
TECHNISCHE UNIVERSITÄT MÜNCHEN
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Abstract

This thesis deals with controlled interactions between superconducting circuit
elements for quantum computation and simulation applications. First, the elec-
trical design and measurements of transmon type qubits, which are coupled to
superconducting resonators, are presented. Secondly the controllable coupling of
superconducting microwave resonators via an rf SQUID is experimentally investi-
gated. Thirdly, a theoretical discussion about interaction and entanglement of a
microwave resonator with a nanomechanical beam via an rf SQUID is discussed.

Kurzzusammenfassung

Diese Promotionsschrift behandelt die kontrollierte Wechselwirkung zwischen supralei-
tenden Schaltkreiselementen für Quantencomputer und Quantensimulation. Zuerst
werden das Design und die Vermessung von an supraleitende Resonatoren gekop-
pelten Transmon-Quantenbits präsentiert. Als Zweites wird die einstellbare Kop-
plung zweier Mikrowellenresonatoren mittels eines rf SQUIDs experimentell un-
tersucht. Drittens wird die Theorie der Interaktion und Verschränkung eines
Mikrowellenresonators mit einem nanomechanischem Balken über ein rf SQUID
diskutiert.
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Intro

This thesis is linked to the topic of quantum simulation and quantum computa-
tion. Concerning the simulation of a physical problem, already in 1981 Richard
Feynman stated that “the physical world is quantum mechanical, and therefore
the proper problem is the simulation of quantum physics” [1]. And furthermore for
an exact simulation of physics with computers it is necessary, “that the computer
will do exactly the same as nature” [1]. In that scope in a quantum simulator
is to rebuild a dedicated Hamiltonian of interest is rebuild in a more controlled
and accessible system. Then a quantum computer can be viewed as a ’universal
quantum simulator’ [1]. One popular concept for quantum computing is based
on a network of quantum bits (qubits), which state can be a superposition of
excited |1〉 and unexcited |0〉 state. This appealing problem has initiated many
experiments in atomic physics, quantum optics, and solid state physics. In 2012
the Nobel prize was awarded to Serge Haroche and David Wineland for the “very
first steps towards building a new type of super fast computer based on quantum
physics” [2]. But, as this appreciation implies, only first steps have been done
until today in this direction.
A promising platform to realize quantum simulators and computers are super-
conducting quantum circuits (SQC). The basic building blocks are harmonic LC-
oscillators (resonators) and Josephson junctions based qubits, which are usually
not real two-level systems but anharmonic oscillators. Resonators can be used to
store and route photonic quantum states, whereas qubits enable the simulation
of spins and the performance computational gates. One underlying recommen-
dation for experiments-either in quantum simulation or quantum computation-is
the engineering of “controlled interactions in superconducting quantum circuits”1.
For qubits this implies the ability to design and fabricate qubit parameters due
to the experimental needs. The two main parameters of interested here are the
anharmonicity of the qubit and its coupling to a nearby resonator. This task is
one out of several achievements, which have been realized in this thesis. For the
transmon-type qubit, which is a nonlinear LC-oscillator, electromagnetic simula-
tions of circuit elements are performed. The simulated parameters match with the
experimental data, enabling design of transmon qubits with suitable parameters
according to the experimental needs for future experiments. The measured decay
time T1 ' 300 ns and decoherence time T2 ' 550 ns are promising and comparable
to initial experiments on transmon qubits [3, 4].
Regarding the resonators an in situ tunable coupling mechanism between two res-

1see title of this thesis
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Intro

onators via an rf SQUID was realized. This achievement is interesting for quan-
tum computing and for quantum simulation experiments. In the case of quantum
computing, controlled coupling enables the controlled generation and routing of
quantum states. In the case of quantum simulation, controllable coupling allows
one to change interaction potentials, causing for example phase transitions in the
simulated quantum system [5–7]. In the presented experiment, the coupling g/2π
between two resonators can be tuned in a range of −320 MHz to 37 MHz. Fur-
thermore, also promising decoupling properties are demonstrated. In the case of
g' 0, the microwave power cross transmission between the two resonators can
be reduced by almost four orders of magnitude compared to the case where the
coupling is switched on.
Generally, one does not need to restrict oneself to superconducting circuit ele-
ments in SQC. In this spirit, coupling between superconducting resonators and
semiconductor quantum-dots [8], nitrogen-vacancy centers in diamond [9], spin-
ensembles [10, 11], Rydberg atoms [12], and macroscopic mechanical oscillators
[13, 14] was realized. Furthermore, optomechanical-systems are also interesting for
their nonlinear interactions, which enable to study non-Gaussian physics [15, 16].
The appealing point of hybrid circuits is that one can combine different physical
systems with their special advantages. While, for example, SQC in the microwave
domain seem to be a very promising candidate to realize a quantum computer,
optical wavelengths seem more suitable to build quantum networks. Within this
thesis, theoretical calculations of an optomechanical circuit are carried out. It
is shown that strong and tunable coupling between a microwave resonator and a
nanomechanical beam on a single photon-phonon level can be realized by using
an rf SQUID as a coupling element. The derived interaction is parametric linear,
which is in contrast to the standard non-linear optomechnical interaction [17].
With simulations based on a Lindblad master equation approach the capability
of transferring information between optical and mechanical mode is shown for
realistic circuit parameters. Furthermore, utilizing a two mode squeezing opera-
tion, it is possible to generate continuous variable entanglement or non-classical
single mode squeezed states.
This thesis is structured as follows: Chapter 1 introduces the theoretical concepts,
which are necessary to describe the non-hybrid SQCs. Chapter 2 contains prestud-
ies of single circuit elements such as resonators or SQUIDs and discusses the
electromagnetical simulations of transmon qubits. Chapter 3 gives an overview
of the used cryogenic setup and the relevant measurement protocols. Chapter 4
presents the experimental characterization of a transmon qubit. Chapter 5 shows
the experimental realization of a tunable coupling between to superconducting
resonators via an rf SQUID. Chapter 6 exploits theoretically the realization of an
optomechanical hybrid circuit and its capability to transfer information, create
entanglement and singlemode squeezing. The thesis closes in chapter 7 with a
recap of the results reached in this thesis and their link to ongoing and future
work at the WMI.
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Chapter 1

Foundations of superconducting
circuit elements

The scope of this chapter is to introduce the superconducting circuit elements
that have been investigated in this thesis. This chapter starts with a description
of superconductivity using the macroscopic quantum model (Sec. 1.1). Next an
introduction to Josephson junctions is given in Sec. 1.2 and based on this su-
perconducting quantum interference devices (SQUIDs) are introduced in Sec. 1.3
and 1.4. In the last section 1.5 the circuits investigated in this thesis are presented
and a quantum description is provided for theses circuits.

1.1 Superconductivity as a macroscopic state

After first phenomenological theories of superconductivity were developed, the
BCS-theory [18, 19] was formulated based on a microscopic model of the super-
conductor. It describes the microscopic behavior of superconductors and one of
the main results is that the electrons in a superconductor form Cooper-pairs,
which can be described by a macroscopic wave function

Ψ(r,t) =
√
ns(r,t)e

iθ(r,t), (1.1)

where ns(r,t) is the Cooper-pair density and θ(r,t) is a macroscopic phase. This
wave function can now be used to calculate the current in the superconductor to

Js(r,t) =
qs
ms

(Ψp̂Ψ∗ −Ψ∗p̂Ψ) =
~qsns(r,t)

ms

(∇θ(r,t)− qs
~
A(r,t))︸ ︷︷ ︸

≡γ

. (1.2)

Here ms = 2me and qs = −2e denote the mass and the charge of the Cooper-
pairs, respectively, and A(r,t) is the vector potential of the magnetic flux density
B(r,t). The last term denoted with γ is called gauge invariant phase gradient.
Since neither ∇θ(r,t) nor qsA(r,t)/~ can be evaluated individually, but only γ,
∇θ(r,t) and qsA(r,t)/~ are not uniquely defined.
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Chapter 1 Foundations of superconducting circuit elements

IS S

I

1 2

Figure 1.1: Schematic of a current biased Josephson junction. The Josephson
junction is formed by two superconductors (S) separated by a thin
insulating barrier (I). The Phase phase difference between the super-

conductors is defined as ϕ =
∫ 2

1
γds

1.2 The Josephson junction

An important element in superconducting circuits for cQED experiments is the
Josephson junction. One main aspect is here its nonlinear inductance. A Joseph-
son junction consists out of to superconductors (see Fig. 1.1) which are separated
by a thin insulating barrier and it was first theoretically described by Brian D.
Josephson [20]. If the barrier is thin enough the macroscopic wave functions of
both superconductors overlap. In this case on can calculate a finite tunnel current
of copper-pairs through the insulating barrier.

1.2.1 Josephson equations

Using Eq. (1.1) as an ansatz for the wave functions in the superconductors one
can calculate the tunnel current of the Cooper-pair through the insulating barrier
with Eq. (1.2). This is usually called the first Josephson equation or current phase
relation

Is = Ic sin(ϕ). (1.3)

It links the Cooper-pair current to the gauge invariant phase gradient over the
barrier via the line integral of the gauge invariant phase gradient (see also Fig. 1.1)

ϕ =

∫ 2

1

γds. (1.4)

The prefactor Ic determines the maximum supercurrent which can tunnel through
the insulator. The value of Ic is given by insulator properties like its thickness
and potential barrier height and superconductor properties like the characteristic
superconductor gap energy. The reaction to an applied voltage is described by
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1.2 The Josephson junction

the second Josephson equation

dϕ

dt
=

2π

Φ0

V, (1.5)

which links the voltage with the phase evolution.

1.2.2 Inductance and characteristic energies of a Josephson
junction

An important property of Josephson junctions is their nonlinear inductance. It
can be derived by calculating the time derivative of the first Josephson equation
(1.3) and inserting the second Josephson equation (1.5), leading to

dI

dt
= Ic cos(ϕ)

2π

Φ0

V. (1.6)

Here one identifies

LJ =
Φ0

2πIc cos(ϕ)
(1.7)

as the Josephson inductance. Inserting again Eq. (1.3) the current dependence of
the inductance can be rewritten as

LJ =
Φ0

2π
√
I2
c − I2

. (1.8)

This nonlinear inductance enables one to build nonlinear oscillators e.g. trans-
mon qubits (see Sec.1.5.3). The energy stored in the Josephson inductance, is
the Josephson coupling energy EJ . The denomination originates from the in-
terpretation as a binding/interaction energy between the two weakly connected
superconductors, which stems from an overlap of the superconductors wave func-
tions in the insulating barrier. Increasing the current trough a junction from zero
to a certain value will cause a voltage drop given by Eq. (1.5). So the total energy
supplied to the junction to get from zero current to a finite value is

EJ(ϕ) =

∫ ϕ

0

V (ϕ)I(ϕ)dϕ =

∫ ϕ

0

Φ0

2π

dϕ

dt
Ic sin(ϕ)dϕ (1.10)

=
Φ0Ic

2π
(1− cos(ϕ)) = EJ0(1− cos(ϕ)) (1.11)

This energy is stored in the junction and is usually treated as a potential energy,
because its related to the junction variable ϕ. The kinetic energy, related to ϕ̇, is
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Chapter 1 Foundations of superconducting circuit elements

I
C

Ic

Rn

Figure 1.2: To model the current voltage characteristic of a Josephson junction,
a capacitive shunt is introduced in parallel to the ideal Josephson
junction (depicted by a cross) to model the self capacitance together
with a resistor, which describes the normal electron current for I > Ic.

related to the capacitance of the junction. The junction can be imagined as two
metal plates separated by an insulator. Therefore each junction has a capacitance
CJ with corresponding energy

E =
1

2
CJV

2. (1.12)

One can rewrite this with the second Josephson equation (1.5) as

E =
1

2
CJ

(
Φ0

2π

)2

︸ ︷︷ ︸
mϕ

ϕ̇2. (1.13)

In this form one sees that the capacitive energy plays the role of a kinetic energy,
related to the phase velocity ϕ̇. Furthermore one can deduce form Eq. (1.13) that
CJ(Φ0/2π)2 can be interpreted as the mass of a “phase particle”. The character-
istic energy scale

EC =
e2

2CJ

, (1.14)

is the energy needed to move one electron between the capacitor plates.

1.2.3 RCSJ model

To discuss the current-voltage characteristics of a Josephson junction it is con-
venient to use the resistively and capacitively shunted junction model (RCSJ)
[21, 22]. Here the JJ is modeled as an ideal JJ which is shunted by a capacitance
C to represent its self capacitance and a resistor Rn which represents quasipar-
ticle currents trough the junction. Summing up all current contributions the
differential equation for the phase

6



1.2 The Josephson junction

(
Φ0

2π

)2

CJ︸ ︷︷ ︸
mϕ

ϕ̈+
1

Rn

(
Φ0

2π

)2

︸ ︷︷ ︸
η

ϕ̇+
IcΦ0

2π

(
sin(ϕ)− I

Ic

)
︸ ︷︷ ︸

d
dϕ
U

= 0 (1.15)

is obtained. This equation of motion describes the motion of a particle with mass
mϕ and friction η in the potential

U = EJ0

(
1− cos(ϕ)− I

Ic

)
+ const. (1.16)

This is denoted as tilt washboard potential which has potential minima for I < Ic

in which the phase can be trapped (see Fig. 1.3 (a)).1 Since the phase position
is fixed, meaning the phase does not evolve in time, there is no voltage drop
according to Eq. (1.5) (so called zero voltage state). For I = Ic the potential
has no minimum, in which the phase can be trapped and the phase will evolve
in time, causing a voltage drop across the junction. But also for bias currents
close to Ic (with I < Ic) the junction can access the running state by thermal
activation above or quantum tunneling through the potential barriers and voltage
drop across the junction can be observed. When the current through the junction
is reduced below Ic the phase not necessarily gets trapped in a local minimum
instantly (in particular when the friction η is small), so even for I � Ic voltage
drops can occur (see Fig. 1.3 (b)). Re-trapping of the phase depends on the
damping of the motion of the phase, which is related to the Steward-McCumber-
parameter [21, 22]

βC =
2π

Φ0

IcR
2
nC

{
� 1 , strongly overdamped
� 1 , strongly underdamped

(1.17)

The junctions investigated in this thesis are all in the underdamped regime, mean-
ing they do not immediately switch back to the superconducting state, when the
current is lowered below Ic.

Via a microscopic analysis of the tunneling process Ic and Rn can be linked.
This is known as the Ambegaokar-Baratoff relation [23]

IcRn =
π∆(T )

2e
tanh

∆(T )

2kbT
, (1.18)

where ∆ is the superconducting gap. In this way it becomes obvious that except
for physical constants the Steward-McCumber-parameter scales as βC ∝ C/Ic ∝
(mϕEJ0)−1

1In a harmonic approximation for I ≈ 0 the phase can perform classical plasma oscillations in
a potential minimum with frequency ωp =

√
8EJEC/~ = 1/

√
LJ(0)C. Since the potential is

in fact anharmonic, leading to a non equal level spacing in a quantum treatment, the phase
oscillation can be used to form a qubit as discussed for the transmon-qubit in Sec. 1.5.3
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Chapter 1 Foundations of superconducting circuit elements
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Figure 1.3: (a) Tilt wash board potential of Eq. (1.16) for different bias currents.
The phase particle (black dot) can be trapped in a minimum as long
as I < Ic. (b) Sketch of an I-V curve of an under damped Josephson
junction in units of the characteristic gap Voltage Vg of the super-
conductor and the critical current of the junction Ic. Starting from
zero current the junction switches to the voltage state when I > Ic

(blue). When the current is decreased again to I < Ic (red) the phase
is not immediately retrapped in a minimum of the tilted washboard
potential and therefore stays in the voltage state.

1.3 rf SQUID

One of the most simple JJ devices is the radio frequency (rf) SQUID. In technical
applications it can be used as a magnetometer [24] where it is coupled to an
LC tank circuit for read out. The aim of this section is to derive its behavior
as a flux dependent inductance, which is used to enable a tunable coupling of
two superconducting transmission line resonators (see Chapter 5). The rf SQUID
consists of a superconducting loop of inductance Ls, which is intersected by a JJ
as depicted in Fig. 1.4(a) & (b). Integrating Eq. (1.2) yields∮

C

ΛJs(r,t) · dl =

∮
C

~
qs
∇θ(r,t) · dl−

∮
C

A(r,t) · dl (1.19)

along an integration path in the superconducting loop (see also flux quantization
[25, 26]), connects the phase drop across the junction with the enclosed magnetic
flux (Φ) in the loop

ϕ = −2πΦ/Φ0 (1.20)

According to Eq. (1.3) this will cause a circulating current Icir in the SQUID loop

Icir = −Ic sin(2πΦ/Φ0). (1.21)
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Figure 1.4: (a) Schematic drawing of a rf SQUID consisting of a superconduct-
ing loop intersected by a junction. (b) Effective circuit diagram of
a rf SQUID. The junction is shunted by a finite inductance. (c) De-
pendency of the internal flux (Φ) on applied flux (Φext for different
values of the screening parameter βL. For βL < 1 a hysteric behav-
ior is founded and flux jumps occur indicated by the arrows and the
dashed lines. (d) Normalized inverse effective inductance as a function
of applied flux for different values βL.)
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Chapter 1 Foundations of superconducting circuit elements

This circulating current will generate a flux LsIcir in the loop. So the flux Φ in
the SQUID loop consists of the externally applied flux Φext and the self generated
flux LsIcir. This leads to a transcendental equation for the flux

Φ

Φ0

=
Φext

Φ0

− βL
2π

sin(2πΦ/Φ0). (1.22)

The screening factor

βL =
2πLsIc

Φ0

(1.23)

is a measure for the amount of flux the circulating currents can generate in the
SQUID loop. In Fig. 1.4(c) the solutions of Eq. (1.22) are plotted for different val-
ues of βL. Whereas for βL � 1 the internal flux follows the externally applied flux,
with increasing βL the internal flux differs from the external flux, in particular for
Φext/Φ0 = n+ 1/2. For βL ≤ 1 Eq. (1.22) only has a single solution, whereas for
βL > 1 there can exist multiple solutions. This leads to a hysteretic behavior of
Φ(Φext). In this case (Fig. 1.4(c), purple), for increasing external flux the internal
flux follows the path indicated by the purple arrows below the solid purple line.
For decreasing the external flux the internal flux follows the path indicated by
the purple arrows on top of the solid purple line. Close to Φext/Φ0 = n + 1/2
flux jumps of the internal flux occur as indicated by the dashed purple lines. In
general the area of the hysteresis is increasing for increasing βL
Based on the reaction to externally applied fluxes to create circulating currents,
one can assign an effective susceptibility or inductance (Lrf) to the SQUID [27–29],
which calculates to

1

Lrf(Φ)
=

∂Icir

∂Φext

= − 1

Ls

βL cos (2π Φ
Φ0

)

1 + βL cos (2π Φ
Φ0

)
. (1.24)

In figure 1.4(d) the inverse SQUID inductance normalized to the loop inductance
is plotted depending on the externally applied magnetic flux for different values
of βL. As in figure 1.4(c) there are regions of multiple solutions and hysteresis for
β > 1. In an experiment not necessarily all the plotted solutions are attainable
for this case. Due to noise and tunneling of the phase, there can be premature
switching of the SQUID-state between the different solutions.

1.4 dc SQUID

Another important SQUID device is the direct current superconducting interfer-
ence device (dc SQUID). The dc SQUID is a parallel connection of two JJ in a
superconducting loop (see Fig. 1.5 (a)). It is widely used as a sensitive magne-
tometer [24], however in the scope of this thesis the focus is on its behavior as an
effective tunable JJ. In the case of no applied magnetic flux, the maximum critical
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Figure 1.5: (a) In a dc SQUID two junctions are connected in parallel. To de-
scribe the data presented in this thesis, the loop inductance can be
neglected. (b) Critical current of a DC SQUID depending on the ap-
plied magnetic flux according to Eq. (1.26). The blue curve displays
the case for a two identical junctions ( d = (Ic1 − Ic2)/(Ic1 + Ic2) = 0),
the red curve describes the case of two junctions of different critical
current (d = 0.5).

transport current of a dc SQUID is the sum of both individual critical currents
IΣ = Ic1 + Ic2. This changes when applying a magnetic flux to the SQUID. As
in the case of the rf SQUID the phases (ϕ1, ϕ2) of the junctions depend on the
applied flux. Integrating Eq. (1.2) along the SQUID contour leads to the result

ϕ2 − ϕ1 = π
φ

Φ0

. (1.25)

Again circulating currents are therefore in the SQUID-loop. Since the sum of
transport and circulating current must not exceed the critical current of the
Josephson junctions, the maximal transport current gets flux dependent. For
the general case of not identical junctions, described by the parameter d =
(Ic1 − Ic2)/(Ic1 + Ic2), the maximal transport current calculates to [30]

IΣ(φ) = IΣ

√
cos2(πφ/Φ0) + d2 sin2(πφ/Φ0). (1.26)

In this way a dc SQUID can be seen as a single tunable junction, enabling to
change circuit parameters in situ by applying a flux to the dc SQUID. The flux
dependence of the critical current is plotted in figure 1.5(b), both for the sym-
metric as well as for an asymmetric junction case. For asymmetric junctions the
dc SQUID shows a reduced modulation depth.

1.5 Quantization of circuits

In this section a quantum mechanical description of circuits relevant for this thesis
is given [31]. In the previous sections macroscopic quantum effects were described
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L CI,F V,Q

Figure 1.6: Parallel connected LC-oscillator

with non quantized variables, whereas in the scope of quantum information it is
mandatory to describe circuit excitations in terms of creation and annihilation
operators. The general approach in the next sections will be first to determine
a Lagrangian for the system under investigation. From the Lagrangian one can
derive adequate conjugate variables, which can be quantized and fulfill an uncer-
tainty relation. Since all experiments of this thesis include harmonic resonators,
first the quantum LC oscillator is discussed in its lumped element (Sec. 1.5.1)
and distributed element (Sec. 1.5.2) version. Secondly, the transmon-type qubit
(Sec. 1.5.3) and its interaction with a resonator (Sec. 1.5.5) are presented.

1.5.1 The quantum LC oscillator

The lumped element quantum LC-oscillator is the most simple electrotechnical
circuit, since it only consists of linear lumped elements. It is instructive to start
with this basic circuit before discussing more complicated ones.

In a parallel LC-circuit shown in Fig.1.6, Kirchhoff laws apply with

I + C
dV

dt
= 0←→ Φ + L

dQ

dt
= 0, (1.27)

V − LdI
dt

= 0←→ Q− CdΦ

dt
= 0. (1.28)

To obtain the Hamiltonian of the system first the Langrangian is formulated,
since from a Lagrangian pairs of conjugate variables can be derived directly. The
system has have an inductive (Φ2/2L) and a capacitive (Q2/2C) contribution to
the total energy. In circuit QED it is convenient to choose the inductive energy to
be the potential energy in the Lagrangian and the capacitive energy as the kinetic
one. This is useful, when later calculating more complex circuits incorporating
Josephson junctions, where the capacitive energy is linked to the phase velocity
ϕ̇ (Eq. 1.13) and plays the role a kinetic energy. Using Eq. (1.28) one can replace

12



1.5 Quantization of circuits

the charge Q in the Lagrangian

L =
1

2C
Q2 − 1

2L
Φ2 =

C

2
Φ̇2 − 1

2L
Φ2. (1.29)

To receive the Hamilton operator one chooses Φ as the system coordinate and
calculates the conjugate momentum pΦ = ∂L

∂Φ̇
= CΦ̇ = Q. In general the Hamil-

ton operator is calculated via a canonical transformation, but in the case of a
conservative potential it is the sum of kinetic and potential energy,

H =
p2

Φ

2C
+

Φ2

2L
. (1.30)

This is the Hamiltonian of a harmonic oscillator with eigenfrequency ωr = 1/
√
LC.

The variables can be quantized with bosonic ladder-operators (â â†)

Φ̂ =

√
~

2ωC
(â+ â†) and p̂Φ = Q̂ = i

√
~ωC

2
(â− â†), (1.31)

and fulfill the commutator

[Φ̂,Q̂] = i~. (1.32)

The Hamilton operator can than be written in terms of creation and annihilation
operators

H = ~ω
(
â†â+

1

2

)
(1.33)

1.5.2 Distributed element resonator

Coplanar waveguide (CPW) resonators as depicted in Fig. 1.7 (a) are frequently
used in cQED setups. The substrate (black) usually is silicon or sapphire. The
conducting microwave structure (blue) consists of a centerstrip surrounded by
two groundplanes and is fabricated from a superconducting material (aluminum,
niobium, titanium nitride, etc.). A microwave resonator is formed by interrupting
the centerstrip at two positions (enoted as coupling capacitors and highlighted by
the red dashed circles in Fig. 1.7 (a)), so a standing wave is formed between the
coupling capacitors as depicted in Fig.1.7 (b). Here the spatial distribution of
current/flux and voltage/charge is plotted.

In a distributed element LC-resonator[30] the Kirchhoff laws have to be fulfilled
locally. Looking at an infinitesimal small piece of length (dx) of a resonator as
shown in Fig. 1.7 (c), dashed green highlighted, this reads

∂v

∂x
= −L0

∂i

∂t
,

∂i

∂x
= −C0

∂v

∂t
. (1.34)

Here C0 and L0 denote the capacitance and inductance per unit length of the
resonator. Taking into account the Faraday law and calculating the flux generated
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Figure 1.7: (a) Coplanar waveguide resonator. Substrate in black, metal struc-
tures in blue. The centerstrip is surrounded by two groundplanes and
interrupted at two positions (denoted as coupling capacitors and high-
lighted by the red dashed circles). Input and output microwave signals
are depicted by orange arrows. (b) Voltage and current distribution in
a distributed element resonator. Between the two coupling capacitors
a standing wave is formed. (b) Equivalent circuit of a distributed ele-
ment resonator consisting of infinitely small unit cells (green dashed),
and two coupling capacitors (red dashed). In- and outgoing measure-
ment signals are depicted in orange.
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locally in the resonator one finds

v =
∂Φ(x,t)

∂t
, i = − 1

L0

∂Φ(x,t)

∂x
. (1.35)

Together with the Kirchhoff laws (Eq. (1.34)) this gives rise to the wave equation

∂2Φ(x,t)

∂x2
+ L0C0

∂2Φ(x,t)

∂t2
= 0. (1.36)

This equation can be solved with a separable wave function

Φ(x,t) = Φ(t)u(x) (1.37)

In a homogeneous resonator of length 2l, u(x) describes a standing wave with
wave vector kr = 2π

4l
as shown in Fig. 1.7 (a) and calculates to

u(x) = −
√

2 sin(krx). (1.38)

In the following the common normalization
∫ l
−l C0u(x)2dx = Cr is used, where Cr

is the full capacitance of the resonator line. The Hamilton operator can then be
calculated by integrating the energy-density of the resonator

H =

∫ l

−l

C0

2

∂Φ(x,t)

∂t
+

1

2L0

∂Φ(x,t)

∂x
dx =

Cr

2
Φ̇(t)2 + ω2Cr

2
Φ(t)2. (1.39)

Here one arrived at the Hamiltonian of a harmonic oscillator. Like for the case of
the lumped element resonator one can find a pair of canonical variables,

Φ̂ =

√
~

2Crωr

(â† + â), Q̂ = i

√
~Crωr

2
(â† − â), (1.40)

which represent the flux and charge in the resonator. Their spatial distribution
is given by u′(x) and u(x) respectively. The corresponding uncertainty relation is
again

[Φ̂,Q̂] = i~. (1.41)

The Hamilton in terms of creation and annihilation operators reads

H = ~ωr

(
â†â+

1

2

)
with ωr =

π√
LrCr

(1.42)

Here the factor of π originates from the fact that the effective capacitance and
inductance is reduced due to the spacial wave form of the excitation.
In a transmission spectroscopy (see Fig. 1.8) of a λ-half resonator this visualizes as
a lorenzian peak at f0 = ωr/(2π) in the transmission spectrum with a character-
istic line width γ/2π. The relative transmission coefficient for an electromagnetic
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Figure 1.8: Relative power transmission through a λ-half resonator according to
Eq. (1.43)

wave is here given by

S21 =
γ

ωr − ω0 + iγ
. (1.43)

Instead of the line width often the quality factor

Q =
ωr

γ
(1.44)

is given. The Q-factor (linewidth) is related to the coupling to the environment
(Qext) via the coupling capacitors (Ck) as well as to the internal losses (Qint)
originating for example from quasi-particles or spurious two-level systems, so

Q =

(
1

Qext

+
1

Qint

)−1

. (1.45)

Using electrotechnical calculations [32] one can calculate the dependence of Qext

on the coupling capacitance Ck as

Qext =
Cr

4

1 + C2
k + ω2

rZl

C2
k + ωrZl

, (1.46)

where Zl is the impedance of the signal input and output lines next to the coupling
capacitors.

1.5.3 Transmon qubit

The transmon qubit[33] (photograph in 1.9 (a)) usually consists of a dc SQUID,
which is shunted by an additional capacitor as depicted in Fig. 1.9 (b). The
effective circuit (Fig. 1.9 (c)) is a tunable ideal Josephson junction parallel to
a single capacitor. The energies of the system are the (inductive) Josephson-
energy of the junction (Eq. (1.10)) and the capacitive energy (Eq. (1.13)), where
the voltage drop can be expressed in terms of phase evolution using the second
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a) b) c)

Figure 1.9: (a) optical photograph of a transmon qubit, (b) corresponding elec-
trical circuit, and (c) effective circuit.

Josephson equation (Eq. (1.5)). With this one can write the Lagrangian of the
system

L =
1

2

Φ2
0

(2π)2
Cϕ̇2 − EJ0(Φ)(1− cos(ϕ)). (1.47)

Here, the Josephson-energy plays the role of an energy potential for the phase,
whereas the capacitive energy is linked to the motion of the phase. The shunt-
ing capacitance of the transmon increases the effective mass of the phase and
suppresses tunneling between adjacent wells of the cosine-potential. This can be
understood in the way that tunneling of particles with mass m through a barrier
with energetic height V0 scales with

√
2mV0/~, where in the case of a Joseph-

son junction one has to replace m → C and V0 → EJ0, leading to a tunneling
coefficient ∝

√
EJ0C ∝

√
EJ0/Ec. For the same reason the sensitivity to charge

noise is decreased with increasing EJ0/Ec-ratio, which was the initial motivation
for the shunting capacitors in the transmon design [33]. The coherence prop-
erties of the Cooper pair box, which is the unshunted version of the transmon,
are limited by charge noise in their coherence properties. Due to the fact that
the Josephson phase is localized in a single cosine-well one can approximate the
Josephson energy by an expansion to fourth order. Furthermore one can calculate
the conjugate momentum pϕ = ∂L

∂ϕ̇
= Cϕ2

0ϕ̇ from the Lagrangian and transform
to a Hamiltonian H = T + U .

H =
p2
ϕ

2C

(2π)2

Φ2
0

+
1

2
EJ0ϕ

2︸ ︷︷ ︸
harmonic contribution

− EJ0
ϕ4

24︸ ︷︷ ︸
nonlinear perturbation

(1.48)

As depicted in Eq. (1.48) the idea is now to first solve the harmonic part of
Eq. (1.48) and treat the higher order term as a small perturbation. Solving the
linear part one receives the characteristic eigenfreqency

ωp =
1

~
√

8ECEJ0, (1.49)

which is equivalent to the plasma frequency of a single junction. In the case of a
dc SQUID EJ0 depends of the flux penetrating the SQUID loop, so the plasma
frequency is flux-tunable. Furthermore one can quantize the variables
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Figure 1.10: Potential energy of the transmon qubit (blue) together with the en-
ergy level solutions according to Eq. (1.51) for EJ0/EC = 62.

ϕ̂ =
1√
2

(
8EC

EJ0

)1/4

(b̂+ b̂†), p̂ϕ = i
~√
2

(
EJ0

8EC

)1/4

(b̂− b̂†). (1.50)

Inserting the quantized variables in Eq.1.48 one obtains a quantized duffing os-
cillator

Ĥ = ~ωp
(
b̂†b̂+

1

2

)
− EC

12

(
b̂+ b̂†

)4

(1.51)

with corresponding energy levels

Ek = ~ωp(k +
1

2
)− EC

12
(6k2 + 6k + 3) (1.52)

and corresponding transition frequencies between neighboring levels of

ωk,k+1 = (Ek+1 − Ek)/~ = ωp − EC/~(k + 1). (1.53)

Since a dc SQUID is effectively a junction with a flux tunable critical current
IC(Φ) (see Eq. (1.26)) and Josephson energy EJ0(Φ), the Transmon transition
frequencies are flux tunable. In figure 1.10 the solutions of Eq. (1.52) are plotted
in the Josephson potential for EJ0/EC = 62. The level-spacing is only slightly
nonlinear (ω1,2/ω0,1 ≈ 0.05).

1.5.4 Transmon in the two level approximation

Operating the transmon as an effective two level system is possible when the
anharmonicity between the lowest levels α=ω12−ω01 =−EC/~ (typically designed
to EC/h > 100 MHz) is much larger than the linewidth (typically < 1 MHz).
Reducing the Hilbert space of the bosonic ladder operators to two and going to
rotated coordinates, one can transform the ladder operators by Pauli matrices
and reduce the eigenstates to two dimensional vectors.
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Figure 1.11: A quantum state can be represented as a point on the surface of a
sphere with radius one (so called Bloch sphere).

Ub̂UT = σ− Ub̂†UT = σ̂+ U(b̂†b̂+
1

2
)UT =

1

2
σ̂z + σ̂0

(1.54)

U |0〉UT =

(
0
1

)
≡ |g〉 U |1〉UT =

(
1
0

)
≡ |e〉 U =

(
0 1
1 0

)
(1.55)

The Hamiltonian is then usually be written as

H =
~
2
ωqσ̂z, (1.56)

where ωq = ω01 and one typically neglects the energy offset ~ωqσ̂0. A quantum
state of the qubit can then be described as a superposition of ground |g〉 and the
excited state |e〉.

|Ψ〉 = cos (θ/2) |g〉+ eiφ sin (θ/2) |e〉 (1.57)

The state can also be graphically represented with the so called Bloch sphere
(Fig. 1.11). Here the all quantum states are located on the surface of the Bloch
sphere.

1.5.5 Qubit-cavity coupling and the Jaynes-Cummings model

Integrating a transmon qubit into a microwave resonator leads to a two level
system interacting with a photonic light-field. The system dynamics are usually
described by the Jaynes-Cummings model. An exemplary realization is shown in
figure 1.12 (a). Here a transmon qubit (blue dashed) is placed between centerstrip
and groundplane of a CPW resonator (red dashed, only partially shown). A zoom
in of the transmon is shown in figure 1.12 (b). The SQUID is highlighted in blue
and the Josephson junctions in purple. The characteristic inter digital capacitors
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Figure 1.12: a) Transmon qubit (blue) coupled to a CPW-resonator (red, partially
shown). b) Zoom in of the transmon qubit with dc SQUID highlited
in light blue. c) Lumped element representation of a transmon qubit
(blue) coupled to an LC-oscillator (red) via a coupling/gate capaci-
tance (green)

increase the EJ/EC ratio to localize the Josephson-phase in a cosine well of the
energy potential as explained in Sec. 1.5.3. The coupling can be easily understood
by realizing that the transmon qubit is an anharmonic LC-oscillator and can
therefore be driven by AC electric fields applied to its capacitor. Therefore,
transmon qubits are usually capacitively coupled to microwave resonators, which
means they are placed at a resonator’s voltage antinode, typically close to the
resonators coupling capacitor, as shown in figure 1.12 (a). For calculating the
qubit-resonator coupling it is convenient to turn to a reduced lumped element
representation like shown in Fig. 1.12 (c). The effective capacitances (Cg, CB)
can be simulated with electromagnetic solvers (see Sec. 2.4). The transmon and
the resonator are coupled via an effective gate capacitance Cg with corresponding
energy

Cg
2

(V̂R − V̂Q)2 =
Cg

2
V̂ 2

R +
Cg

2
V̂ 2

Q − CgV̂RV̂Q, (1.58)

depending on the voltages of resonator V̂R = Q̂/CR (Eq. (1.31)) and Qubit
V̂Q = 2πp̂ϕ/(CΣΦ0) (Eq. (1.50)). The first two terms are additional capacitive
energies for both resonator and qubit. The change in the resonator energy is neg-
ligible, because typically Cg � CR, while the effective qubit capacitance trans-
forms to CΣ = CB + Cg. The last term of 1.58 represents a coupling of resonator
and qubit fields, which can be rewritten as

ĤInt = Cg

√
~ωR

2CR

~√
2CΣ

Φ0

2π

(
EJ

8EC

)1/4

(â− â†)(σ̂− − σ̂+). (1.59)

Here one arrives at a dipole-interaction, which couples cavity and qubit excita-
tions. In the transmon regime, were EJ � Ec, one can use ~ωq ≈

√
8EJEC and

write more compactly and electrotechnically more intuitive
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ĤInt = ~√ωrωq
Cg

2
√
CRCΣ︸ ︷︷ ︸

≡g

(â− â†)(σ̂− − σ̂+). (1.60)

In this way one sees that the coupling g scales with the energy of the constituting
systems and with the relative size of the shared coupling capacitance. Often the
coupling is also written as

g =
2eVrms√

2~
β

(
EJ
8Ec

)1/4

, (1.61)

where e is the electron charge, Vrms =
√
~ωr/(2Cr) the root mean square value of

the resonator voltage and β = Cg/CΣ the ratio of gate capacitance and transmon
capacitance.

The full Hamiltonian of the system then reads

Ĥ = ~ωr

(
â†â+

1

2

)
+

~
2
ωqσ̂z + ~g(â− â†)(σ̂− − σ̂+). (1.62)

Here the first two terms reflect the resonator and qubit energies, respectively,
and the third represents the interaction of qubit and resonator variables, allowing
photon exchange between resonator and qubit. The terms containing âσ̂− and
â†σ̂+ are usually eliminated via a rotating wave approximation. This can be done
because the rotation rotation of these terms in the interaction-picture has a fre-
quency ωq +ωr, whereas the interaction rate g usually is much smaller. Therefore,
the effects of these fast rotating terms average out during one interaction period
1/g. With this one arrives at the so called Jaynes-Cummings-Hamiltonian [34]

Ĥ = ~ωr

(
â†â+

1

2

)
+

~
2
ωqσ̂z − ~g

(
σ̂+â+ σ̂−â†

)
. (1.63)

The interaction is here reduced to the coherent exchange of photons between res-
onator and qubit. Due to the interaction the qubit states ( |g〉, |e〉) and resonator
states (|n〉) are no longer eigenstates of the Hamiltonian (1.63). In the general
case with ∆ = ωq − ωr the resonator and qubit states mix to the new eigenstates
[35, 36]

|n,−〉 = cos(θn) |n,g〉 − sin(θn) |n− 1,e〉 (1.64)

|n,+〉 = sin(θn) |n,g〉+ cos(θn) |n− 1,e〉

θn =
1

2
arctan

(
2g
√
n

∆

)

21



Chapter 1 Foundations of superconducting circuit elements

Resonant regime

In the case of ∆ � g one is in the resonant regime of the Jaynes-Cummings-
Hamiltonian. Resonator and qubit transition energies match each other and exci-
tations can be exchanged. The eigenstates (Eq. (1.64)) form doublets, which are
symmetric and antisymmetric superpositions of states with the same number of
excitations

|±,n〉 =
|n,g〉 ± |n− 1,e〉√

2
. (1.65)

The corresponding energy levels are depiced in figure 1.13 (a). Due to interaction
the doublets of states have an energy splitting of 2g

√
n. A physical interpre-

tation is that resonator and qubit coherently exchange a photon with a rate of
2g
√
n/(2π), usually denoted as vacuum Rabi oscillation. Since a transmon is

tunable by a magnetic flux, one can adjust the qubit frequency to match the res-
onator frequency to reach the resonant regime. In a spectroscopy experiment one
therefore expects the occurrence of avoided level crossings of the coupled qubit
resonator system depending on the applied magnetic flux (as measured in Sec. 4).

Dispersive regime

In the case of large detuning |∆| � g, meaning that the energy difference is much
larger than the interaction energy, the eigenstates are nearly pure resonator- and
qubit-like excitations. The photon exchange is therfore highly suppressed. Using
trigonometric identities and small angle approximations for ζn = 2

√
ng

∆
� 1 the

states given by Eq. (1.64) read

|n,−〉 =

√
1− 1

4
ζ2
n |n,g〉 −

1

2
ζn |n− 1,e〉 (1.66)

|n,+〉 =
1

2
ζn |n,g〉+

√
1− 1

4
ζ2
n |n− 1,e〉

. (1.67)

The constraint ζn � 1 directly leads to a restriction for the photon number in
the dispersive regime

ncrit �
(

∆

2g

)2

. (1.68)

Within the dispersive regime it is convenient to expand the Jaynes-Cummings
Hamiltonian in g/∆� 1 and approximate in first order [35, 36]

Ĥ = ~(ωr +
g2

∆
σ̂z)(â

†â+
1

2
) +

~
2
ωqσ̂z. (1.69)

In this representation qubit and cavity only interact dispersively and do not ex-
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Figure 1.13: (a) In the resonant regime resonator and qubit states mix and form
doublets with an energy splitting 2g

√
n. (b) In the dispersive regime

the qubit and resonator states interact via the ac-Stark shift leading
to small shifts in the transition frequencies.
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change excitations at all. In particular the resonator transition frequency depends
on the qubit state and vice versa. The corresponding energy levels and transi-
tion frequencies are shown in Fig. 1.13 (b). The mutual dependence of transition
frequencies can in particular be utilized to measure the qubit state by measuring
the resonator transition frequency, or to measure the resonator occupation by
measuring the qubit transition frequency. This is known as ac-Stark effect from
optical quantum electrodynamics.

Purcell effect

In the dispersive regime the decay rates of resonator and qubit states are close
to the individual rates of the uncoupled components. But, looking exemplary at
n = 1, according to Eq. (1.66) the qubit and resonator still have a small admixture
of g/∆ of each other. Therefore, when exciting the qubit-like mode there is
still a finite probability of g2/∆2 to measure the excitation in the resonator.
Consequently the qubit-like state still can decay via the resonator with a rate of

γp =
g2

∆2
γR, (1.70)

which is known as the Purcell-limit for the qubit decay time.

1.5.6 Excitation, relaxation and decoherence of qubit states

In this section the time evolution of qubit states will be investigated. This in-
cludes decay and dephasing of qubit states as well as driving of the qubit. First the
qubit driving is introduced and subsquently the equations of motion for the den-
sity matrix of the qubit are calculated in the presence of relaxation and dephasing
processes. This enables to simulate the evolution of qubit states in relaxation and
decoherence measurements protocols as well as the power broadening of the qubit
linewidth.

To excite the qubit one has to apply a drive. Driving the qubit will lead to
a continuous coherent absorption and induced emission of photons by the qubit.
Since σ̂x |g〉 = |e〉 and σ̂x |e〉 = |g〉 this can be modeled by adding a σ̂x drive of
amplitude Ωd and frequency ωd to the qubit Hamiltonian:

Ĥ =
~
2
ωqσ̂z + ~Ωd cos(ωdt)σ̂x. (1.71)

Due to coupling to the environment there can be in addition spontaneous relax-
ation to the ground state or transition into a classical state (decoherence). A
relaxation process is linked to the decay of the Bloch angle θ and has a character-
istic decay time T1. This can attributed for example to weak resonant interactions
with surrounding states e.g. spurious two-level systems in material defects or the
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decay to a bath with a continous density of states e.g. radiation decay. For under-
standing decoherence it is useful to transform to a density matrix representation

ρ = |Ψ〉 〈Ψ| =
(
ρee ρge
ρeg ρgg

)
, (1.72)

which reads for a general quantum state

ρQ =

(
[cos (θ/2)]2 e−iφ cos (θ/2) sin (θ/2)

eiφ cos (θ/2) sin (θ/2) [sin (θ/2)]2

)
. (1.73)

Whereas a classical mixture, without coherent phase relation between excited
and ground state (< eiφ >= 0), reads

ρC =

(
[cos (θ/2)]2 0

0 [sin (θ/2)]2

)
. (1.74)

In this way one sees that the difference between classical and quantum states is
the occurrence of off-diagonal elements in the density matrix. In a general quan-
tum state ground and excited state have a fixed phase relation represented by
the off-diagonal elements in the density matrix. The transition from a quantum
to a classical state is linked to the decay of off-diagonal elements and the char-
acteristic decay time is denoted as T2. On the one hand this can happen due to
relaxation of the Bloch angle θ (T1-process). On the other hand this occurs when
the Bloch angle φ is randomized and therfore 〈eiφ〉 = 0. This process is denoted
as dephasing and is linked to a dispersive interaction with the environment. Ac-
cording to the Schrödinger equation a wave function undergoes a phase evolution
of arg〈eiE/~t〉. When dispersively interacting with the environment, which causes
random energy fluctuations δE of the qubit transition energy, the phase evolu-
tion of φ is disturbed ending up in 〈eiφ〉 = 0. The qubit state will then be on the
polar axis of the Bloch sphere and reflect a classical mixture. The characteristic
timescale here is given by Tφ. In total the decoherence time calculates to

T2 = 〈( 1

2T1

+
1

Tφ
〉)−1. (1.75)

The dynamics of the qubit including a decay rate of γ1 = 1/T1 and dephasing
rate of γφ = Tφ can be described by a Liouvillian in Lindblad form, specifically
by the Master equation [37, 38]

ρ̇ = − i
~

[H,ρ] + γ1Dσ̂−ρ︸ ︷︷ ︸
relaxation

+
γφ
2
Dσ̂zρ︸ ︷︷ ︸

dephasing

, (1.76)

where Dôρ = ôρô+ − (ô+ôρ+ ρô+ô)/2 is the dissipator. The obtained differential
equations are:
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Figure 1.14: Population of the qubit excited state with a constant drive starting
at τ = 0. (a) Qubit evolution for resonant drive (δ = ωq − ωd = 0).
(b) Excitation evolution for different detunings δ. (c) Equilibrium
state for τ � T2 depending on dependency of detuning and drive
amplitude

ρ̇gg = γ1ρee + i/2Ωd exp(−iωdt)ρeg − i/2Ωd exp(iωdt)ρge

ρ̇eg = −(γ1/2 + γφ)ρeg + iωqρeg + i/2Ωd exp(iωdt)ρgg − i/2Ωd exp(iωdt)ρee

ρ̇ge = −(γ1/2 + γφ)ρge − iωqρge − i/2Ωd exp(−iωdt)ρgg + i/2Ωd exp(−iωdt)ρee

ρ̇ee = −γ1ρee − i/2Ωd exp(−iωdt)ρeg + i/2Ωd exp(iωdt)ρge. (1.77)

Qubit dynamics simulation

The set of equations allows to simulate qubit dynamics. If not stated other-
wise the following parameter set will be used in the following: ωq/2π = 7 GHz,
γ1/2π = 0.4 MHz γφ/2π = 0.1 MHz, Ωd/2π = 10 MHz. When the qubit is dis-
perively interacting with a coupled resonator the qubit state is mapped on the
resonator transmission. Since the dispersive interaction is mediated via σ̂z, the
excitation number operator of the qubit, ρee can be measured directly in this way.
Measuring the off-diagonal elements will requires to map them on ρee.

The most simple case of the evolution of the qubit state ρee for a constant drive
starting at τ = 0 is plotted in figure 1.14. Figure 1.14(a) shows the so called
”driven Rabi oscillation” for the case of resonant driving. Here the oscillation
frequency ΩRabi/2π is equal to the drive amplitude Ωd/2π. The envelope is given
by the characteristic decoherence time T2. The general case including off-resonant
driving ωd = ωq+δ is shown in figure 1.14(b). Besides a reduced oscillation ampli-

tude an increased Rabi frequency ΩRabi =
√

Ω2
d + δ2 is visible. This originates in

the fact that the phase evolution of the qubit is given by ωqτ , whereas the phase
evolution of the drive is given by ωdτ . Therefore, the drive is periodically, with a
frequency δ, in and out-of-phase with the qubits (plasma)-oscillation, leading to a
shifted Rabi frequency. For long driving times τ � T2 the qubit will saturate in a
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Figure 1.15: (a) Measurement scheme for T1 measurement. First the qubit is ex-
cited (blue) and after a time τ the qubit state is read out (red). (b)
The population decay leads to an exponential decay with character-
istic time T1

classical, equilibrium state. The resulting excited state population depending on
detuning and drive amplitude is shown in figure 1.14(c). Here the characteristic
power depending broadening of the qubit linewidth is visible. Only for weak driv-
ing Ω → 0, implying ρee � 1, the mean half width ∆ωq of the the qubit excited
state population can be directly associated with the coherence time via

T2 =
2

∆ωq(Ωd → 0)
. (1.78)

Next, protocols for directly measuring T1 and T2 will be simulated. The char-
acteristic population decay (T1-decay) is measured as depicted in figure 1.15.
Initially the qubit is excited with a drive on resonance for tπ = π/Ωd, usually
denoted as π-pulse as indicated in figure 1.15(a) (blue pulse). After a time τ the
qubit state is read out (red pulse). Repeating such a measurement for different
times τ , leads to an exponential decay with characteristic time constant T1 as
plotted in figure 1.15(b).

The T2 time is usually measured with a Ramsey sequence. Since it is not
possible to directly measure the off-diagonal elements in a qubit-resonator sys-
tem, these have to be mapped on ρee as depicted in figure 1.16. The sequence
(Fig. 1.16(a)) starts with a π/2 pulse (tπ/2 = π/(2Ωd)), exciting the qubit to an
equal superposition state on the equator of the Bloch sphere. In the loss and
dephasing free case after a time τ the second π/2 pulse would bring the qubit to
its excited state (ρee = 1). In presence of decay (T1, γ1), there is the possibility
that the qubit decays during the waiting step. In that case the second π/2 pulse
excites the qubit to an equal superposition state (ρee = 1/2). In the presence
of dephasing (Tφ, γφ), the qubit can lose its phase information during the wait-
ing step, leading to a classical superposition in the center of the Bloch sphere.
In that case the second π/2 pulse does not change the qubit state, so also here
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Figure 1.16: (a) Ramsey sequence consisting of two π/2 pulses followed by a read
out. (b) Excitation population for (δ = ωq − ωd = 0) depending on
the waiting step τ . (c) Same as (b), but for δ = 5 MHz

ρee = 1/2 at the end of the sequence. Since both processes (γ1 and γφ) are leading
to ρee = 1/2 for τ →∞ one observes an exponential decay of the qubit population
towards ρee = 1/2 in time as plotted in figure 1.16(b) with the characteristic time
T2. Here the final value of ρee is plotted depending on τ for ωd = ωq. Practically
one usually measures with a finite detuning as plotted in figure 1.16(c). Due to
the detuning the drive and the qubit acquire a relative phase ∆ϕ = δτ during
the waiting step. Depending on τ the second π/2 pulse will be either in or out
of phase with the qubits (plasma) oscillation. So the second pulse either further
excites or dampes the qubit depending on the relative phase, leading to an oscil-
lation with frequency δ/2π of the detected qubit state. Since for small detunings
δ � 1/T2 the T2-decay cannot be well separated from a slow oscillation caused
by a small detuning, one usually measures with a significant detuning δ ≤ 1/T2.
In this way the measured T2 is in particular independent of the exact knowledge
of ωq.
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Chapter 2

Prestudies of circuit elements

In this chapter prestudies of circuit elements like resonators SQUIDs and trans-
mons are shown together with the their fabrication procedures. The chapter starts
with the presentation of transmission line resonators of of two types, where for
both the coupling capacitors has been varied. Subsequently, niobium- as well
as aluminum-SQUIDs are discussed. The section closes with a presentation of
electromagnetic simulations of transmon circuit parameters. The successful sim-
ulation of transmon parameters is an important result of this thesis, since in this
way easy design of qubits due to experimental recommendations is possible.

2.1 Superconducting resonators

In this section both fabrication and transmission measurements of planar su-
perconducting resonators are discussed. The two fundamental properties of res-
onators are their resonance frequency ωr and their quality factor Q = ωr/γr, where
γr is the decay rate. The resonance frequency can be adjusted by the length of
the resonator and is typically in the range of 4−8 GHz. This is a frequency range
where suitable commercial low temperature microwave components are available.
The quality factor is determined by the external and internal quality factor. The
external Q-factor describes the signal outcoupling to the measurement line and
is determined by the coupling capacitors of the resonator. The internal Q-factor
includes all losses to the environment, like quasiparticle losses or two level fluc-
tuators. A detailed discussion about loss-mechanisms in superconducting planar
resonators can be found in Ref. [39, 40].

2.1.1 Fabrication of resonators

The resonators were fabricated on silicon substrates (525µm thick for coplanar
waveguide resonators, 250µm thick for coplanar stripline resonators) with 50 nm
thermal oxide on top. As superconducting material niobium was chosen, because
it has a critical temperature of Tc = 9.2 K. This allows to test designs at liquid
helium temperature. An overview of the fabrication steps is illustrated in Fig. 2.1.
In a first step [Fig. 2.1 (a)] a 100 nm thick niobium layer is deposited by dc
magnetron sputtering on a oxidized silicon substrate. Subsequent the sample is
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a) b) c)

d) e) f )

Figure 2.1: Fabrication scheme for niobium resonators. (a) Deposition of niobium
on a oxidized silicon substrate by dc magnetron sputtering. (b) The
substrate is covered with a 1 µm layer of resist. (c) Exposure with
UV-light through an optical mask. (d) Development of the pattern.
(e) Removing of uncovered niobium in a RIE system. (f) Finished
structure after a chemical cleaning.

covered with 1 µm optical resist [AZ 5214, Fig. 2.1(b)]. The resonator structure
is defined by selectively exposing the resist through an optical mask to UV-light
[Fig. 2.1 (c)]. The activated resist is then solvable by a chemical developer (AZ 726
MIF, Fig. 2.1 (d)). The substrate is placed in a reactive ion etching (RIE) system,
where the uncovered niobium is removed [Fig. 2.1 (e)]. In the etching process a
mixture of Ar/SF6 gas is ionized and accelerated to the substrate. The argon
ions perform a physical etching process on the niobium, whereas the fluorine ions
perform a chemical etching. The fluorine reacts here with the niobium to gaseous
niobium pentafluorine. The applied acceleration voltage defines the predominant
direction of both processes. In a last step the resist pattern is chemically removed
[Fig. 2.1 (f)]. Examples of finished resonator samples can be found in Fig. 2.2.
For connecting the resonators to the read out circuitry the samples have to be
mounted in a sample holder as shown in Fig. 2.3. In this case the sample holder
is a gold plated copper box with SMA to stripline connectors for contacting to
microwave ports on the chip. The electrical connection is here made with silver
glue.

2.1.2 Transmission spectroscopy of CPW resonators

The data presented in this section is taken from the supervised thesis of Ref. [41]
and a sample is shown in Fig. 2.2 (a). The resonators have a center strip width
of W = 13 µm a gap between centerstrip and groundplane of W = 14 µm and a
fundamental frequency of f0 = 7.5 GHz. The coupling capacitor is realized as a
two-finger capacitor with fingerwidth 4.3 µm and fingerdistance of 4.4 µm. The
length was varied of the finger capacitor was varied between 35 µm and 150 µm.
Measurements are done either at 4.2 K (liquid helium) or 2 K (helium evaporation
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a) b)1cm

50 µm50 µm

Figure 2.2: Photographs of (a) CPW resonator with two-sided groundplane. (b)
CPS resonator with single-sided groundplane. The insets show the
coupling capacitors of the resonators. The length of the finger capac-
itors determine the external quality factor of the resonators.

Figure 2.3: Photograph of a resonator sample mounted inside a gold plated copper
box with SMA microwave connectors.
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Figure 2.4: Data for CPW resonators as shown in Fig. 2.2 (a). (a) Relative trans-
mission of CPW resonators with different capacitor finger length mea-
sured at 2 K (b) Q-factor of the resonators from (a) depending on ca-
pacitor finger length for two different temperature with fits according
to Eq. (1.45) and (1.46). (c) Coupling capacitances calculated form
measurement data and simulated capacitances depending on capacitor
finger length.

cooling).
In figure 2.4 (a) transmission spectroscopy data of resonators with the same

length, but different coupling capacitance is shown. The measurement tempera-
ture is 2 K, so quasi-particle excitations are of minor importance. The coupling
capacitance is provided by a interdigital capacitor, which length was varied. As
expected, increasing the coupling capacitor Ck leads to a reduction of the Q-
factor, as indicated by the larger line width. Second, the resonance frequency
is reduced for inceasing capacitance. In the considered parameter regime the ef-
fective capacitance of the resonator Cr is increased by the coupling capacitance
Cr → Cr + Ck, leading to a smaller resonance frequency [32].

An analysis of the measured quality factors is shown in Fig. 2.4 (b). Here
the Q-factors are plotted versus the coupling capacitor finger length for a mea-
surement temperature of 2 K (red dots) as well as for 4.2 K (black dots). At
lower temperature the Q-factors are higher, which can be attributed to a reduc-
tion in quasiparticle losses and therefore higher internal Q-factor. To excite a
Cooper pair to a into quasiparticles an energy larger than the supuerconducting
gap (∆Nb ≈ 800 GHz1) is necessary, which is much larger than the photon energy
in the resonator. However, existing quasiparticles can be excited to higher states
by an arbitrary energy. Therefore, there is a internal quality factor component
scaling with the density of thermally excited quasiparticles nqp, which scales ap-
proximately as nqp =∝ (T/Tc)

4. For a quantitative analysis of the quality factor
on the size of the coupling capacitances the data was fitted to theory (red and
black line) (Eq. (1.45) and (1.46)) on the assumption that the capacitance is
proportional to the capacitor size. In this way also the internal Q-factors are ob-

1One has to mention that the superconducting gap is temperature depending, but in the treated
temperature range this leads to a minor contribution to the Q-factor of the resonators.
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2.1 Superconducting resonators

tained, which calculate to Qint ≈ 6000 for 4.2 K and Qint ≈ 30000 for 2 K. This is
in good agreement with more focused work at the WMI [40]. With the calculated
internal Q-factor, also the external Q-factor can be determined from the mea-
surements and the coupling capacitance can be calculated (Eq. (1.45) and (1.46))
as they are plotted in Fig. 2.4 (c) together with the simulated capacitances. The
simulation was done with the software CST-Microwave studio. Both the simu-
lated capacitance and the capacitance extracted from the measurements agree.
In general the simulations tend to overestimate the capacitance. The external
Q-factor calculated from the simulated capacitances is up to 25% lower than the
actual measured total Q-factor at 2 K. Nevertheless, this is still a good achieve-
ment in the sense that the simulations enable the prediction of parameters for
new sample designs.

2.1.3 CPS resonators and parasitic environment

In contrast to CPW resonators, CPS resonators only have a single groundplane.
An example is shown in Fig. 2.2 (b). CPS resonators are of interest for realizing
coupled resonator systems, because CPS resonators allow for designs with weaker
inter resonator coupling in comparison to CPW designs. This is highly desirable
when the coupling between resonators should be controlled by a SQUID or qubit
[42]. The resonators investigated here have a center strip width of W = 13 µm,
a gap between centerstrip and groundplane of W = 14 µm and a fundamental
frequency of f0 = 6.5 GHz. The resonators were measured in the supervised
thesis of Korbinian Reiser [43]. Fig.2.5 (a) shows the Q-factor depending on the
coupling capacitance at 4.2 K as well as a theory values for Qint = 2730. In the
undercoupled regime, where Q ≈ Qint only a Q-factor of 2730 is reached. This
is just half the value obtained for CPW resonators for comparable experimental
conditions.

Undercoupled resonators (Qext � Qint) showed an asymmetric lineshape as pre-
sented in Fig. 2.5 (b). The occurrence of asymmetric lineshapes in λ/2 resonators
is attributed to interference effects in general [44] or more precisely to a parasitic
path on the chip [45], which interferes with the resonator path. For the data
analysis of these non-Lorenzian lineshapes a complex background or fano formu-
lators are sometimes used [46]. In contrast, in the scope of the supervised thesis
of Korbinian Reiser [43], equations for the parasitic path model were formulated
and used to fit the data as shown in Fig. 2.5 (b). This procedure is described
in the following. In general, the parasitic path can be exited by the electric or
magnetic field component of the microwave field. Furthermore, the parasitic path
can have a certain amount of absorption. These considerations lead to the circuit
diagrams of the model as shown in Fig. 2.6. Here, in addition to the transmission
line resonator, depicted in black, there is a parasitic path depicted in orange.
The properties of the parasitic path are absorbed in an equivalent circuit. One
distinguishes as mentioned above between capacitive (Cp)/electric (Fig. 2.6 (a))
and inductive (Lp)/magnetic (Fig. 2.6(b)) paths. The damping is here taken into
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Figure 2.5: (a) Transmission spectroscopy of a undercoupled CPS resonator with
an asymmetric lineshape. Black: data, red: fit to Eq. 2.1 parasitic
path parameters parameters a = 0.13 and Rp = 56 Ω (b) Q-factor
of different CPS resonators vs. simulated coupling capacitance. The
black dots are measurement data, whereas the red crosses are simula-
tions for Qint = 2730. The data was acquired at 4.2 K
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Figure 2.6: Model of a resonator with parasitic environment. Circuit diagram of
the transmission-line resonator in black. The parasitic paths (orange)
can be either of capacitive (a) or inductive (b) type.
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Figure 2.7: Fraction of transmitted power in logarithmic units as a function of
the normalized excitation frequency δω = (ω − ωr)/ωr. Qext = 10000,
Qint = 50000 are fixed in all subfigures. (a) The two types of coupling
for b = −a. (b) Plots for different values of the parameter a with
Rp = 0, (c) Effect of different Rp with a = 0.01

account by a resistor Rp. For the inductive path, for ω ≈ ωr, the complex signal
amplitude transmission of the circuit evaluates to

S21 =

1 +
Qext/Qint + 2QextaR̃pδω + i

(
2Qextδω − haR̃p

)
1 + 4Qextaδω − i

(
2ah+ aR̃p

)
−1

. (2.1)

Here δω = (ω − ωr)/ωr is the normalized excitation frequency, whereas R̃p =
Rp/Z0 is the normalized resistance and a = Z0/(ωrLp) is the normalized induc-
tance of the parasitic path, h = Qext/Qint is the ratio of internal and external
Q-factor and quantifies the damping in the resonator path. For the case of a
capacitive path one has to replcae a→ −b = −Z0ωrCp. Figure 2.7 visualizes the
meaning of the different parameters. Figure 2.7 shows that the type of the para-
sitic path decides on which side of the resonance peak a transmission dip shows
up. The size of the parasitic inductance/capacitance determines the amount of
asymmetry in the line-shape as shown in fig 2.7(b). The resistor (fig 2.7(c)) damps
out the dip, but still leaves the resonance asymmetric.

In conclusion, a model for asymmetric line-shapes for λ/2 transmission line
resonators was introduced here, including the (effective) physical properties of
interfering paths. Since the model has many free parameters for further evaluation
measurement data including the calibrated insertion loss is required.

2.2 Niobium Josephson junctions

The circuits in presented in chapter 5 includ niobium Josephson junctions. Nio-
bium junctions offer the advantage to operate at liquid helium temperature.
Within this thesis the fabrication process from Ref. [47], was optimized to fab-
ricate small sized junctions. To obtain a higher resolution in the junction def-
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a) b) c) d)

Silicon wafer Niobium Aluminum oxide Silicon oxide

Figure 2.8: Fabrication process for Nb-junctions. (a) Wiring layer is deposit. (b)
The Nb/AlOx/Nb trilayer is placed in a lift of process. (c) The junc-
tion is defined in an etching process and an SiOx insulation is applied.
(b) A top electrode is attached to connect the top layer of the junction
with the wiring.
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Figure 2.9: (a) Optical micrograph of a niobium based dc SQUID. The junctions
are circular shaped with a diameter of about 2µm and indicated by
red arrows. (b) Measurement of the maximum supercurrent of the dc
SQUID as a function of the applied flux.

inition step (Fig 2.8(c)) an inverse photo-lithography process based on the AZ
5214E-resist was used, the rest of the fabrication process was left unchanged in
comparison to Ref. [47]. Therefore, only an overview of the fabrication process is
given in the following. This process consists of four steps as depicted in Fig 2.8.
In the first step [Fig. 2.8(a)] wiring structures and resonators are defined in a
niobium layer via reactive ion etching, as described in Sec. 2.1.1. After this
Nb/AlOx/Nb trilayers are placed on the substrate substrate at selected positions
using a lift-off process [Fig. 2.8(b)]. First a niobium layer is sputtered, second a
thin aluminum layer which is oxidized in situ and last the top niobium layer is
deposit. To define the junction size in a third step [Fig 2.8(c)], the top niobium
layer of the Nb/AlOx/Nb trilayer is selectively removed. Immediately after the
etching process the sample is transferred into a sputtering chamber to deposit
the SiOx insulation. After this, in a last step [Fig. 2.8(d)] the electrode wiring is

36



2.3 Aluminum Josephson junctions

deposited in a lift off process, to make an electrical connection to the top layer
of the junction. As a material niubium is sputtered here. Figure 2.9 (a) shows
an optical photograph of a dc SQUID with circular junctions with a diameter of
2 µm, the corresponding measurement of the dependence of the critical current
on an applied field Ic(B) can be found in Fig. 2.9 (b). The maximal supercurrent
shows the periodic dependence on the applied flux as discussed in Sec. 1.4 and
is in the range needed for the circuit presented in chapter 5, so one can proceed
with this result.

2.3 Aluminum Josephson junctions

a) b) c) PMMA/350k

PMMA/MA 33%

Silicon

Electron exposure

Figure 2.10: Pattering of e-beam resist with top view (bottom) and cross section
(top). (a) Silicon chip (black) with double layer resist (green, purple).
(b) Exposure with electrons, which get scattered in the resist. (c)
Structure after development. Due to scattered electrons and a high
electron sensitivity of the lower resists an undercut is formed.

For transmon qubits dc SQUIDs with a critical current of around 50 nA are
needed. To this end Al/AlOx/Al-junctions are fabricated with an area < 1 µm2

and current densities < 100 A/cm2. This is realized using the Dolan bridge tech-
nique [49] in combination with electron beam lithography. This enables the fab-
rication of Josephson junctions with a single lithography step, which is depicted
in Fig. 2.10. First, a silicon substrate is coated with two resist layers (400 nm
PMMA/MA 33% as bottom layer and 70 nm PMMA/950k as top layer), where
the bottom resist has a four times larger sensitivity to electrons than the top
resist (Fig. 2.10(a)). As depicted in Fig. 2.10(b) the electrons of the e-beam
writer are scattered in the resist. The angle of the scattering cone is depending
on the acceleration voltage of the electron beam [50], which is in our case 30 kV.
For lower acceleration voltages one receives a larger scattering cone. After devel-
opment (Fig. 2.10(b)), one can obtain therefore free standing structures of the
top resist. The subsequent evaporation process is depicted in Fig. 2.11. Here
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a) b) c)

Junction
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Silicon
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Aluminum Oxide

Figure 2.11: Shadow evaporation of Josephson junctions with top view (bottom)
and cross section (top) on the structure of Fig. 2.10. (a) Evaporation
of the first aluminum layer under a certain angle (typical 17◦). (b)
Oxidation of the aluminium layer to form the junction barrier. (c)
Evaporation of the second aluminum layer under another angle (typ-
ical −17◦). As a result a SIS-junction is formed (encircled in light
blue).

two layers of aluminum are evaporated (a)/(c) with a oxidation step in between
(b). In the first step (a) the substrate is evaporated under an angel of 17◦ and
40 nm aluminum is deposited. The relatives angle in the evaporation leads to a
structure, which is shifted with respect to the resist pattern by around 200 nm.
Next, (b) the surface of the aluminium is oxidized for 40 minutes in an atmo-
sphere of 7.3× 10−3 mbar of pure oxygen to form the insulating barrier of the
Josephson junction. Finally, (c) the second aluminum layer is evaporated under
an angle of −17◦. In this way a SIS junction is formed under the resist bridge.
A SEM image of a dc SQUID is shown in Fig. 2.12. An optical micrograph of a
dc SQUID test structure is shown in Fig. 2.13. The latter SQUID already has the
characteristic inter-digital capacitors, which increase the capacitance in transmon
qubit designs. Furthermore, the SQUID is wired for electrical characterization
measurements. These test structures were fabricated for two reasons: on the one
hand the lithography parameters had to be optimized and on the other hand
suitable oxidation parameters had to be determined to obtain the desired critical
currents of the Josephson junctions. The critical currents were extracted from
measurements in a helium-3 evaporation cryostat at a temperature of 500 mK. In
figure 2.14 a current-voltage characteristic of a dc SQUID is shown for Φ ≈ 0. Due
to its small critical current and large shunting capacitance, the SQUID is in the
strongly underdamped regime [Eq. (1.17) and Eq. (1.18)]. Starting at zero current
the SQUID stays in the superconducting state till I = 33 nA. Then the junction
switches to the voltage state, where the characteristic gap voltage Vg = 360 µV
of aluminum is measured. Within the voltage state the SQUID shows a normal
resistance of Rn = 5.4 kΩ. Decreasing the bias current the SQUID stays in the
voltage state, untill the current is nearly zero again, a behavior which is character-
istic for strongly underdamped Josephson junctions. The measured gap voltage
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5 µm

500 nm

500 nm

Figure 2.12: SEM image of a dc-SQUID. The red and blue rectangles show the po-
sitions of the Josephson junctions. Image taken from the supervised
thesis [48]

50 µm

I+

I- V-

V+

Figure 2.13: dc SQUID (red) with shunting capacitors (blue). For measurements
the SQUID has wiring for current and voltage.

is close to the value of bulk aluminum Vth = 365 µV indicating a good quality
of the deposited aluminum. The good junction quality is supported by the low
retrapping current and the large, flat subgap resistance. However, from theory
(Eq. (1.18)) on expects a critical current of around Ic = 86 nA. From fiq. 2.14,
where the critical current of the SQUID is shown depending on the magnetic
field, one can see that the low critical current does not orign from an offset in the
magnetic field. The low critical current can be partially related to thermal exci-
tations of the junction phase. This is for example reflected in the small voltage
drop (or resistance Rdrift) in the superconducting state. This voltage drop origins
from tunneling of the phase to the adjacent lower wells of the tilted washboard
potential. A continuous phase drift then leads to a small voltage drop according
to the second Josephson equation (Eq. 1.5). This process is also supported by
thermal activation. The thermal excitations also lead to a premature switching
to the voltage state. Solving kbT = EJ for current, one can translate that the
thermal activation energy equals a barrier height of 21 nA, which is already of
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Figure 2.14: (a) Current-voltage characteristic of a dc SQUID as shown in 2.13.
(b) Critical current depending on the applied magnetic field

the same size like as measured critical current. Furthermore the critical current
is reduced by noise of the used current source and wiring.
Nevertheless, the goal of fabricating dc SQUIDs with a critical current around
50 nA is met here. Due to the in-situ flux tunability of the transmon qubit, the
precision of the measurements are sufficient at this stage to proceed.

2.4 Design of transmons

CJ

a) b)

Figure 2.15: (a) Transmon (blue dashed) placed in the gap of a CPW resonator
(partially shown, red dashed). (b) Simulation model of a transmon
in a CPW resonator. The capacitance of the Josephson junctions
CJ is included as a lumped element in the simulation (indicated by
black arrow).

It is highly desirable to be able to design qubit parameters according to experi-
mental needs. The essential properties of a qubit are here its transition frequency,
anharmonicity and coupling to a resonator. These parameters are determined by
the critical current of embedded dc-SQUID Ic(φ), the capacitance of the transmon
CΣ and the effective gate capacitance Cg to the resonator. The critical current is
flux tunable and can be fine adjusted (see Sec. 2.3). The capacitances are fixed
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Figure 2.16: Simulation of the transmon capacitance. (a) Effective circuit and (b)
the simulated structure. Here capacitance of the Josephson junctions
is here taken into account as a lumped element. Charges of Q =
±1C are placed on the interdigitals electrodes of the transmon. The
calculated potential is illustrated in the displayed color (red: high
voltage, blue: low voltage).
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Figure 2.17: The simulation of the gate capacitance is shown here in (a) as an
effective circuit and in (b) for a simulated structure. Here, a voltage
of VR = 1 V is applied to the resonator. The calculated potential
is illustrated in the displayed color (red: high voltage, blue: low
voltage).

by design. Electrostatic simulations of the capacitances were carried out with the
software ’CST-Microwave Studio’.
Figure 2.15 (a) shows an optical micrograph of a tramsmon embedded in a CPW
resonator. Here, the transmon is placed between the center strip and the ground-
plane of a resonator. For the simulation one can import a technical drawing
(.gds-file) of the transmon coupled to a resonator as shown in Fig. 2.15 (b). The
capacitance of the Josephson junctions CJ is here incoorporated as a lumped el-
ement between the transmon electrodes. The superconducting material is here
replaced by a perfect electrical conductor in the simulations. In principle, all the
metal parts form a complicated capacitance network, but the relevant capacities
CΣ and Cg can be simulated directly as described in the following.

The effective circuit of a transmon coupled to a resonator is shown in Fig. 2.16 (a).
Here the transmon is depicted as an anharmonic LC-oscillator with Josephsonin-
ductane LJ and capacitance CB. The transmon is coupled to a harmonic LC-
oscillator characterized by LR and CR via a gate capacitance Cg. The induc-
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Chapter 2 Prestudies of circuit elements

tances are grayed out since they are not included in the simulation. As indicated
in Fig. 2.16 (a) to simulate the effective capacity of the transmon, one places
charges of Q = ±1C on the nodes transmon electrodes and extracts the simu-
lated Voltage VT. The capacitance is obtained as CΣ = Q/VT. Figure 2.16 (b)
shows the result of a simulation. The charges of Q = ±1C were placed on the
transmons inter-digital electrodes and the resulting potential is illustrated in the
displayed color of figure 2.16 (b) (red: high voltage, blue: low voltage).

The simulation of the gate-capacitance works similarly and its principle is shown
in Fig. 2.17 (a). Here one applies a dc voltage of Vr = 1 V to the resonator and
measures the resulting voltage drop VT , between the transmon electrodes. The
gate capacitance can be calculated via VT

VR
= Cg

Cg+CB
≈ Cg

CΣ
, where one can assume

in the last step that CR � Cg,CΣ. The corresponding simulation is shown in
Fig. 2.17 (b). Here the resulting potential is again illustrated in the displayed
color (red: high voltage, blue: low voltage).

The simulation results agree very good with the measured parameters. In
Fig. 2.18 the transmon qubits measured in this thesis are shown. In table 2.1 the
corresponding simulated and measured qubit parameters are compared.

100 µm 100 µm 200 µm
a) b) c)

Figure 2.18: Different transmon qubits, which were investigated in this thesis. a)
Transmon qubit, which data is presented in Sec. 4. b) Transmon
qubit, which simulations are shown in Fig. 2.16 and Fif. 2.17. c)
Transmon qubit with capacitor in CRW design.

gex/2π Ec,ex/h gth/2π Ec,th/h
Transmon a: 70 317 67 302
Transmon b: 148 195 140 203
Transmon c: 23.8 221 17.5 214

Units: (MHz)

Table 2.1: Comparison of measured transmon parameters (gex/2π, Ec,ex/h) with
values obtained by simulations (gth/2π, Ec,th/h) for the transmon
qubits shown in Fig. 2.18
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2.4 Design of transmons

Concluding, the goal of simulating qubit parameters was meet here. This im-
proves the ability to design transmon qubits with suitable parameters according
to the experimental needs for future experiments. The author wants to thank
here the master students Daniel Schwienbacher and Javier Puertas-Martinez for
fabricating and joint measurements of transmon qubits.

43





Chapter 3

mK measurement setup and
protocols

In this chapter the setup and measurement protocols relevant to characterize the
circuits presented in Chapter 4 and Chapter 5 are introduced. First (Sec. 3.1), two
dilution cryostats are shown and their wiring is described. In the following the
measurement protocols are introduced. The most basic protocol is the resonant
spectroscopy (Sec. 3.2), which provides information about the transition frequency
of resonators. In two-tone spectroscopy (Sec. 3.3), relevant information about
qubits parameters can be obtained and parametric effects can be observed. At
the end of the section (Sec. 3.4) the setup for measuring decay and decoherence
times of qubits coupled to a resonator is presented.

3.1 Cryostats

The mK measurements presented in this thesis were performed in the in the
Kermit-Cryostat (3.1 (a)) and the dilution refrigerator of the Cirqus lab (3.1
(b)). That lab was set up by three PhD-students including the author. The main
task of the author was the design and fabrication of the measurement installations
between the 4K and mixing chamber stage. The wiring contains 24 microwave
lines and more than 80 dc lines, which enables to cool down several experiments.
The cryostat can operate down to 25 mK, which prevents thermal excitations in
the GHz-frequency range. The circuits are mounted in gold plated copper boxes
(fig. 3.2) and attached to the base temperature stage of the cryostat. To obtain a
good signal to noise ratio at base temperature, excitation signals are transmitted
through microwave lines incorporating many attenuators at different temperature
stages. The level of the signals applied at room temperature is on the order of
−50 dBm, which overcomes the thermal noise level at room temperature signifi-
cantly. In the cryostat the signal is stepwise attenuated at different temperature
stages. In this way the thermal noise on each stage corresponds approximately
to the temperature of the stage. This then leads to very clean signals on the
mixing chamber stage. In theory, a single large attenuator could be placed on the
mixing chamber stage. Practically this is not possible, because the power dissi-
pated in the attenuators would exceed the limited cooling power of the mixing
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Circulator
Circulator

Samplebox with
Coil on top
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Coil on backside
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360mK

25 mK

4K

750 mK

300mK

25 mK

1K

a) Kermit b) Cirqus

Figure 3.1: The dilution cryostats set up and used for measurements during this
thesis. Temperatures are depicted in white, some important compo-
nents marked in black. For a comparison of size scales are included,
good indicators are also the circulators on the experimental stages,
which are of the same brand. a) Kermit cryostat: A small and fast
cryostat, which was refurnished by the author. Main improvements
are an enlarged sample space for including a circulator on the mixing
chamber stage, a superconducting aluminum magnetic shield for the
mixing chamber stage and an improved base temperature of 25 mK
(prior 200 mK). Altogether this allows single photon measurements
of flux sensitive devices. b) Cirqus cryostat: A larger cryostat, which
was set up in the scope of this thesis. The main task was here the
design and partial fabrication of the measurement installations below
4K.

Figure 3.2: A superconducting resonator with a transmon qubit mounted inside
a gold plated copper box with SMA microwave connectors.
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3.2 Resonant spectroscopy

chamber stage. Therefore the signal is attenuated stepwise at higher tempera-
ture stages, which have larger cooling power. In the detection lines circulators
with one port 50 Ω terminated are placed to prevent thermal noise from higher
temperature stages to reach the sample. In the described configuration the used
circulators can be seen as a directional microwave transmitters, with an attenua-
tion of −20 dB in reverse transmission. Due to the small signal amplitude of some
attowatt, the detection lines incorporate amplifiers. The first amplifier is placed
at 4 K and has a gain of 40 dB. The amplifier is a high electron mobility amplifier
(HEMT), which enables an operation at low temperatures. To place an amplifier
at low temperatures is desirable, because not only the signal gets amplified but
also thermal noise. A second low noise amplifier with a gain of 35 dB is placed at
room temperature. This is necessary to overcome the detection threshold/noise
level of the used electronics. The dc lines for magnetic coils, heaters and the
thermometry incorporate LRC-filters at room temperature. In the cryostat the
dc-lines are thermally anchored on all temperature stages.

3.2 Resonant spectroscopy

Transmon-resonator circuit

In the standard single tone spectroscopy an excitation signal of a certain frequency
is generated by a vector network analyzer (VNA) and sent to the resonator (see
fig. 3.3 (a)). The signal reflected by the sample is detected at the same frequency
by the VNA and compared to the input signal. Typically, in a frequency sweep
one obtains a spectrum with characteristic Lorenztian resonances at the positions
of the eigenfrequencies of the investigated circuit. By varying the applied mag-
netic field between the frequency sweeps the flux dependence of the transmon
can be evaluated. In the case of a transmon qubit coupled to a resonator, the
transmons transition frequency will periodically match the resonator frequency.
In the resonator spectroscopy this is then be seen as avoided level crossings.

rf SQUID coupled resonators

The measurement setup for the rf SQUID coupled resonators is shown in fig. 3.3 (b).
To flux bias the SQUID, a superconducting solenoid is mounted on top of the sam-
ple box. The rf SQUID coupled resonators sample consists of two λ/2 resonators
which are coupled via an rf SQUID. Each resonator has two ports, so the sample
has in total four ports. One port of each resonator is connected to an input line,
whereas the other one is connected to a detection line. All measurement lines are
connected to a four port vector network analyzer. In this way the transmission
through one resonator can be measured as well as the signal transmission between
the resonators. This allows not only to measure resonance frequencies of the cir-
cuit, but also to measure the on/off ratio for the coupling. The coupling can
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Figure 3.3: a) Set up for transmon qubit coupled to a resonator measurement.
Sample yellow dashed highlighted. b) Set up for measurement of
rf SQUID coupled resonators. Sample yellow dashed highlighted.
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Figure 3.4: Calculated signal reflected from a coupled qubit-resonator system.
Average amplitude (a) and phase (b) for different qubit states in de-
pendence of applied frequency in units of the resonators bare resonance
frequency fr. Average amplitude and phase are the actually measured
quantities in the experiment.

be adjusted with the magnetic field generated by the superconducting solenoid
attached to the sample box.

3.3 Two-tone spectroscopy

Transmon-resonator circuit

In the case of a qubit coupled to a resonator two-tone spectroscopy is a suitable
tool to extract qubit parameters like line-width or anharmonicity. This is done
in the dispersive regime, where the coupling g is much smaller than the detuning
∆ of qubit and resonator. For a better understanding of the measurements it is
instructive to recall the Jaynes-Cummings-Hamiltonian in the dispersive limit.

H = ~
(
ωr + 2

g2

∆
σz

)(
â†a+

1

2

)
+

~
2
ωQσz (3.1)

The first term represents a qubit depending frequency of the microwave res-
onator ω(σz) = ωr + 2g

2

∆
σz. Consequently, the relative reflected signal amplitude

of the microwave resonator will depend on the qubit state

S11(σz) =
(ω − ωr(σz))

2 + iγint(ω − ωr(σz)) + (γ2
ext − γ2

int)/4

(ω − ωr(σz) + i(γext + γint)/2)2
. (3.2)

As an illustration, the cavity reflected signal amplitude is depicted in fig. 3.4 (a)
depending on the qubit state. A single λ/4 resonator without a qubit will show
a Lorentzian dip in the spectrum (red curve). The depth of the dip is deter-
mined by both the coupling of the resonator to the microwave-line, denoted
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by γext and the coupling to the environment, denoted by γint. The presence
of a qubit leads to a small dispersive shift of the resonance frequency (yel-
low). Exciting the qubit (red curve) changes the sign of the dispersive shift.
Interestingly, for a classical mixture, where the qubit state can be written as
ρQ = 1/2(|0〉 〈0| + |1〉 〈1|), the average reflected amplitude can be even smaller
than in all other cases (purple line). The average reflection response calculates in
that case to < S11 >= 1/2(S11(σz = 1) +S11(σz = −1)). A two-tone spectroscopy
of a qubit works now as follows. With a vector network analyzer (denoted as
VNA in fig. 3.3 (a)) a probe tone continuously measures the reflection at the res-
onance frequency of the resonator for the qubit being in the ground state. The
second, continuous microwave tone, denoted as drive tone, is generated by a mi-
crowave source (denoted as MWS in fig. 3.3 (a)) and applied to the qubit via a
microwave antenna. If the drive frequency matches the qubit frequency the qubit
state will become a classical mixture. The reflection of the probe tone then drops
as indicated by the black arrows in fig. 3.4. Instead of the average reflected ampli-
tude also the phase of the reflected signal can be used as depicted in fig. 3.4 (b).
Usually, when the dispersive shift is very small, the phase signal is significantly
better than in the amplitude signal. By varying the magnetic flux also the flux
dependence of the qubit frequency can be mapped out. In general, there are more
processes which can change the resonator reflection. Examples are higher level
excitations of the qubit or sideband transitions in the qubit-resonator system.

rf SQUID coupled resonators

In the case of the rf SQUID coupled resonators there is no antenna to drive the
SQUID directly. Therefore, the second tone is fed into one of the resonator input
lines using a beam splitter (see fig. 3.3 (b)). Since the coupling leads to parametric
tunable modes, one can observe parametric amplification in two-tine spectroscopy.
To this end a second tone with twice the mode frequency is applied to the sample
while the VNA performs frequency sweeps around the mode frequency. This leads
to an amplification of signals with frequencies in the region of the mode frequency.
The gain of this amplification process depends on the drive amplitude.

3.4 Time resolved two-tone spectroscopy of a
transmon

The set-up presented here was developed in the scope of the master thesis of
Miriam Müting [51], where also a very detailed description incorporating all tech-
nical aspects can be found. To investigate the dynamics of a qubit both the
excitation of the qubit and the read out of the qubit via the resonator has to be
performed on a timescale much faster than the qubit’s T1- respectively T2-time.
As depicted in figure. 3.5 the experiment can be split in four main parts. In the
center is the device under investigation in the cryostat (dark blue dashed box).
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3.4 Time resolved two-tone spectroscopy of a transmon

The qubit can be manipulated by microwave pulses (light blue dashed box). To
generate short excitation pulses a microwave signal (generated by MWS 2) is
mixed with a rectangular nano second DC-pulse (generated by AFG 1). For a
better on-off ratio two mixers are placed in series. For reading out the qubit a
probe pulse is generated in the same way (red dashed box) and sent to the res-
onator. Via a circulator in front of the resonator the reflected signal is directed
into the detection chain with amplifiers and circulators in isolator configuration.
The reflected signal is then entering the probe pulse detection part of the set-
up (orange dashed box). After an isolator microwave filters are placed to filter
out frequencies out of interest. The filtering prevents the subsequent amplifiers
and detectors in the detection set-up from being saturated by signals, which are
out of interest (in particular amplified noise outside the detection band). Before
digitizing the signal it is downconverted to the MHz-range and split up into its
in-phase and our of phase component (denoted as I and Q). The downconversion
with a local microwave tone (generated by MWS 3) is necessary since the ADC’s
have a sampling rate of 250 MS/s. For phase stability all devices in the set-up are
connected to a central 10 MHz-clock. For the correct timing of the measurement
devices the channel 1 and the synchronizing output (sync out) of the AFG 2 are
used (gray dashed box). They send trigger signals to the other devices. To get a
sufficient signal to noise-ratio typically 106 events are averaged.
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Figure 3.5: The time domain set up consists of the sample in the cryostat (dark
blue dashed box), the qubit excitation pulse generation (light blue
dashed box), the resonator probe signal generation (red dashed box)
and reflected probe signal detection (orange dashed box). All devices
are synchronized by a 10 MHz-clock and events are triggered by the
channel 1 of the AFG 2 (gray dashed box).
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Chapter 4

Transmon qubit measurements

With respect to quantum computing the most relevant qubit parameters are its
coupling g to neighboring circuit elements (in this case a resonator) and its co-
herence time T2 or equivalently the decoherence rate γq. The ratio g

γq
roughly

describes the number of operations which can be performed between the qubit
and resonator until the information is lost by the qubit. Flux qubits, which
have been extensively investigated at the WMI, have shown ultrastrong coupling
strength [52], but simultaneously poor coherence times [53]. The best coherence
times of superconducting qubits, were obtained for transmon type qubits [54–56].
Furthermore transmons simultaneously can provide coupling strengths exceeding
100 MHz [56–58], which is much larger than the typical deoherence rate and re-
sults in a good g

γq
ratio. Therefore, one task of the thesis was to implement a

transmon qubit process at the WMI. While in sec. 2.4 the design was discussed, in
this section experimental results of transmon qubits coupled to a CPW-resonator
is presented. Most of the results were obtained during the supervised master
Thesis of Javier Puerta-Martinez [48], furthermore, the master students Miriam
Müting [51] and Daniel Schwienbacher [59] contributed to the investigations.

The sample discussed here is a transmon qubit coupled to a λ/4 CPW resonator
as depicted in Fig. 4.1. The sample is built on a 250 µm thick silicon wafer wafer
with 50 nm thermal oxid. The resonator (highlighted in purple) is formed from a
100 nm niobium layer. For measurements the resonator is coupled to a signal line
via a coupling capacitor (green). The yellow marked transmon qubit, fabricated
in aluminum, is placed between centerstrip and grondplane of the CPW resonator.
For a good capacitive coupling the transmon is placed at the voltage anti-node
of the fundamental resonator mode. To excite the qubit a flux antenna depicted
orange in is incorporated on the chip.

To fully characterize the transmon properties, the data presented is structured
as follows. First, single-tone spectroscopy data is shown depending on a magnetic
field applied to the transmon. This gives access to the coupling between resonator
and qubit through the observation of avoided level crossings. By making use
of the AC-Stark effect in the dispersive regime, two-tone spectroscopy is used
to determine the qubit anharmonicity as well as the linewidth. The linewidth
determines the coherence time of the qubit. At the end of the chapter time
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Figure 4.1: Technical drawing of the investigated circuit with photograph insets.
The circuit consists of a λ/4 resonator (highlighted in purple), which
is connected to a read out port via a coupling capacitor (green). The
transmon qubit (yellow) is capacitively coupled to the resonator at
the voltage anti-node of the fundamental mode. The transmon qubit
has an antenna (orange) for driving.
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Figure 4.2: Relative reflected signal intensity (a) as well as reflected signal phase
(b) of the resonator in dependence of frequency and applied flux. The
dashed lines represent the calculated single-photon energy levels in the
coupled system for the system parameters evaluated in this chapter

resolved spectroscopy data is presented which also gives direct access to the decay
time of the qubit as well as its decoherence time.

4.1 Transmon spectroscopy

One of the most basic spectroscopy measurements is to continuously measure
resonator reflection spectra, while varying the magnetic flux applied to the trans-
mon. Since magnetic flux modulates the transition frequency of the transmon
ωq ∝

√
cos(2πΦ/Φ0), the transmon will periodically match the transition fre-

quency of the resonator (under the condition ωr<
√

8EJ0EC). In the resonator
spectra this manifests as avoided level crossings as shown in Fig. 4.2. Here, the
frequency depending reflection of the resonator was measured over a period of
one flux quanta. The theoretical single photon transition frequencies, based on
the system parameters determined in this chapter, are indicated by dashed lines
in the spectra. The relative reflected signal intensity is shown in Fig. 4.2 (a) and
shows a poor measurement contrast. This simply arises from the fact that for a
good internal quality factor in respect to the external quality factor the number
of photons absorbed by the resonator equal the number of photons emitted by the
resonator on average. A better resolution is obtained in the phase of the reflected
signal presented in Fig. 4.2 (b), where one observes a phase shift of π on resonance.
Starting at a flux value of Φ = −0.50Φ0 the qubit has a nearly vanishing transi-
tion frequency (ωq → 0) and, consequently, also the coupling vanishes (g → 0).
The resonator is here located at its bare frequency of ωr = 6.055 GHz. When in-
creasing the flux, the qubit frequency also increases and approaches the resonator
frequency at Φ = −0.20 Φ0. The qubit frequencies increases until Φ = 0 Φ0.
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Figure 4.3: Fine scan of a qubit-resonator anticrossing. (a) Relative reflected
signal intensity as a function of applied flux and frequency. (b) Mode
distance of the two dips visible in (a). (c) Cut through the black
dashed line in (a). The two clearly separated dips indicate that the
system is well within the strong coupling regime.

Subsequent, the qubit frequency decreases and matches the resonator frequency
again at Φ = 0.20 Φ0, where a second anticrossing is visible. A measurement
in the vicinity of the anticrossing with higher flux and frequency resolution is
given in Fig. 4.3 (a). Here, the anticrossing is clearly visible by the two well
separated resonance lines. The coupling on resonance can be extracted by calcu-
lating the distance of both resonances as shown in Fig. 4.3 (b). According to
Eq. (1.63) the coupling is given by half of the minimum mode distance leading to
g/2π = 67 MHz. A frequency sweep at this point is given in Fig. 4.3 (c). Here, the
resonance dips have equal depth, indicating an equal superposition of resonator
and qubit states. The large separation of the resonances in comparison to their
linewidth, shows that the system is well within the strong coupling regime.

4.2 Measurements in the dispersive regime

In order to measure the qubit in the dispersive regime two-tone spectroscopy
is performed as explained in sec. 3.3. The probe tone is set to the resonator
frequency for the qubit being in the ground state. The reflection of the probe
tone is measured while a second drive tone is applied to the qubit. Exciting the
qubit will change the resonator frequency and therefore the reflected probe signal.

AC-Stark shift

According to the Hamiltonian (1.69) the qubit frequency has a linear dependence
on the resonator population in the dispersive regime (∆ � g). In the mea-
surement presented in Fig. 4.4 (a) the qubit is first set to ωq/2π = 6.755 GHz,
implying ∆> 10g. Then, two-tone spectroscopy is performed using different probe
tone powers. For a better representation of the AC-Stark shift one can extract
the qubit transition frequency from fits to the spectra of Fig. 4.4 (a) and plot
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the applied flux to obtain the maximal qubit frequency.

them against the linear input power as shown in Fig. 4.4 (b). As it is visible the
qubit shows a decreasing transition frequency for higher probe power/increasing
resonator population. From this graph one can extract the probe power P de-
pendence of the qubit frequency, represented by the red linear fit. This allows to
relate the photon number in the resonator to the output power of the VNA via

g2

∆
〈â†â〉 = c1P, (4.1)

where c1 = 64.6MHz
mW

is the slope of the fitting curve in Fig. 4.4 (b), leading to

a calibration factor of 9.4photons
mW

or 1 photon ≡ −9.7 dBm referring to the VNA
output power. This is a reasonable number since taking into account attenuators
(−110 dB in total) and microwave cable losses (−10 dB to −20 dB ) the estimated
power at the sample is −130 dBm to −140 dBm for a single photon. For compar-
ison, for an overcoupled resonator one calculates for a single photon on average
a power of P = π~ωrγr = −134 dBm [40], which supports the validity of the
calibration.
Furthermore, from the data shown here a VNA-power depending broadening of
the qubit line is visible in Fig. 4.4 (c) and (d). This will be further discussed in
sec. 4.2.1.

Maximal qubit transition frequency

Performing two-tone spectroscopy for different flux values applied to the qubit
enables to map out the flux dependece of the qubit transition frequency as shown
in Fig. 4.5. Here, the qubit frequency was measured around Φ = Φ0 to obtain the
maximal transition frequency to the qubit of ωQ,max = 6.755 GHz. Furthermore,

the expected
√

cos(2πΦ/Φ0) dependency of the qubit frequency is visible here.
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sitions (red arrows). (b) In a low power twotone spectroscopy only the
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spectroscopy the two-photon transition |g >→ |f > get visible.

Qubit anharmonicity

The qubit anharmonicity, which is equal to −Ec for a transmon type qubit (see
sec. 1.5.4), is of interest both from a technical and from a physical point of view.
On the one hand one can calculate EC of the transmon design and compare it
to the design value and on the other hand the anharmonicity sets a limit to
the minimal pulselength in time resolved experiments. The uncertainty relation
∆E∆t ≥ ~/2 implies that a narrow wave package has a broad energy/frequency
spectrum. For operating a transmon as a qubit the pluse length τ should there-
fore be at least τ ≥ ~/(2Ec), otherwise higher excitations of the transmon can be
induced. The anharmonicity can be determined from the position of the second
transmon level (denoted as state |f〉 in the following) in a two-tone spectroscopy.
For parity reasons it is not possible to excite the second level of the transmon
qubit in a single photon process from the ground state (|g〉 → |f〉). Instead
a two-photon process at half the transition frequency ωgf is used as depicted
in Fig. 4.2 (a). As indicated the two-photon resonance is EC/2 below the first
transition resonance of the qubit. For typical design values of transmon qubits
(20 < EJ/EC < 80) this translates to a separation of 100−300 MHz between both
resonances. Figure 4.2 (b) and (c) show two-tone spectra for different excitation
powers applied to the qubit. For low power [Fig. 4.2(b)] only the fundamental
transmon transition is visible, whereas the two-photon excitation becomes visi-
ble for higher powers [Fig. 4.2(c)]. This is due to the fact that the transition
matrix elements of single-photon processes scale linearly with excitation ampli-
tude, whereas for two-photon processes there is a quadratic dependence. From
the measurement the anharmonicity calculates to −Ec/h = −302 MHz. Together
with the maximal transition frequency of ωq/2π = 6.755 GHz it is now possible
to calculate EJ0/h = 18.8 GHz. The ratio EJ0/EC = 62 confirms that the qubit
is well within the transmon regime and the goal of fabricating a transmon qubit
within this thesis was met.
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Figure 4.7: Qubit linewidth as a function of probe amplitude (a) and as a function
of excitation amplitude (b). (c) shows the qubit transition with the
best measured linewith of ∆f = 838 kHz.

4.2.1 Qubit linewidth

The qubit linewidth (∆f) is directly related to the coherence time of the qubit via
T2 = 1/(π∆f). Since T2 is the mean half life time of a quantum state the linewidth
gives direct information about the usability of a qubit in a quantum information
set up. Because the circuit interaction time is given by the coupling rate g/(2π)
one aims for ∆f � g/(2π). In a measurement of the qubit linwidh one has to take
into account that the detected linewidth depends both on the probe amplitude
as well as on the excitation amplitude. Fig. 4.7(a) shows the dependence of the
linewidth on the probe power. The data points were obtained from Lorentzian fits
of the measurement presented in Fig. 4.4. Since the probe tone leads to a coherent
population of the resonator, the photon number has an uncertainty of

√
n, where

n is the mean resonator occupation. Due to the dispersive shift of the qubit with
respect to the resonator population this translates to an uncertainty in the qubit
transition frequency. For g2/(2π∆) < ∆f this can be approximated by an increase
in linewidth of g2/(2π∆)

√
n [36], as indicated by the red dashed line in Fig. 4.7(a).

The dependence of the detected qubit linewidth on the excitation amplitude is
presented in Fig. 4.7(b). The power dependence directly arises from the two-
level nature of the resonance as already seen in the theory section (Fig. 1.14
(c)). Therefore, to measure the natural linewidth of the qubit, one has to use
small probe (n � 1) and small excitation amplitude (ρee � 1) as done in the
measurement of Fig. 4.7(c) (PVNA = −40 dBm, PMWS = −65 dBm). A Lorenzian
fit (red line) leads to ∆f = 838 kHz, equivalent to T2 = 380 ns. With this the
qubit already fulfills ∆f � g/(2π) and as seen in the next section the directly
measured T2-time is even better.
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4.3 Transmon time resolved two-tone measurements.

4.3 Transmon time resolved two-tone
measurements.

Time resolved two-tone measurements give a direct access to the decay time T1

and decoherence time T2 of the qubit. In general, qubit manipulations are per-
formed here by sending microwave pulses via the antenna line to the qubit and
subsequently the qubit state is read out with a probe pulse measuring the res-
onator reflection (see also sec. 3.4 for technical details). Due to the dispersive
interaction between qubit and resonator the resulting qubit state is mapped on
the resonator reflection. In the following three different measurements will be
presented. First of all, to characterize the qubit response to drive pulses a so
called driven Rabi measurement will be shown. Here pulses of different frequency
and length are sent to the qubit. This will lead to rotations around the σx-axis of
the Blochsphere. The resulting qubit state depends both on the pulse length and
frequency. Second, the qubit decay (T1) measurement is shown. For measuring
T1 one excites the qubit and waits for a time τ before measuring qubit excitation
probability. Since the qubit decays in time, the excitation probability will depend
exponentially on the duration of the waiting time τ . Third, the decoherence time
(T2) will investigated. Here, one first excites the qubit to a superposition state
on the equator of the Blochsphere and let the state evolve subsequently, which
will cause decoherence of the state. Since via the resonator only < σz > measure-
ments are possible, the decoherence of the state has to be mapped on < σz > via
additional pulses.

Driven Rabi measurements

Driven Rabi experiments are a prerequisite for controlled σx rotations of the
qubit. Here, one aims for mapping the excitation signals sent to the qubit to
the resulting qubit rotation. As indicated in Fig. 4.8 (a) the protocol consists
of a drivepulse with constant power and variable length followed by the read
out. Due to the dispersive interaction the read out can be performed by mea-
suring the resonator reflection. Depending of the drive length the qubit will
perform an amount of rotations on the Blochsphere, which is physically nothing
but the continuous absorption and induced emission of photons. In Fig. 4.8 (b) a
driven Rabi measurement is shown for various frequencies. In the color encoded
resonator reflection the expected oscillating behavior is clearly visible (compare
theory Fig. 1.14 (b)). The oscillation period is increasing when drive and qubit
are detuned (δ = ωq − Ωd), since the drive then is no longer phase matched with
the excited plasma oscillation of the qubit. Due to decoherence for times τ � T2

the qubit state is not a well defined quantum state anymore, but transforms into
a classical mixture of excited and unexcited state. This leads to an exponen-
tial damping of the qubit oscillations. In Fig. 4.8 (c) a cut at ω = 6.7385 is
shown. From this one can fit the Rabi frequency to ΩRabi = 11.6 MHz to calibrate
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Figure 4.8: Calibration of the drive via a driven Rabi sequence. a) The proto-
col consisting of an excitation pulse of variable length followed by a
read out. b) Color encoded qubit excitation depending on the drive
frequency and length. The protocol starts at t ≈ 0.35 µs ≡ τ = 0.
c) Frequency cut at ω = 6.7385 indicated by the black dashed line
in (b). The red line is a fit to the data (blue dots) to calibrate the
Rabi-frequency of ΩRabi = 11.6 MHz.

qubit rotations. In the following pules of duration tπ = 1
2ΩRabi

, will be denoted
as π-pulse, a pulse of this length performs a rotation of π on the Bloch sphere.
Equivalently, a pulse of tπ/2 = 1

4ΩRabi
will be denoted as π/2 pulse.

T1 measurement

The characteristic lifetime of a qubit excitation is denoted as T1-time and can
be measured as as depicted in Fig. 4.9 (a). Initially, the qubit gets excited by a
π-pulse (blue). After waiting for a time of τ the qubit is measured via measuring
the reflection of the resonator with a probe pulse (red). By varying τ one can
observe the exponential decay of the qubit as shown in Fig. 4.9 (b), where the
detected reflected voltage is plotted versus the waiting time τ . Fitting the data
with an exponential decay leads to T1 = 298 ns

T2 measurement

The T2-time is the characteristic decay time for the off-diagonal elements in the
density matrix of the qubit. Therefore, it describes the transition from a quantum
superposition state to a statistical mixture. The protocol used here to determine
the T2 time is a Ramsey-sequence as depicted in fig 4.10 (a). In a Ramsey sequence
first a π/2-pulse is applied to the qubit, then a waiting step of duration τ is
performed and finally a second π/2-pulse is applied to the qubit and the state
is read out (red pulse). In an ideal case, the first π/2-pulse excites the qubit
to a superposition state on the equator of the Bloch sphere. During the waiting
step the qubit will then perform a precession in the x-y plane. After the second
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Figure 4.9: Measurement of the T1-time. a) First, the qubit is excited by a π-pulse
(blue). After a waiting time of τ the qubit population is measured via
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Figure 4.10: Decoherence time measurement with a Ramsey sequence. a) The
protocol starts with an excitation to a quantum superposition state.
In the wait time τ the qubit can either decay or dephase. The second
pulse either further excites or counteracts the qubit’s plasma oscil-
lation depending of the excitation and phase of the qubit state. b)
Measurement of Ramsey fringes (blue dots). From the damping one
can fit (red line) T2 = 555 ns. From the oscillation period the qubit
and drive detuning of δ = 10.6 MHz is obtained
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π/2-pulse the qubit will end up ideally in an excited state (< σz >= 1, in the
case of resonant driving). However, typically the qubit will show both relaxation
and dephasing changing the final state. In the presence of relaxation (γ1), the
qubit can decay back to its ground state during the waiting step. The second π/2-
pulse will bring the qubit again to the equator of the Blochsphere (< σz >= 0).
In the case of dephasing (γφ), the qubit can transit in the waiting step from a
quantum superposition to a statistical mixture. In that case the second π/2-pulse
will not change the qubit state, so again one obtains < σz >= 0. Therefor, both
relaxation and dephasing reduce the probability to find the qubit in an excited
state at the end of the protocol. Since one measures typically with a detuned
drive ωd = ωq + δ one observes additionally an oscillation due to time dependent
phase-matching of the qubit’s plasma oscillation with the second drive-pulse. The
corresponding Ramsey fringes measurement is shown in fig 4.10 (b). Here, both
the exponential damping as well as the oscillations are visible. For fitting the
detected voltage amplitude the fit function V (t) = V0 exp(−τ/T2) cos(δ ∗ (τ − t0))
was used, where V0 is an amplitude factor and t0 a factor to correct time and
phase offsets. From the fit one obtains a detuning of δ/(2π) = 10.6 MHz and a
coherence time of T2 = 555 ns.

4.3.1 Conclusion

The goal of implementing a transmon qubit process at the WMI is successfully
met here. Basic circuit parameters like the anharmonicity and the coupling to
the resonator are in good agreement with simulations, which enables on demand
parameter design for future experiments. The measured decay T1 = 298 ns and
decoherence T2 = 555 ns times are comparable to initial experiments on transmons
[3, 4]. A main contribution of loss and decoherence for transmons is related to
surface defects. Therefore, if aiming for for higher coherence times, one has to
start surface cleaning methods like done in other groups [54, 60]. Presently,
transmon qubits delveloped within this thesis are adapted for application as a
single photon source, nonlinear phase shifter or for integration in hybrid circuits
[38]. In this context also the simulation methods for simulating qubit parameters
developed in this thesis are used.

64



Chapter 5

RF SQUID coupled resonators

1

In circuit quantum electrodynamics, the controllable interaction of circuit el-
ements is a highly desirable resource for quantum computation and quantum
simulation experiments. The most common method is a static capacitive or in-
ductive coupling between cavities and/or qubits. In such a system, exchange of
excitations can be controlled by either tuning the circuit elements in and out of
resonance or using sideband transitions [62–65]. While this approach has proven
to be useful for few coupled circuit elements, it seems impracticable for larger
systems, where it is hard to provide sufficient detunings between all circuit ele-
ments [66]. Therefore, one may alternatively use tunable coupling elements such
as qubits [67–70] or SQUIDs [71–76]. One particular example for an interesting
application of such actively coupled circuit elements are quantum simulations of
bosonic many-body Hamiltonians [5–7, 77, 78]. In such a scenario, the bosonic
degrees of freedom can be represented by networks of (possibly nonlinear) su-
perconducting resonators. For this quantum simulator, a tunable coupler would
constitute an important control knob. A more general scope of this device is the
controllable routing of photonic states on a chip, which is interesting for quantum
information as well as quantum simulation experiments.
In this work, we experimentally investigate the case of two nearly frequency-
degenerate superconducting transmission line resonators coupled by an rf SQUID
acting as a tunable mutual inductance in the spirit of Refs. [28, 79, 80]. Al-
though such a setup looks similar to the case of a flux qubit mediated cou-
pling [67], there are important conceptual differences resulting in performance
advantages. In a flux qubit coupler [81, 82], the resonator-resonator coupling is
limited to twice the dispersive qubit-resonator shift (typically a few MHz). Efforts
to increase the maximum coupling by relaxing the dispersive coupling assump-
tion have contributed to the limited isolation of 2.6 dB between the resonators
in the off-state of the coupler in Ref. [67]. This conceptual disadvantage obvi-
ously outweighs the potential quantum switch properties [81, 82] of the flux qubit
coupler for many practical applications. In contrast, couplers between super-
conducting qubits based on the classical phase dynamics of an rf SQUID have

1The following is taken from the authors publication entitled “Tunable coupling of
transmission-line microwave resonators mediated by an rf SQUID”.[61]

65



Chapter 5 RF SQUID coupled resonators

shown large couplings [72, 74, 75] and good isolation properties [75]. Compared
to our previous work [67], we achieve two significant improvements: First, the
range of achievable coupling strengths between the resonators is increased from
g/(2π)∈ [−28.7 MHz,8.4 MHz] to g/(2π)∈ [−302 MHz, 37 MHz]. Second, compar-
ing the signal transmission between both resonators for the coupled (g � 0) and
decoupled (g' 0) case, the signal isolation is increased from 2.6 dB to 38.5 dB.
Especially the increased isolation of the device discussed in the present work is
a key prerequisite for several applications both in quantum simulation and quan-
tum computation setups. The manuscript is structured as follows. After briefly
discussing the relevant theory in Sec. 5.1 we introduce the sample and measure-
ment setup in Sec. 5.2. In Sec. 5.3, we present a spectroscopic characterization
of the rf SQUID coupler followed by a short discussion of the additional feature
of parametric amplification observed in our device in Sec. 5.4. We close with a
summary and conclusions in Sec. 5.5.

5.1 System Hamiltonian
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Res A

Res B

10 mm

(a) (b)100 µm 200 µm

B L0

Lrf(F)

L0

MAB=Lrf(F)
L0

2

Figure 5.1: Sample and measurement setup. (a) Sketch of the sample chip. Dark
blue: Resonator groundplanes. Green: Resonator center conductors;
light blue: Feed line center conductors. The insets are (false color)
optical micrographs of the coupling capacitors (orange), the rf SQUID
(red), and the rf SQUID junction (yellow). (b) Operating principle of
the device: Both resonators share an inductance L0 (purple) with the
SQUID and the SQUID itself can be treated as an effective inductance
Lrf(Φ) (red, see Eq. (5.4)), resulting in an effective mutual inductance
of MAB = L2

0/Lrf(Φ) between both resonators (see Eq. (5.7)). The
sketched measurement setup contains attenuated input lines (indi-
cated by wiggly arrows), output lines including cryogenic and room
temperature microwave amplifiers (triangular symbols), and possible
measurement paths (blue dashed arrows).

An optical micrograph of the sample is shown in Fig. 5.1(a). Our system is
comprised of an rf SQUID galvanically coupled to the center conductor of two
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5.1 System Hamiltonian

coplanar stripline resonators. These resonators, A and B, can be described as
quantum harmonic oscillators using the Hamiltonian

Hres = ~ωAâ
†â+ ~ωBb̂

†b̂ . (5.1)

Here, ωA and ωB are the resonance frequencies and â†, b̂†, â, and b̂ are the
bosonic creation and annihilation operators. The effect of the rf SQUID on the
system properties can be modeled in terms of an effective inductance [27–29]. The
fluxes ΦA and ΦB generated by the resonators in the rf SQUID give rise to an
inductive interaction energy. The rf SQUID consists of a superconducting loop
with inductance Ls, which is interrupted by a Josephson junction with critical
current Ic. The flux Φ threading the SQUID loop gives rise to a circulating
current

Is(Φ) = −Ic sin(2πΦ/Φ0) , (5.2)

where Φ0 is the flux quantum. Here, Φ is the sum of the externally applied flux
Φext and the flux generated by Is,

Φ = Φext + LsIs(Φ) . (5.3)

Since, in the experiment, the screening parameter β= 2πLsIc/Φ0< 1, the depen-
dence of the total flux on the external flux is single-valued. From Eq. (5.2) and
Eq. (5.3), an expression for the effective SQUID inductance with respect to ex-
ternal fluxes is obtained,

1

Lrf(Φ)
=

∂Is

∂Φext

= − 1

Ls

β cos (2π Φ
Φ0

)

1 + β cos (2π Φ
Φ0

)
. (5.4)

For the flux ΦA,B, generated by the resonators A, B respectively, in the limit
ΦA,B � Φ0, one can write the change in SQUID energy caused by the resonator
fluxes as [27, 74, 79, 83–85]

Hind =
(ΦA − ΦB)2

2Lrf(Φ)
=

Φ2
A + Φ2

B − 2ΦAΦB

2Lrf(Φ)
. (5.5)

Inserting the fluxes generated by the resonators [86] in Eq. (5.5), two essential
properties of the system become obvious. First, the Φ2

A,B-terms in Eq. (5.5) lead
to dressed resonator frequencies

ω̃A,B = ωA,B

√
1− 2

L2
0

LA,BLrf(Φ)
≈ ωA,B

(
1− L2

0

LA,BLrf(Φ)

)
, (5.6)

where LA,B is the inductance of the resonators and L0 the inductance of the
segment shared between resonator and rf SQUID. The second effect of Eq. (5.5),
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caused by the term ∝ΦAΦB, is a flux dependent coupling

gAB(Φ) = −
√
ωA

LA︸ ︷︷ ︸
IA

√
ωB

LB︸ ︷︷ ︸
IB

L2
0

Lrf(Φ)︸ ︷︷ ︸
MAB

(5.7)

between the resonators. As indicated in Eq. (5.7) the coupling can be seen as the
product of the resonator vacuum currents (IA,IB) at the SQUID position with
the effective second order mutual inductance MAB = L2

0/Lrf(Φ) mediated by the
SQUID. Due to their vicinity on the chip, the two resonators also induce directly
currents into each other, resulting in a flux independent direct inductive coupling
component gI between the resonators. Thus the total coupling reads

g(Φ) = gAB(Φ) + gI. (5.8)

Equation (5.4) shows that gAB(Φ) can be positive or negative depending on the
applied flux. By applying a suitable flux, the rf SQUID mediated coupling com-
pensates the direct inductive coupling. In this way, one can turn on and off the
net coupling between the resonators. After a rotating wave approximation the
full Hamiltonian reads

H = ~
(
â† b̂†

)( ω̃A g(Φ)
g(Φ) ω̃B

)(
â

b̂

)
. (5.9)

The eigenvalues of Eq. (5.9) correspond to the new eigenfrequencies

Ω1,2 =
ω̃A + ω̃B

2
±
√
g(Φ)2 +

(ω̃A − ω̃B)2

4
. (5.10)

5.2 Sample and Measurement Setup

Figure 5.1(a) shows the layout of the sample chip. In the resonator design, we
omit the second groundplane to reduce the direct geometric coupling between the
two resonators. The rf SQUID is galvanically connected to both center strips of
the resonators over a length of 200 µm. The sample is fabricated as follows. First,
a 100 nm thick niobium layer is sputter deposited onto a 250 µm thick, thermally
oxidized silicon wafer. The resonators and the SQUID loop are patterned us-
ing optical lithography and reactive ion etching. The Josephson junction of the
SQUID is fabricated in a Nb/AlOx/Nb trilayer process with SiO2 as insulating
layer between top and bottom electrode [87].2 The resonators have a characteris-
tic impedance of Z0 = 64 Ω and the resonance frequencies ωA/2π= 6.461 GHz and

2Of course the ferromagnetic layer of Ref. [87] was skipped.
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5.3 Resonator spectroscopy

ωB/2π= 6.482 GHz3. The SQUID loop has dimensions of 200 µm× 100 µm and a
screening parameter β= 0.934 to maximize the coupling according to Eq. (5.4)
while keeping the SQUID monostable. The sample is mounted inside a gold plated
copper box, which is attached to the base temperature stage of a dilution refrig-
erator operating at 26 mK. A superconducting solenoid attached to the top of
the sample box is used to generate the external flux applied to the rf SQUID. As
depicted in Fig. 5.1(b), one port of each resonator is connected to an attenuated
input microwave line, whereas the remaining ports are connected to output lines
containing microwave amplifiers.

5.3 Resonator spectroscopy
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Figure 5.2: Through transmission magnitude (color coded) as a function of probe
frequency and externally applied flux for (a) resonator A and (b) res-
onator B. The red arrows mark the flux values, for which transmis-
sion vs. frequency cuts are shown in Fig. 5.4. (c) Fit (red line) of
Eq. (5.10) to the extracted center frequencies (crosses). The modes
are taken from the through measurements, where they are more pro-
nounced. This is especially necessary when the coupling is smaller
than the detuning of the resonators.

We first extract the properties of the rf SQUID coupler from transmission mea-
surements through the individual resonators. As indicated in Fig. 1, we call
this type of measurement a “through-measurement”. In contrast, in the “cross-
measurements” we inject a signal into one of the resonators and probe the output
of the other one. In these measurements, the applied microwave power corre-
sponds to an average photon number of about one in the resonators. In Fig. 5.2(a)
and Fig. 5.2(b), the through measurements of resonator A and B are shown de-
pending on the applied flux Φext. According to Eq. (5.4) and Eq. (5.5), the mod-
ulation of the resonator modes due to the presence of the rf SQUID is Φ0-periodic
and symmetric with respect to Φext = Φ0/2. The two modes of Eq. (5.10) manifest

3The values given here and in the following for ωA, ωB and β are obtained by fitting Eq. (5.10)
in Sec. 5.3 to the data displayed in ig. 5.2.
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Chapter 5 RF SQUID coupled resonators

themselves as two resonances in the spectroscopy data. As expected, we observe
a flux dependent mode distance, caused by the flux tunable mutual inductance
of the rf SQUID. For most flux values, one observes two resonance peaks inde-
pendent of the chosen input and output port. However near Φext = 0.468 Φ0 and
Φext = 0.532 Φ0, only a single peak is present in the through measurements and
cross transmission is strongly suppressed (see Fig. 5.3). These are the points where
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Figure 5.3: Cross-transmission from resonator A to resonator B as a function of
the applied flux. Near Φext = 0.468 Φ0 and Φext = 0.532 Φ0 (white ar-
rows), the resonators decouple and signal transmission is blocked. The
red arrows mark the flux values, for which transmission vs. frequency
cuts are shown in Fig. 5.4.

the SQUID-mediated coupling compensates the direct inductive coupling result-
ing in a vanishing total coupling and, hence, completely decoupled resonators.
Note that for g(Φ) = 0, the Hamiltonian of Eq. (5.9) becomes diagonal and each
of the two modes reflects the excitation of one of the resonators. In Fig. 5.2(c), the
center frequencies of the normal modes Ω1,2 derived from the data in Fig. 5.2(a)
and Fig. 5.2(b) are plotted along with a fit using Eq. (5.10). Upon closer inspec-
tion, we find a minimum distance on the order of 20 MHz between these modes.
This finite gap is caused by a small detuning ∆ =ωA−ωB = 2π× 21.3 MHz of
the resonators. We also observe different decay rates of the resonators, which we
extract from the through measurements of both resonators at a decoupling point.
Lorentzian fits lead to γA/2π= 3.6 MHz and γB/2π= 6.1 MHz, which is in the
overcoupled regime [39, 88]. The fact that resonator A has a smaller linewidth
and a slightly higher eigenfrequency than resonator B indicates a smaller effective
coupling capacitance [32]. We attribute this observation to fabrication or sample
contacting imperfections. Therefore, we assume LA/LB≈ 1. Furthermore, we de-
fine the fitting parameter g0 =

√
ωAωBL

2
0/(
√
LALBLs). In this way, the rf SQUID
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5.3 Resonator spectroscopy

coupling reads gAB = g0β cos (2π Φ
Φ0

)/[1+β cos (2π Φ
Φ0

)]. Fitting Eq. (5.10) to the
data as shown in Fig. 5.2 (c), we obtain ωA/2π= 6.461 GHz, ωB/2π= 6.482 GHz,
β= 0.934, gI/2π= 29.0 MHz and g0/2π= 20.4 MHz. From the mode distance we
find g(Φ)/2π ranging between 37 MHz and −320 MHz. Beyond this value, the
lower mode becomes too broad due to its steep flux dependence.
Next, we analyze the properties of our device in the coupled and decoupled state
in more detail. Because of the small detuning of the resonators, the coupled modes
are not necessarily symmetric and antisymmetric superpositions of the uncoupled
modes. This is also seen in the spectroscopy of the single resonators (see Fig. 5.2),
where the modes have different intensities. The mode mixing can be estimated
from the eigenvectors of the Hamiltonian in Eq. (5.9). For g/2π= 37 MHz and
g/2π=−320 MHz we obtain the mixing ratios 63:37 and 52:48, respectively.
Hence, in the latter case, our sample satisfies the condition |g|� |∆|, where the
detuning becomes insignificant. In the decoupled case near Φext = 0.468 Φ0 and
Φext = 0.532 Φ0, the off-diagonal elements in the Hamiltonian of Eq. (5.9) vanish
and the modes are pure excitations of resonator A or B.
In this situation, it is particularly instructive to examine the cross-transmission
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Figure 5.4: Through- (red) and cross-measurements (blue), obtained for three dif-
ferent flux values. (a) Φext = Φ0/2,|g|� |∆|: strongly coupled regime,
only the mode Ω1 is shown. (b) Φext = 0.468Φ0/2, |g| ' 0: decoupling
point. (c) Φext = 0.439Φ0/2, |g| '∆.

spectra such as the one shown in Fig. 5.3, where resonator A is driven and res-
onator B is probed. Here, we clearly see that in two narrow regions around
Φext = 0.468Φ0 and Φext = 0.532Φ0, where the net coupling g(Φ) approaches zero,
the microwave transmission between the resonators is blocked. We gain further
insight by comparing the through- and cross-transmission spectra in Fig. 5.4(a)
and Fig. 5.4(b). For |g(Φ)| � |∆| [see Fig. 5.4(a)], both measurements exhibit
similar peak heights. Since both measurements use the same output line, we relate
the small difference of approximately 1.5 dB mainly to the slightly different losses
in the input lines. For g(Φ)≈ 0, however, the cross-transmission is suppressed by
40 dB on resonance as shown in Fig. 5.4(b), corresponding to a relative transmis-
sion change of 38.5 dB. This result confirms that we can sufficiently compensate
the direct inductive coupling with the tunable SQUID-mediated coupling. Fi-
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Chapter 5 RF SQUID coupled resonators

nally, in Fig. 5.4(c) we show the transmission for a flux value, where g(Φ) and
∆ are comparable. In the through measurement, the detuning manifests itself in
the form of unequal peak heights and an anti-resonance dip, which is not centered
between the resonance peaks [89, 90].

5.4 Parametric amplification
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Figure 5.5: Through-transmission vs. frequency around the coupled mode fre-
quency Ω1 for Φext = 0.450Φ0 and an additional applied flux-drive
tone with frequency ωD/2π= 12.944 GHz for different drive powers
PD. The drive power refers to the power at sample input.

So far, we have controlled the inductance of the rf SQUID and therefore the cou-
pling between the two resonators using a quasistatic flux bias through the SQUID
loop. When additionally modulating this inductance at suitable microwave fre-
quencies, one expects parametric amplification. In contrast to traveling-wave
parametric amplifiers, where the nonlinear medium extends over a length compa-
rable to the wavelength (e.g., many SQUIDs in a transmission line) [91–93], our
setup belongs to a class of experiments where a single SQUID couples to a resonant
circuit [76, 94–98]. Although this approach suffers from bandwidth and dynamic
range limitations, it requires only a single Josephson junction and thereby reduces
fabrication complexity to a minimum, as it is required for scalable architectures.
Specifically, we exploit the flux-dependent resonance frequency of the Ω1 mode
and operate our device as a flux-driven parametric amplifier by applying an ad-
ditional drive tone at ωD = 2Ω1 to the input line. The drive tone periodically
modulates the flux threading the SQUID loop and therefore the mode frequency,
leading to parametric amplification. To characterize the performance of our de-
vice, we calculate the power gain (G) as well as the bandwidth characterized by
the full width half maximum ∆Ω of the amplified signals. Figure 5.5 shows the
transmission in the vicinity of Ω1/2π= 6.472 GHz and Φext = 0.450 Φ0 for different
values of the drive power. While the gain is increasing for higher drive strength,
the bandwidth decreases as expected. For a nondegenerate (phase-insensitive)
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gain of G= 20 dB, the gain-bandwidth product is G∆Ω/2π = 21.5 MHz. Check-
ing the theoretical relation [99]

√
G∆Ω(G) = const., we find a maximum deviation

of 2.5 similar to other experiments [100].

5.5 Conclusions

In conclusion, we present a flux-tunable coupling between two superconducting
resonators based on a SQUID containing a single Josephson junction. Spectro-
scopically, we measure negative and positive couplings ranging from −320 MHz
to 37 MHz. Furthermore, the observed suppression of the cross-transmission of
up to 38.5 dB proves the ability to effectively turn off the coupling and is an im-
portant improvement over previous work [67], where still 27.5% (2.6 dB change in
cross-transmission) of the signalpower was transmitted to the uncoupled resonator
for g ' 0. With the achieved performance, our coupler can be considered as a
useful tool for quantum computation with a controlled nearest neighbor interac-
tion or to route information on a chip in a controllable way. Regarding quantum
simulation experiments [5–7, 77, 101, 102], our device could be especially useful
because it allows one to change both amplitude and sign of the coupling constant.
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Chapter 6

Theory of an optomechanical
SQUID device

1

In optomechanics, the vibrational degree of freedom of a mechanical element
interacts with the electromagnetic field of an optical cavity, typically employing a
non-linear coupling. The latter is based on a change of the optical eigenfrequency
due to the displacement of the mechanical element from its resting position [103].
This rather generic scheme has been experimentally realized in many setups rang-
ing from gravitational wave interferometers [104] to atoms in optical traps and
solid state systems [105]. When using microwaves instead of optical frequencies,
one enters into the solid state analog of cavity optomechanics, which is called cir-
cuit nano-electromechanics. This field features integrated devices fabricated with
modern lithography methods and a natural connection to the highly successful
area of circuit quantum electrodynmaics (cQED) [106].
The most straightforward implementation of the opto-mechanical coupling in cir-
cuit nano-electromechanics uses a mechanical modulation of the capacitance of the
microwave resonator circuit, which in turn results in a modulation of its eigen-
frequency [107]. Following this approach, ground state cooling, phonon lasing,
electromechanically induced transparency and absorption, squeezing, entangle-
ment and state transfer have been demonstrated [13, 14, 108–113]. However, all
these effects can be achieved even for weak coupling strengths. Usually a large
effective electromechanical coupling is obtained by increasing the photon num-
ber, leading to a larger but linear coupling [103]. In order to achieve higher single
photon-phonon coupling strength, it was theoretically proposed [114–117] to im-
plement a dc SQUID into a microwave resonator and thus move from a capacitive
to an inductive electromechanical coupling scheme. Although the physics beneath
these ideas still relies on the conventional opto-mechanical coupling Hamiltonian,
a much higher coupling strength is expected.
In this work, we propose an rf SQUID as an active coupling element for me-
diating the interaction between a nanomechanical beam and a superconducting

1The following is taken from the authors prepared publication entitled “RF-SQUID medi-
ated strong coupling between a mechanical resonator and a microwave transmission line
resonator”.
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microwave resonator (see Fig. 6.1). For this circuit layout we derive a linear and
parametric coupling [76, 97, 118]. We show that for device parameters, which
are experimentally achievable [74, 85, 107, 119, 120, 120–122, 122, 123], the single
photon-phonon coupling strength exceeds both the mechanical and the microwave
cavity decay rate, putting the system into the strong coupling regime, which is
a key objective in optomechnics. Reaching the single photon-phonon strong cou-
pling regime opens wide variety of intersting experiments. For example, applying
a red detuned sideband drive enables coherent photon-phonon Rabi oscillations
on the single excitation level. Morover, as photonic states can be generated in
great versatility [124, 125], our proposed circuit constitutes an important step
towards the transfer of Fock states from the microwave to the mechanical oscilla-
tor [126] and the generation of discrete-variable electromechanical entanglement.
Complementary, driving the blue sideband can be utilized for the generation of
continuous-variable entanglement, an important resource for quantum commu-
nication [127–129]. Finally, the combination of blue and red sideband interac-
tions gives access to the creation of non-classical [130–132] single-mode squeezed
states [133]. We note that the reversed mechanism was used for the generation
of continuous-variable entanglement from single-mode squeezing in superconduct-
ing circuits [134, 135]. Simulating the above-mentioned applications for moderate
coupling strength, we obtain the following results: For the photon-phonon transfer
fidelity we predict values of up to 0.82 and for the continuous-variable entangle-
ment we reach an entanglement negativity En > 3. Converting the entangled
state to single-mode squeezing, one quadrature of the nanobeam is squeezed by
−7.5 dB below the vacuum uncertainty.
This manuscript is structured as follows: Sec. 6.1 derives the Hamiltonian of the
system. Here, we combine different theoretical concepts [28–30, 74, 85, 120, 136] to
predict the parametric sideband interactions between the mechanical and the mi-
crowave mode. In Sec. 6.2, we examine the coupling strength based on experimen-
tally verified parameters for our hybrid circuit elements [74, 85, 107, 120, 122, 123].
In Sec. 6.3, we use a Lindblad formalism to simulate ground state cooling, state
transfer as well as single- and two-mode squeezing protocols.

6.1 System Hamiltonian

In this section we derive the opto-mechanical interaction for a hybrid circuit con-
sisting of an rf SQUID, a mechanical resonator and a microwave resonator. The
rf SQUID acts as the coupling element between the mechanical and the microwave
resonator. As depicted in Fig. 6.1 (a), the rf SQUID is integrated into the cen-
ter conductor of a half-wavelength coplanar waveguide resonator (CPW) and one
segment of the SQUID loop is laid out as a freely suspended, doubly-clamped
metalized nanobeam. We discuss the specific case of an rf SQUID located at
the current antinode of the fundamental mode of the microwave resonator, where
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Figure 6.1: (a) λ/2 CPW resonator intersected by an rf SQUID at its center po-
sition. The SQUID dimensions are enlarged in comparison to the
resonator dimensions. The rf SQUID contains a Josepson Junction
(black cross) and one part of its loop is laid out as a free stand-
ing nanobeam (red). The microwave resonator couples flux into the
SQUID via a shared inductance (green). The displacement of the
nanobeam changes the SQUID area and therefore the enclosed flux.
A microwave antenna (encircled in orange) can be used to apply an
rf flux to the SQUID loop. (b) Complete mechanical analogon of
the circuit presented in (a). Two oscillators (red and blue), which
are coupled by a weakly nonlinear spring (purple). (c) Common op-
tomechnical coupling scheme, where a cavity length/frequency (blue)
depends on a mechanical oscillator (red) elongation. (d) Mechanical
analogon of (c): The length/frequency of a pendulum (blue) depends
on the elongation of a spring oscillator (red).

the inductive interaction is maximal. Additionally, the rf SQUID interacts with
the mechanical nanobeam via the change of its loop area due to the motion of
the beam. In the following, we show that this situation results in an inductive
coupling between the mechanical and the microwave resonator.

In general, an rf SQUID consists of a superconducting loop with inductance Ls,
which is interrupted by a Josephson-junction characterized by its critical current
Ic. The loop area for the nanobeam at its rest position is A0. Depending on the
flux Φ enclosed by its loop, the SQUID sustains a circulating current

Is(Φ) = −Ic sin(2πΦ/Φ0). (6.1)

Here, Φ0 is the flux quantum and the flux enclosed in the SQUID loop

Φ = Φext + LsIs(Φ) (6.2)

is the sum of all the externally applied fluxes Φext and the flux generated by
the circulating current in the SQUID loop. In the following we restrict ourselves
to the case, where βL = 2πLsIc/Φ0 < 1 and Eq. (6.2) has a unique solution.
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Combining Eq. (6.1) and (6.2), we are able to express the effective rf SQUID
inductance Lrf with respect to applied flux as

1

Lrf(Φ)
=

∂Is

∂Φext

= − 1

Ls

βL cos (2π Φ
Φ0

)

1 + βL cos (2π Φ
Φ0

)
. (6.3)

Note that Φ contains the applied flux Φext and the self generated flux of the
SQUID (see Eq. (6.2)). For a constant applied magnetic induction B this applied
flux is given by Φc = BA0 and thus Lrf(Φ) = Lrf(Φ(Φc)). For small flux changes
δφext � Φ0, the effective SQUID inductance Lrf(Φ(Φc)) can be considered con-
stant and the corresponding inductive energy change is given by [28, 29, 74, 83,
85, 120]

Hrf =
1

2Lrf(Φ(Φc))
δφ2

ext. (6.4)

A mechanical analogon of our circuit are two harmonic pendulums, which are
coupled by a weakly nonlinear spring as shown in Fig. 6.1 (b). For weak excita-
tions of the oscillators the spring can be treated linear. This is in contrast to the
common optomechnical interaction (presented in Fig. 6.1 (c) and (d)), where the
elongation of the mechanical oscillator leads to a modulation of the optical cavity
frequency. In that case the effective interaction can in general be linearized for
a large number of excitations (α � 1 and

√
α ≈

√
α + 1) in the optical cavity

[103].
To calculate the coupling between the resonator and the nanobeam, we next
compute the flux changes δφext in the rf SQUID loop caused by the microwave
resonator (Φa) and the nanobeam (Φb). For the configuration sketched in Fig. 6.1,
δφext then reads δφext = Φa + Φb. As the SQUID dimensions are much smaller
than the resonator wavelength, we can treat the rf SQUID as a point like element
in the microwave circuit, and write the external flux applied by the resonator to
SQUID as (see Sec. 6.5 for technical details)

Φa ≈ −L0I = −
√

2π
L0

La

√
~

2ωaCa

(â+ â†), (6.5)

where ωa is the microwave resonator’s fundamental mode frequency, and La

and Ca its inductance and capacitance, respectively. We further introduce L0 =
1/2Ls as the inductance of the unsuspended SQUID arm without the Josephson
junction (see Fig. 6.1). Furthermore, the bosonic ladder operators â and â† of
the microwave resonator are introduced. In general, also higher harmonics of the
microwave resonator can induce flux in the SQUID. For odd modes, one finds
that the the flux depends on the mode index n with Φa ∝

√
n [86] and therefore

the coupling strength mediated by the term ΦaΦb in Eq. (6.4) scales with
√
n.

The even modes do not couple at all, because they have a current node at the
SQUID position. If not indicated otherwise, we will focus on the fundamental
mode (n = 1) in the following.
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We next discuss how the flux applied to the rf SQUID loop depends on the
nanobeam’s motion. For this we restrict the discussion to the fundamental mode
of the nanobeam and assume that a static constant magnetic induction B is
applied perpendicular to the loop of the SQUID. Embedding a mechanical element
into the rf SQUID loop then leads to a dependence of the rf SQUID loop area A
on the effective displacement x of the nanobeam 2

A(x) = A0 + αlbx, (6.6)

where lb is the length of the nanobeam and α a scaling factor taking into account
the physical mode shape. For doubly clamped and highly stressed nanobeams the
mode shape is in good approximation a cosine, leading to α = 2/π [137]. The
elongation of the nanobeam will consequently lead to small a variation of the flux
penetrating the SQUID loop [116, 120]

Φext = BA(x) + Φa = Φc︸︷︷︸
BA0

+

δφext︷ ︸︸ ︷
Φb︸︷︷︸
Bαlbx

+Φa . (6.7)

Expressing the nanobeam’s displacement in terms of the ladder operators b̂ and
b̂†, we calculate the flux change due to the motion of the mechanical resonator to

Φb = Blbα

√
~

2meffωb

(b+ b†) = Blbαxzpf(b̂+ b̂†), (6.8)

where ωb is the resonance frequency of the nanobeam and meff its effective mass,
which is half the physical mass for doubly clamped nanobeams.
Expanding the quadratic term in the inductive interaction (Eq. (6.4)) for flux
variations of δφext = Φa + Φb, we obtain terms proportional to Φ2

a, Φ2
b, and ΦaΦb.

The Φ2
a term leads to a flux dependent resonance frequency of the microwave

resonator similar to Ref. [27]

ω̃a = ωa

√
1 + 2

L2
0

Lrf(Φ(Φc))La

≈ ωa + ωa
L2

0

LaLrf(Φ(Φc))
. (6.9)

Since in general Lrf(Φ) depends also on Φb, one can calculate here also a com-
mon optomechanical interaction of g0 = (∂ω̃a/∂Φ)(∂Φ/∂x)xzpf as a higher order
contribution to the system.

The Φ2
b term leads to a modification of the mechanical eigenfrequency of the

beam

2For a for highly stressed nanobeams the mode shape is in good approximation a cosine and
the effective displacement is 2/π times the maximal displacement [137].
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ω̃b = ωb

√
1 +

2B2l2bα
2x2

zpf

~ωbLrf(Φ(Φc))
≈ ωb +

B2l2bα
2x2

zpf

~Lrf(Φ(Φc))
, (6.10)

which is similar to the experiments of Ref. [120, 122].
The part of Eq. (6.4) containing the product ΦaΦb leads to the interaction

Hamiltonian

HI = − 1

Lrf(Φ(Φc))

√
ωa
L2

0

La

Blαxzpf√
~︸ ︷︷ ︸

≡g(Φ)

(â+ â†)(b̂+ b̂†). (6.11)

Due to the specific arrangement of our circuit components, we here obtain
a linear interaction Hamiltonian in contrast to the (dc) SQUID based propos-
als in Refs. [115, 116, 138]. The latter discuss SQUID based microwave resonator
nanobeam coupling, that only lead to a standard optomechanical Hamiltonian [17]
with an interaction Hamiltonian ∝ â†â(b̂+ b̂†).
For our case, we now discuss the limit |g(Φ)|� |ωa−ωb| for typical system param-
eters (see Sec. 6.2), where a direct exchange of excitations between the resonators
is strongly suppressed. Yet, since we obtained a flux-dependent coupling, we can
induce sideband transitions by applying parametric drive tones to the SQUID-
loop [30, 97, 136, 139, 140], leading to a time dependent coupling. The excitation
of the red sideband with a drive of frequency ω̃a − ω̃b induces photon-phonon
exchange of the form â†b̂ + âb̂†. The blue sideband with frequency ω̃a + ω̃b leads
to a two-mode squeezing operator of the form â†b̂† + âb̂, which can generate en-
tanglement [76, 133, 141] between microwave and mechanical resonator as well as
non-degenerate parametric amplification [76, 97, 141].

We now derive the sideband interactions explicitly, starting with the undriven
Hamiltonian

H = ~ω̃aâ
†â+ ~ω̃bb̂

†b̂+ g(Φ)(â+ â†)(b̂+ b̂†). (6.12)

The first (second) term on the right hand side describes the microwave (me-
chanical) harmonic oscillator with the modified flux dependent frequency ω̃a (ω̃b),
while the third term characterizes the flux dependent coupling between the res-
onators. Adding to the static bias flux Φc an additional small rf flux component
Φrf � Φ0 results in a time-varying applied flux of

Φc′ = Φc + 2Φrf cos(ωDt). (6.13)

We can calculate the coupling to first order by expanding g(Φ) around Φ(Φc)
to

g(Φ(Φc′)) ≈ g(Φ(Φc)) + 2
dg(Φ(Φc))

dΦc

Φrf︸ ︷︷ ︸
≡gD

cos(ωDt). (6.14)
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Using BA0 = Φc and defining the prefactor

CD =
1

Ls

√
ωa
L2

0

L

lbαxzpf

A0

√
~
, (6.15)

the SQUID driven parametric coupling rate is obtained to:

gD =CDΦrf

βL cos
(

2πΦ(Φc)
Φ0

)
1 + βL cos

(
2πΦ(Φc)

Φ0

) (6.16)

− CDΦrf

2πΦcβL sin
(

2πΦ(Φc)
Φ0

)
Φ0

(
1 + βL cos

(
2πΦ(Φc)

Φ0

))3

For red sideband driving ωD = ωa−ωb the interaction Hamiltonian (Eq. (6.11))
reads after a rotating wave approximation (RWA) as [30, 136]

HI = gD(â†b̂eiωDt + âb̂†e−iωDt). (6.17)

Similarly, for the blue sideband driving ωD = ωa + ωb we obtain after a RWA

HI = gD(â†b̂†eiωDt + âb̂e−iωDt). (6.18)

The driving of the SQUID flux leads to an explicit time dependence in the Hamil-
tonian. Therefore, using the red sideband drive, phonons and photons of different
energy can be parametrically converted into each other. The blue sideband drive
on the other hand enables the correlated creation and annihilation of photon-
phonon pairs, leading to entanglement of nanobeam and microwave resonator.

6.2 System parameters

In this section, we explore the magnitude of the effects achievable for the hy-
brid system based on typical parameters taken from the literature. For the me-
chanical resonator we take parameters for the aluminum beam of the experiment
discussed in Ref. [107]. The beam length is lb = 50 µm with a cross-section of
130 nm× 100 nm and an effective mass of 2 pg. The reported nanobeam proper-
ties [107] are a bare frequency of ωb/2π= 2.3 MHz, a line width of γb/2π= 19 Hz
and a zero point fluctuation of xzpf = 38 fm. More relevant than the line width is
the thermally induced decoherence rate Γb/2π ≈ kBT/(~ωb) × γb/2π= 3.4 kHz,
where we used T = 20 mK, which is a typical temperature for dilution refrigera-
tors.
For the microwave resonator we assume a bare frequency of ωa/2π= 5 GHz, a
line width of γa/2π= 50 kHz [123] and an impedance of Z = 50 Ω. Its geometrical
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Chapter 6 Theory of an optomechanical SQUID device

dimensions are a length of lr = 12 mm, a centerstrip width of W = 6.1 µm and a
gap of G= 10 µm between centerstrip and groundplane.
As a last system component we want to discuss the properties of the envisaged
rf SQUID. For outer loop dimensions of 4 µm× 55 µm we calculate a loop induc-
tance of Ls = 120 pH. Since the SQUID loop contains narrow strips of supercon-
ducting material, the inductance per unit length of the resonator is here locally
enhanced [52, 86]. For this layout, we obtain L0/Lr ≈ 3.2lb/lr

3. An additional
important factor is, whether the SQUID mediated coupling leads to decoherence
in the hybrid circuit. In this regard, we note that a system where two supercon-
ducting qubits are coupled galvanically by an rf SQUID demonstrated coherence
times of several micro seconds independent of the coupling strength [85].

B (mT)
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b
L

Figure 6.2: Envelope of Eq. (6.16) visualizing the achievable coupling rate gD/2π
in dependence of the SQUIDs βL value and the magnetic induction B
for Φrf = 0.01Φ0

Next, we discuss the SQUID driven coupling gD to investigate whether this cou-
pling can be employed for sideband-cooling and/or quantum state transfer. Since
we assumed Φrf � Φ0 in our deriviation of gD (Eq. 6.13 and Eq. 6.14), we set
rf drive amplitude to Φrf = 0.01Φ0 in the following. Figure 6.2 shows the coupling
gD obtained from Eq. (6.16) as a function of the βL value of the rf SQUID and
the externally applied static magnetic induction B. We find coupling rates up
to the MHz regime for βL values close to one. Technically, aiming for βL values
close to 1 is challenging as it requires precise control over the critical current Ic.
One way to overcome this fabricational issue is to replace the here proposed single
Josephson junction by a double junction element in form of a dc SQUID. Hereby,
βL becomes tunable and βL values up to 0.9 have been recently demonstrated in
this way for an rf SQUID [74].

3Since the narrow strips dimensions are still larger then the London penetration depth of
aluminum, the increased local impedance is mainly caused by the geometry and not by
kinetic inductance.

82



6.3 Cooling, state transfer, entanglement generation, and squeezing

Next, we discuss the impact of the material parameters on the achievable
coupling strength. Typical SQUID and in turn Josephson junctions designs
are based on the superconductor aluminum, which has a critical magnetic field
of Bc = 10 mT 4. This limits gD/(2π) to 5 MHz. To lower experimental re-
quirements we focus in the next section on a moderate coupling strength of
gD/(2π) ≤ 200 kHz, a value which is already in the strong coupling regime as
gD > γa,Γb.

6.3 Cooling, state transfer, entanglement
generation, and squeezing

In this section we investigate the transfer of information between the microwave
resonator and nano-mechanical system, entanglement between the subsystems and
squeezing of quadrature uncertainties in the subsystems to generate non-classical
states. We will use the parameters introduced in Sec. 6.2. To obtain optimal re-
sults of entanglement and squeezing, it will be beneficial to precool the mechanical
resonator into its ground state. The fundamental mode of the nano-mechanical
system will be populated with an average of nth = [exp( ~ωb

kbT
)−1]−1≈ 180 phonons

even at a temperature of 20 mK, which is a typical temperature of a dilution re-
frigerator. Since ωa � kBT/~, the microwave resonator is already in its ground
state at such a temperature. To cool the mechanical mode we drive for a time
t � 1/gD the red sideband transition, which couples the nanobeam with the
microwave resonator. The excitations present in the mechanics are hereby trans-
ferred to the microwave resonator, where they dissipate to the environment. In
the case γa,gD�Γb this effective cooling rate exceeds the absorption rate of ther-
mal phonons from the environment and the vibrational mode of the nanobeam is
cooled.

This cooling protocol can be quantitatively tested by studying the dynamics
of the system with a master equation that treats typical loss rates present in the
system as well as thermal excitations in a Lindblad form

ρ̇ = −i/~[H,ρ] + γaDâρ+ (nth + 1)γbDb̂ρ+ nthγbDb̂†ρ. (6.19)

Here, Dô = ôρô† − 1/2(ô†ôρ + ρô†ô) is the dissipator. The equation of motion
for the expectation value of an operator is then obtained by 〈 ˙̂o〉 = Tr(ôρ̇).

We simulated a ground-state cooling protocol for the nanobeam using differ-
ent modes of the microwave resonator as shown in Figure 6.3. Here, the thermal
number of excitations present in the mechanical and the photonic system are plot-
ted as a function of the coupling rate gD. We assumed a constant quality-factor

4Aiming for larger couplings niobium or niobium nitride with Bc1 > 100 mT could be used
instead.
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Figure 6.3: Number of excitations in the fundamental mode of the nanobeam
(blue lines) and harmonics of microwave resonator (red lines) during
sideband cooling using different resonator modes (n). The color code
is as follows: fundamental mode - solid line (n = 1), 2nd harmonic -
dashed line (n = 3), and 4th harmonic - dotted line (n = 5). Note,
that we have assumed a fixed quality factor of Q = 105 for all mi-
crowave modes in our calculations.

Qn = 105 for all microwave resonator modes. In the limiting case gD� γa, γb, the
number of occupation present in the mechanical and the photonic system saturate
at 〈â†â〉 = 〈b̂†b̂〉 = nthγb

γa+γb
. As evident from Figure 6.3, the cooling process reduces

the thermal occupation of the nanobeam, while creating a small thermal occupa-
tion in the microwave resonator mode used for the cooling process. Therefore it
is advisable to use separate modes for cooling and information processing.

Next, we discuss the ability to realize a photon-phonon-swap. The protocol
starts with a ground state cooling stage for the fundamental mechanical mode
using the n = 5 mode of the microwave resonator. Then, the n = 1 mode of the
microwave resonator is initialized in Fock state one (|1a〉), e.g. using a supercon-
ducting qubit embedded in the microwave resonator [124, 125]. This number state
can be generated on a timescale much faster than all other processes in our system.
As we intend to separate the fidelity for creating a Fock state in the microwave
resonator from the fidelity estimate for a state swap between the mechanical ele-
ment and the microwave resonator, we set the fidelity for a microwave Fock state
generation to 1. The next step is to swap this photonic quantum state to the
nanobeam by turning on the red side band interaction between the fundamental
microwave and nanomechanical resonator mode for a time τ = π

gD
. This time

corresponds to a π-pulse and thus exchanges the populations of nanobeam and
microwave resonator. Using Eq. (6.19) we calculate the probability to find the
system in the |0a,1b〉 state (nanobeam excited, microwave resonator unexcited)
at the end of the protocol. The results are plotted in Fig. 6.4 (red crosses) for
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Figure 6.4: Photon-phonon transfer fidelity versus coupling strength. The red
crosses show the fidelity for an ambient temperature of 20 mK and
the nanobeam initially cooled to the ground state. The blue dots
show the same for a temperature of T = 0 K.

different coupling strength and for comparison also for the case of a circuit tem-
perature of T = 0 K (blue dots). One observes that as the coupling rate increases
the difference between the two cases becomes smaller as one would expect similar
fidelities for Γb � gD. More significant for the fidelity is the resonator decay rate,
which is comparable to the coupling strength γa/gD ' 1. This result suggests
that our setup allows for storing photonic states in the mechanical mode and
retrieving them by the same strategy, which enables to integrate nanobeams in
cQED experiments on a single excitation level. For example driving the red side-
band for τ = π

2gD
in the above discussed protocol leads to the discrete entangled

state (|1a,0b〉+|0a,1b〉)/
√

2 with a similar fidelity as calculated in Fig. 6.4.
In the following we analyze the capability to generate two-mode squeezing [76,

112, 135, 142] using the blue sideband. This is of particular interest, because it al-
lows to create a continuous variable entanglement of the microwave resonator and
the nanobeam [143, 144]. One test to verify the successful creation of entangled
two-mode Gaussian states is the Peres-Horodecki criterion [145] and the amount
of entanglement is then expressed as the logarithmic negativity EN [146, 147]. A
negativity larger than zero (EN > 0) indicates an entangled state. Again we start
our protocol with a cooling procedure using the fifth resonator mode. We then
switch to a blue sideband drive between the fundamental modes of microwave res-
onator and nanobeam. For simulating our protocol, we use here gD = 150 kHz. In
Figure 6.5 the blue sideband drive starts at t = 0 entangling microwave resonator
and nanobeam. The negativity can be as large as 3.4, which is on par or even larger
than related experiments in the field of optomechanics and cQED [76, 112, 135].

Interestingly, the two-mode squeezed state can be converted into single-mode
squeezed states in both the microwave and nanomechanical system. Measuring
the quadratures of the microwave resonator, which is well established, can there-
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Figure 6.5: Logarithmic negativity of the two-mode squeezed state. After an ini-
tial ground state cooling step, the blue sideband drive is switched on
at t = 0. The plot shows the logarithmic entanglement negativity
versus time for gD = 150 kHz.

fore be used to indicate an initially two-mode squeezed state. This is appealing
since the direct measurement of the nanobeam’s and microwave resonators de-
grees of freedom and their cross-correlation might be technically challenging. For
this protocol we resume here the preceding sequence with the two-mode squeezed
state of Fig. 6.5. At t = 3.3 µs we switch off the blue sideband drive and switch on
the red sideband drive between the entangled modes. Figure 6.6 shows the evo-
lution of quadrature uncertainties normalized to the vacuum uncertainty. While
at t = 3.3 µs, the quadrature uncertainties of position and momentum are equal
within the microwave resonator and the nanobeam, respectively, they show con-
tinuous squeezing and desqueezing undergoing the red side band interaction. The
single-mode squeezing in the nanobeam reaches up to −7.5 dB (t = 4.2 µs), when
half of the populations are exchanged (gDtreddrive≈ π/2). Stopping the red side-
band drive here is a way to prepare a single-mode squeezed state. This is of
particular interest since states squeezed below the vacuum level (negative squeez-
ing value) are non-classical, which makes them an actual research topic both in
the microwave [76, 148] as well as in the mechanical [111, 149] domain. The here
presented protocol it is expected to exceed the experimentally reported squeezing
values for nanomechanical systems [111, 149].

6.4 Conclusions

We propose a circuit nano-electromechanical system employing an rf SQUID based
inductive coupling scheme between a microwave resonator and a nanomechani-
cal beam. For realistic device parameters we show strong single photon-phonon
coupling between the microwave resonator and the nanomechanical beam. The
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Figure 6.6: Uncertainties of the mode quadratures (∆X2,∆P 2) normalized to
their vacuum uncertainty in logarithmic units. Undergoing a beam
splitter interaction starting at t = 0, an initially two-mode squeezed
state is converted into single-mode squeezing.

inductive coupling is mediated by an rf SQUID. Contrary to the nonlinear in-
teraction in standard optomechanical systems, we derive here parametric beam-
splitter and two-mode squeezing interactions between mechanical and the optical
mode. Using only system parameters reported in the literature, we derive single
phonon-photon sideband interaction rates in the MHz range, which is well in the
strong coupling regime. We further show that this set-up is suitable to trans-
fer information between the optical and mechanical mode as well as to generate
significant continuous variable entanglement. Additionally our device allows to
prepare single-mode squeezed states which have a quadrature squeezed below the
vacuum uncertainty and are therefore in the non-classical regime.

6.5 Appendix-The current biased rf SQUID

In this section we discuss the case of an rf SQUID with current bias as depicted
in Fig. 6.7. We will show that an rf SQUID responses to a transport current like
to an external flux given by Eq. 6.5. This is useful since this enables to work with
the usual used interaction energy of Eq. 6.4.

The rf SQUID in Fig. 6.7 is biased by a current of It and the SQUID junction
has a critical current of Ic. The branches of the loop have here a generalized
inductance of L1 (branch without the junction) and L2 (branch with the junction).
The loopinductance Ls, present in the factor βL = 2πLsIc

Φ0
, reads then Ls = L1 +L2.

For small transport currents I2 � Ic the Josephson junction can be treated as a
flux dependent inductor in respect to transport currents with inductance [85]

LJ(Φ) =
Φ0

2π cos (2πΦ/Φ0)
. (6.20)
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Figure 6.7: In galvanically connected circuits the Josephson junction of the
rf SQUID is usually treated as a flux dependent inductor in respect
to transport currents with inductance according to Eq. 6.20

In that treatment the current through the SQUID junction calculates to [85]

I2 = It
L1

L1 + L2 + LJ(Φ)
= It

L1

Ls

β cos (2πΦ/Φ0)

1 + β cos (2πΦ/Φ0)
(6.21)

= − L1It

Lrf(Φ)
.

In this way it becomes obvious that a transport current can be treated as an
externally applied flux equivalent to Φt = −L1It, as done for the resonator flux
by Eq. 6.5.

6.6 Calculating equations of motion and
entanglement

Here some additional information is supplied for readers not familiar with the
used calculation methods.

equations of motion

The equations of motion for an operator ô can be derived with multiplying the
Liouvillian in Lindblad form from the left side with ô and calculating the trace.

tr(ôρ̇) = tr(ô(−i/~[H,ρ] + γaDâρ+ (nth + 1)γbDb̂ρ+ nthγbDb̂†ρ)) (6.22)

Here Dô = ôρô† − 1/2(ô†ôρ+ ρô†ô) is the dissipator and nth = (exp( ~ωb

kbT
)− 1)−1

the static equilibrium thermal occupation of the nanobeam. Using the proper-
ties tr(ôρ) =< ô >, tr(ôρ̇) =< ˙̂o > and the cyclic permutation of the trace
tr(ABC)=tr(BCA)=tr(CAB), one can calculate the equations of motion for the
expectation values.
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red sideband

We will look here at the equations of motion for the red sideband ωd = ωa − ωb.
After a rotating wave approximation the Hamilton reads

H = ~ωaa
†a+ ~ωbb

†b+ ~gD(a†beiωdt + ab†e−iωdt) (6.23)

After solving the equations of motion its useful for computational reasons to
transform to rotating variables

a =
1√
i
ãe−iωat b =

√
ib̃e−iωbt. (6.24)

This is done since many expectation values have a constant phase evolution in time
equal to a constant rotation in the complex plane. The transformation rotates the
expectation values for all quadratures to the real axis, but leaves their absolute
values unchanged. In new variables the equation of motion read as follows:

<
˙̃
a†a >= gD(< ãb† > + < ã†b >)− γa < ˜a†a >

<
˙̃
b†b >= gD(− < ã†b > − < ãb† >) + (γb(nth− < b̃†b >))

<
˙̃
ab† >= gD(< b̃†b > − < ˜a†a >)− γa/2 < ãb† > −γb/2 < ãb† >

<
˙̃
a†b >= gD(< b̃†b > − < ˜a†a >)− γa/2 < ã†b > −γb/2 < ã†b >

< ˙̃aa >= 2gD < ãb > −γa < ãa >

<
˙̃

a†a† >= 2gD < ˜a†b† > −γa < ˜a†a† >

< ˙̃bb >= −2gD < ãb > −γb < b̃b >

<
˜̄
b†b† >= −2gD < ˜a†b† > −γb < ˜b†b† >

< ˙̃ab >= gD(− < ãa > + < b̃b >)− γa/2 < ãb > −γb/2 < ãb >

<
˙̃

a†b† >= gD(− < ˜a†a† > + < ˜b†b† >)− γa/2 < ˜a†b† > −γb/2 < ˜a†b† >

(6.25)

This can be used to calculate the time evolution of vacuum, thermal or squeezed
thermal and vacuum states. Calculating [< ã† > , < ã > , < b̃† > , < b̃ >] would
furthermore allow to treat Gaussian states in general including e.g. coherent
states or displaced squeezed states.
For the sideband cooling process its able to derive an analytical formula for the
residual thermal occupation. In equilibrium the occupations will be constant

<
˙̃
a†a > = 0, <

˙̃
b†b > = 0 as well as the transition matrix elements <

˙̃
a†b > = 0,

<
˙̃
ab† > = 0. Inserting this in the differential equations and solving for < ˜a†a >
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= < a†a > and < b̃†b > = < b†b > one obtains

< a†a >=
4g2

Dγbnth

4g2
D(γb + γa) + γaγb(γa + γb)

, (6.26)

< b†b >=
4g2

Dγbnth + γaγb(γa + γb)nth

4g2
D(γb + γa) + γaγb(γa + γb)

. (6.27)

In the case of comparable small decay rates in the sense gD � γa,γb this can be
simplified to

< a†a >=< b†b >=
nthγb
γa + γb

, (6.28)

what can be seen as the effective thermal phonon occupation rate divided by
the total loss rate of the coupled system.

blue sideband

We will look here at the equations of motion for the blue sideband ωd = ωa + ωb.
After a rotating wave approximation the Hamilton is

H = ~ωaa
†a+ ~ωbb

†b+ ~g(eiωdtab+ e−iωdta†b†) (6.29)

Focusing on two mode squeezed thermal or vacuum states we only need to
calculate the quadratures < a†a >, < b†b >, < ab >, < a†b† >, which form
a differential system. The other quadratures do not evolve under a two mode
squeezing operation, if they are initially zero as for thermal or vacuum states. Af-
ter solving the equations of motion its useful to make a coordinate transformation
ˆ̄o = ô

√
i exp(iωdt) for all coordinates. Importantly this transformation does not

change the amplitude of the expectation values. The equations of motion read

<
˙̄
a†a >= gD( ¯< ab >− ¯< a†b† >)− γa < ¯a†a >

<
˙̄
b†b >= gD( ¯< ab >− ¯< a†b† >)− γb < b̄†b >

< ˙̄ab >= gD(< ¯a†a > + < b̄†b > +1)− γa/2 < āb > −γb/2 < āb >

<
˙̄

a†b† >= −gD(< ¯a†a > + < b̄†b > +1)− γa/2 < ¯a†b† > −γb/2 < ¯a†b† >

(6.30)

From this follows < āb >= − < ¯a†b† > for initially vacuum or thermal states.

entanglement

We note here that a two mode squeezing operation transforms Gaussian states to

Gaussian states. Therefore the knowledge of the expectation values< (â†)i(â)j(b̂†)k(b̂)l >
with i + j + k + l ≤ 2 is sufficient to describe the full state. More over white
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noise, like thermal noise, leave states Gaussian. Additionally we want to mention
here that linear operation e.g. beam-splitter interactions maps Gaussian states
to Gaussian states. An entangled state is characterized by a non separable wave
function. In the case of Gaussian states this is can be checked with the Peres-
Horodecki Criterion[145] for the covariance matrix. The amount of entanglement
or inseparability can be expressed by logarithmic negativity (EN)[146, 147], which
is also calculated out of the covariance matrix. For a two mode state the covari-
ance matrix (σ) reads

σ =

(
A C
CT B

)
(6.31)

A =

(
σ11 0
0 σ22

)
(6.32)

B =

(
σ33 0
0 σ44

)
(6.33)

C =

(
σ13 0
0 σ31

)
(6.34)

Using the dimensionless place and momentum operators

Xa =
a† + a√

2
Pa = i

a† − a√
2
Xb =

b† + b√
2

Pa = i
b† − b√

2
(6.35)

and defining
x1 = Xa x2 = Pa x3 = Xb x4 = Pb
the entries of the covariance matrix calculate to

σij =
1

2
< xixj + xjxi > −[xi,xj] (6.36)

For the case of an initially vacuum or thermal state this reduces to

σ11 = σ22 =< x2
1 >=< a†a+

1

2
> (6.37)

σ33 = σ44 =< x2
3 >=< b†b+

1

2
> (6.38)

σ13 = σ31 = −σ24 = −σ42 =< x3x1 >=
1

2
(< a†b† > − < ab >) =< a†b† >

(6.39)
The Peres-Horodecki Criterion for inseparability reads

4 det(σ)︸ ︷︷ ︸
D1

≥ det(A) + det(B)− 2det(C)︸ ︷︷ ︸
D2

−1/4. (6.40)
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The entanglement negativity is obtained by calculating

EN = max[0,− log2(v−)], (6.41)

where v− is the smaller symplectical eigenvalue of the two mode Gaussian state

v± =
√

2

√
D2 ±

√
D2

2 − 4D1 (6.42)
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Chapter 7

Résumé

The content of this thesis can be divided in to three sections, which all discuss the
controlled interaction of circuit elements in SQC. The first section deals with the
design and investigation of transmon qubits. This goal was successfully reached,
confirmed by several samples. Very importantly, the qubit parameters like its
anharmonicity and its coupling to a resonator can be designed by making use of
electromagnetical simulations. This is an important achievement for future ex-
periments, because it enables the design of qubit parameters due to experimental
needs. In this thesis the focus is the transmon qubit, which is coupled to a lambda
quarter CPW-resonator with g/2π = 67 MHz. The relaxation time is measured
to T1 = 298 ns and the decoherence time to T2 = 555 ns. This the coherence time
is on a level of initial experiments on transmons [3, 4] and already outperforms
the flux qubits fabricated at the WMI. Thinking of future work, one has to men-
tion that the sample presented in this thesis is currently used for studying noise
induced relaxation and decoherence processes in qubits. Furthermore, transmon
qubits developed in this thesis are used in other experiments as nonlinear phase
shifters [150] for computational gates and also effort is carried out for integration
into optomechanical hybrid circuits [38, 59].

The second section of this thesis discusses the realization of a flux tunable cou-
pling of two transmission line resonators via an rf SQUID. This objective was
accomplished [61]. The rf SQUID acts as a tunable mutual inductance between
the resonators enabling a flux tunable coupling. Via transmission spectroscopy,
couplings ranging from −320 MHz to 37 MHz are obtained. Furthermore, compar-
ing the signal cross-transmission between the resonators for the coupled (g � 0)
and uncoupled case (g ' 0), a sufficient on-off ratio is confirmed. Here, one
observes a change in signal transmission of 38.5 dB, which proves the ability to
effectively turn off the coupling. This is an important improvement over previ-
ous work [67], where the cross-transmission between the resonators could only be
changed by 2.6 dB, corresponding to an unwanted photon leakage of 27.5% be-
tween the resonators in the uncoupled case. The good isolation properties of the
device discussed in this thesis are a key accomplishment necessary for integration
both in quantum computation and quantum simulation experiments. Especially
quantum simulation experiments can profit both from the ability to change the
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coupling amplitude and also from the ability to change its sign, to study in situ
phase transitions [5–7].

The third section of this thesis can be seen as an outlook to concrete future
experiments. Here, theoretical calculations of an optomechanical circuit are car-
ried out. It is shown how strong coupling on a single photon-phonon level can be
realized between a microwave resonator and a nanomechanical beam by using an
rf SQUID as a coupling element. A strong single photon-phonon coupling between
a microwave resonator mode and a mechanical oscillator mode is still a milestone
to fulfill in this field. Furthermore, the derived interaction is parametric linear,
which is in contrast to the standard non-liner optomechnical interaction [17].
Using experimental reported parameters one can calculate single photon-phonon
coupling strengths up to a few MHz. This exceeds experimental results based on
capacitive interactions and is clearly within the strong coupling limit. To visualize
the capabilities of the circuit, density matrix simulations are carried out. This
includes information transfer between optical and mechanical system, entangle-
ment and single mode squeezing. Samples of that type of circuit have already
been produced by another PhD student and hopefully experimental results will
follow soon.

Concluding, one can say that the controlled interaction of circuit elements has
been successfully tackled in theory, simulation and experiment. The current use
of the results accomplished within this thesis by other PhD students leaves the
author confident of the usefulness of the obtained results and promise further
interesting progress in the field of SQC.
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lanpää, “Squeezing of quantum noise of motion in a micromechanical res-
onator”, ArXiv e-prints:1507.04209 (2015).

109

http://dx.doi.org/10.1103/PhysRevE.76.026217
http://dx.doi.org/10.1103/PhysRevE.76.026217
http://dx.doi.org/10.1103/PhysRevE.76.026217
http://dx.doi.org/10.1103/PhysRevE.76.026217
http://dx.doi.org/10.1038/nphys2035
http://dx.doi.org/10.1038/nphys2035
http://dx.doi.org/10.1038/nphys2035
http://dx.doi.org/10.1038/nphys2035
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1038/nphoton.2015.42
http://dx.doi.org/10.1038/nphoton.2015.42
http://dx.doi.org/10.1038/nphoton.2015.42
http://dx.doi.org/10.1038/nphoton.2015.42
http://dx.doi.org/10.1103/PhysRevLett.101.200503
http://dx.doi.org/10.1103/PhysRevLett.101.200503
http://dx.doi.org/10.1103/PhysRevLett.101.200503
http://dx.doi.org/10.1103/PhysRevLett.101.200503
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://arxiv.org/1507.04209


Bibliography

[150] I.-C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, L. Tornberg,
S. R. Sathyamoorthy, G. Johansson, P. Delsing, and C. M. Wilson, “Gi-
ant Cross-Kerr Effect for Propagating Microwaves Induced by an Artificial
Atom”, Phys. Rev. Lett. 111, 053601 (2013).

110

http://dx.doi.org/10.1103/PhysRevLett.111.053601
http://dx.doi.org/10.1103/PhysRevLett.111.053601
http://dx.doi.org/10.1103/PhysRevLett.111.053601
http://dx.doi.org/10.1103/PhysRevLett.111.053601


Thesis Cast

A typical PhD thesis is not a short movie but a series of episodes. It is taking
lots of seasons and usually stops when it starts running well. Many characters
enter and leave the set and few stay for the whole time. Everybody contributed
with his own knowledge and skills:
Prof. Dr. Rudolf Gross put trust in me and gave me the opportunity to work
in the interesting field of superconducting circuits. With his broad knowledge of
physics I profit every time from discussions with him.
The principle investigators Dr. Achim Marx and Dr. Frank Deppe always had
time and ideas for the project as well as tips for setting up the lab.
Dr. Hans Huebl allowed me first to settle in his Kermit lab, what led me in the end
to the field of nanomechanical hybrid circuits. I like his attitude to look behind
the data plots, basically always asking the question what one is really measuring.
Thinking about the Kermit lab it was not only the route to my next job in the
Aspelmeyer group in Vienna, but more important put me in contact with many
friendly people. Here I have to mention Matthias Pernpeintner, Philip Schmidt,
Daniel Schwienbacher and Diana Geiger. One would not expect that a dilfridge
lab is a good place to learn tango argentino.
Getting back to physics my lab and office mate Jan Goetz comes to my mind.
We build the Circus lab together and had lots of fruitful discussions about fab-
rication and physics, so he contributed most to my thesis. There are many
more Qubit group members, which contributed to my work and have to be
mentioned (alphabetically): Alexander Baust with many discussions on cou-
pled resonator systems, Peter Eder with his organization skills, Max Häberlein
with electron beam lithography optimization, Elisabeth Hoffmann with her own
work on coupled resonators, Edwin Menzel with his detailed knowledge of all
measurement devices (of the world it feels), Thomas Niemczyk with introduc-
ing me in SCC, Manuel Schwarz with starting the Circus lab, Christopher Zol-
litsch with discussions on single and coupled resonant systems. I also want
to thank external scientists like Prof. Dr. Michael Hartmann, Dr. Martin Wei-
des and Dr. Borja Peropadre and Dr. Mehdi Abdi. Furthermore also my sev-
eral students have to be mentioned: Javier Puertas-Martinez (Master, trans-
mon qubits), Michael Fischer (Bachelor, beam splitters), Fabian Kössel (Master,
rf SQUID coupled resonators), Norbert Kalb (Working student, beam splitters),
Korbinian Reiser (Bachelor, CPS resonators), Uwe Schaumburger (nonlinear res-
onators), Xiaoling Lu (Master, rf SQUID coupled resonators). It was also a
pleasure to co-supervise Philip Schmidt (Master, resonator optomechanics) and
Daniel Schwienbacher (transmon optomechanics). Since most of the here men-
tioned former students are now also PhD-students, it seems that I did not harm
them to much.
Dr. Karl Neumeyer and Dr. Christian Probst helped a lot with their knowledge
about low temperature experiments and the workshop staff under the direction
of Helmut Thies was always friendly and helpful in manufacturing experimental



components on a short timescale. Thomas Brenninger enables a smooth opera-
tion of fabrication facilities at the WMI. I would like to thank Emel Dönertas and
Ludwig Ossiander for taking care of all administrative tasks, which they handle
very smooth, making live easier for all of us.
Finally I want to thank my family and friends for always listening patiently to
my freaky problems and supporting me at their best.
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