possible as well due to the similarity of PZT and BaTiO3

lattice constants.

In Ferromagnet / Insulator / Ferromagnet tunnel junctions, tunnel magnetore-

sistance (TMR) was observed at room temperature [121]. Multiferroic multilayer

structures could be designed as electric field-switchable magnetic tunnel junctions.

These structures are theoretically predicted to be suitable as magnetoelectric magnetic

recording heads [122] and thus are of utmost technological importance. A schematic

view of such a possible multiferroic multilayer heterostructure is shown in Fig. 9.4. In

such structures, experiments with different ferroic constituents could be made. For

instance, it would be interesting to combine two ferromagnetic materials that show

different magnetostriction. If an electric field is applied to such a heterostructure, the

piezoelectric effect of the ferroelectric phase results in a strain in both ferromagnetic
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phases.

The magnetization response to this strain is dependent on the magnetostrictive

constants in the two ferromagnetic phases. Thus it may be possible to alter the mag-

netic anisotropy simultaneously in both phases in such a way that the magnetization

orientations can be changed from parallel to antiparallel. Due to the tunnel magne-

toresistance, an electric field could hence be used to switch this structure from a high

resistive to a low resistive state.

For the ferroelectric phase, PZT can be used. For the ferromagnetic phases, nickel

and permalloy (Ni1−xFex) are a viable choice. While Ni shows negative magnetostric-

tion, the magnetostriction of permalloy is dependent on the composition x and can

thus be tuned from negative to positive values. At x = 0.2, permalloy shows no mag-

netostriction [123]. Thus it should be possible to influence only the Ni layer’s magnetic

anisotropy or even achieve inverted effects in both ferromagnetic layers which would

allow to tune the magnetization from a parallel to an antiparallel state.

In conclusion, the investigation of multiferroic heterostructures is a very viable field

of research that offers open questions in fundamental properties as well as a wide field

of applications.
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