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Abstract

Nowadays, quantum computing using superconducting circuits is on the cusp of being the

supreme technology as compared to digital computing. The advantageous resources over

digital computing, such as quantum superposition states and entanglement, also pose a

challenge on the memories for such states due to quantum mechanical restrictions. One

type of storage is the encoding of quantum information in photons, which are trapped

in superconducting 3D microwave resonators. The photon lifetimes are relatively long

in such systems due to small losses in the superconducting material. Nevertheless, there

are two particular drawbacks with such memories. First, the 3D cavity architecture is

bulky in comparison to its (less coherent) 2D counterpart. Second, the huge quality

factors Q of the 3D microwave cavities result in a long cavity ring down and, in turn, in

long readout times. A more scalable device with fast readout can be built by exploiting

the multi-mode structure of the 3D cavity. In such configuration, one high-Q mode

can be used for storage, while another low-Q mode can be used for readout. In this

work, we present an experimental study on such a device: a transmon qubit capacitively

coupled to two distinct modes of a single 3D microwave cavity. We analyze the system

parameters of such a device and implement a quantum information storage protocol.

Finally, we find that our device offers a fast readout capability simultaneously with a

cavity enhanced coherence time, which is limited only by the internal quality factor of

the superconducting cavity.
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Kurzfassung

Die Quanteninformationsverarbeitung basierend auf supraleitenden Schaltkreisen steht

heutzutage kurz davor, eine führende Technologie zu werden. Im Vergleich zur klassis-

chen, digitalen Informationsverabeitung ergeben sich Vorteile durch die Ausnutzung

von genuinen Quanten-Ressourcen wie Superposition und Verschränkung. Gleichzeitig

stellen diese jedoch aufgrund quantenmechanischer Einschränkungen eine neuartige

Herausforderung für die Speicherung solcher Zustände dar. Eine Möglichkeit besteht

darin, die Quanteninformation in Form von Photonen zu speichern, welche sich in

einem supraleitenden 3D Mikrowellenresonator befinden. Bedingt durch die besonderen

Materialeigenschaften des Supraleiters, nämlich die nahezu verlustfreie Stromleitung,

ist die Lebensdauer solcher Photonen relativ hoch. Trotzdem weist diese Art von

Speicher zwei grundlegende Nachteile auf. Erstens benötigt die 3D Hohlraumarchitektur

mehr Platz als ähnliche Systeme mit planarer Geometrie, welche aber wiederum über

geringere Kohärenzzeiten verfügen. Zweitens führen die hohen Gütefaktoren der 3D

Mikrowellenresonatoren zu langen Einschwing- und Abklingzeiten, welche die Ausle-

segeschwindigkeit beeinträchtigen. Durch Ausnutzung der Multimodenstruktur eines

3D Hohlraumresonators kann ein Speicher mit einer höhreren Skalierbarkeit und einer

kurzen Auslesezeit konstruiert werden. Hierfür wird eine Mode mit hoher Güte für die

Speicherung verwendet und eine andere Mode mit geringer Güte für das Auslesen. Die

vorliegende Arbeit beinhaltet eine experimentelle Studie eines solchen Speichers: ein

Transmon Quantenbit ist kapazitiv an zwei unterschiedliche elektromagnetische Moden

eines einzigen 3D Mikrowellenresonators gekoppelt. Die Parameter dieses System werden

analysiert und ein Protokoll für das Speichern von Quanteninformation wird implemen-

tiert. Schlussendlich wird gezeigt, dass diese Art von Speicher eine schnelle Auslese

ermöglicht und gleichzeitig eine durch den Hohlraumresonator gesteigerte Kohärenzzeit

besitzt. Diese ist im Idealfall nur durch den internen Gütefaktor des supraleitenden

Resonators begrenzt.



”And the light shineth in darkness;

and the darkness comprehended it not.”

The Gospel of John
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Introduction

A memory has the purpose of recording information, storing it and releasing it after a

certain time. This idea of using a memory for information storage and retrieval can

be found throughout the whole history of mankind. In the beginning, information was

stored and retrieved by passing on stories and tales orally [1]. Later on, information

could be stored in written word and retrieved by later generations [2]. The invention

of the printing press in the 15th century [3] made it possible to store information in

many redundant copies and with increased fidelity. Nowadays, information technology,

based on the fundamental principle of storing and retrieving information, has grown to

a massive pillar of modern civilization. In a simplified picture, the operation method

of a computer relies on countless information storage and retrieval processes [4]. We

observe, that the information density and the total capacity of memories have grown

throughout the centuries from orally told stories to redundantly stored information in a

computer. However, all these resources mentioned above have one thing in common:

they are purely classical.

Considering the storage and retrieval of quantum information, the challenge is more

complex. This is the case, because the conditions for faithful quantum information

storage are much more difficult to fulfill than those for the storage of classical information.

In strong contrast to the classical realm, we face the no-cloning theorem [5], which forbids

to redundantly store information. Furthermore, the uncontrolled loss of information to

the environment is many orders of magnitude higher in quantum systems [6, 7]. As a

result, quantum resources are fairly fragile and decay on a short timescale. Nevertheless,

if such constraints can be circumvented, the idea of a quantum computer, which can store

and process quantum information, is indeed very appealing [8, 9], because a quantum

computer is mathematically proven to outperform a classical supercomputer in specific

tasks such as database search algorithms [10] or prime factorization [11]. Moreover,

engineered quantum systems are a versatile resource for quantum communication [12, 13],

quantum simulation [14] and quantum cryptography [15].

One of the most promising platforms for quantum computing today is found in the

field of circuit quantum electrodynamics (circuit QED) [16–18]. Here, superconducting

circuits act as quantum bits (qubits) [19]. In circuit QED, one method to increase the

information storage time is to isolate the quantum ressource from the environment [20].

This is typically done by coupling the qubit to a superconducting resonator for precise

control of the environment [21] and for readout [17, 22]. Physically, this isolation limits

1



2 Chapter 0 Introduction

the information leakage to the environment. Consequently, the difficulty of retrieving

the information is increased just as much as the storage time is extended. In the end,

however, a fast retrieval and a long storage time are required simultaneously.

In this work, the isolated environment is provided by a superconducting 3D microwave

cavity. Such superconducting cavities are known for decades from particle physics,

where low loss is a crucial criterion for generating high energy particle beams at reduced

operation costs [23, 24]. The application of 3D cavities in the field of circuit QED,

however, is relatively recent. When qubits were placed the first time in a superconducting

3D cavity [21], the coherence times jumped almost one order of magnitude [25] compared

to previous systems with planar 2D resonators. The microwave 3D cavity architecture

has opened up a variety of intersting experiments on the Quantum Zeno effect [26, 27],

on magnetic YIG spheres coupled to a qubit [28], on wireless Josephson parametric

amplifiers [29] and on quantum trajectories of qubits [30]. The manipulation of Fock

states [31, 32] and of Schroedinger cat states [33, 34] is facilitated due to the long photon

lifetimes provided by the cavities. Furthermore, CNOT gates between two multiphoton

cavity qubits [35] and resonator-induced phase gates with up to 5 qubits [36] have

been demonstrated. The inevitable bulkiness of 3D cavities has lead to architectures

comprising compact 2D structures [37] and to networks of multiple 3D cavities [38–40].

In this work, our simple carrier and processor of quantum information, a single qubit,

is fully enclosed by the cavity. The cavity itself can be designed to decay much slower

than the qubit. For extending the lifetime of a quantum state during idling times, it is

possible to intermediately store the qubit state in such a long-lived resonator. In terms

of coherence, superconducting microwave 3D cavity resonators yield the best results

so far, reaching the millisecond scale [41, 42]. Other memory systems are constructed

using 2D resonators [43], microscopic defect states [44], nano-mechanical oscillators [45],

electron spin ensembles [46, 47] and nuclear spins [48].

With regard to the excellent control over the electromagnetic environment and the

ability to precisely engineer a wide range of sample parameters as desired, we choose

superconducting microwave 3D cavities for the construction of a quantum memory.

Until now, the multimode structure of 3D cavities has mostly been seen as a source

of irritation than a profitable feature. We, however, take advantage of this feature

to create a compact and scalable quantum memory system, which will be useful as a

building block for larger systems. In order to fulfill the requirement of a fast retrieval

and a long storage, we have to optimize the cavity architecture towards this goal. In

addition, we need to understand the qubit-cavity coupling mechanisms and how they

can be carefully adjusted with respect to the demands. To this end, the design and

fabrication of the qubit plays a crucial role and a reliable design routine and fabrication

recipe has to be established. The experimental control knobs, namely the methods

for quantum state preparation and manipulation, have to be adapted and extended

to suit the quantum memory application. This includes an accurate and automatized
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calibration scheme and the implementation of a memory pulse sequence. In terms of a

working memory, we aim at a fidelity close to unity for state storage and retrieval.

The first chapter lays the theoretical foundation for this thesis. We start with a

classical electromagnetic description of the waveguide cavity and include coupling

mechanisms and internal damping effects (cf. Sec. 1.1). Then, the transmon qubit is

reviewed (cf. Sec. 1.2), before we put the pieces together and describe the coupled

qubit-cavity system (cf. Sec. 1.3). We close the chapter with a discussion of the dynamics

of the qubit-cavity system (cf. Sec. 1.4).

In the second chapter, we report on design recipes for the 3D cavity and the trans-

mon qubit (cf. Sec. 2.1). Subsequently, we introduce a set of qubit characterization

measurements required to reliably determine the relevant fabrication parameters (cf.

Sec. 2.2). The qubit dynamics is analyzed in the time domain with the focus on pulse

shaping and the resulting improvements (cf. Sec. 2.3). Moreover, first measurements

towards quantum state and quantum process tomography are discussed.

Finally, we present a functional quantum memory based on a high-Q 3D cavity.

Necessary optimizations are reviewed and the memory pulse protocol is introduced

(cf. Sec. 3.1). We show data from different stages of the memory protocol and discuss

decoherence effects (cf. Sec. 3.2). Lastly, the memory is characterized in terms of its

enhanced storage time and its fidelity (cf. Sec. 3.3). Limitations on the fidelity are

analyzed for future improvements (cf. Sec. 3.4).

Moreover, with all the investigations at hand, we are able to estimate the technical

optimizations necessary to enhance the memory storage time. In terms of scalability, we

give options on how to increase the amount of stored quantum information by scaling

from the current sample to larger systems.





Chapter 1

Theory of dispersive circuit QED

In this chapter, we review the theory of circuit QED. First, we introduce the two main

components used in this work, which are a 3D waveguide cavity and a superconducting

transmon qubit. The cavity is described in terms of its eigenmode spectrum and external

and internal damping mechanisms. For the transmon qubit, we derive its anharmonic

level structure caused by the non-linear Josephson inductance. Combining both, we

arrive at a strongly coupled system of qubit and cavity. Here, we focus on the dispersive

regime and sideband transitions due to the fixed frequency nature of our system. We

conclude this chapter by looking at the system dynamics under an external drive and

discuss decoherence effects with the help of the Lindblad formalism.

1.1 3D waveguide cavity

A 3D waveguide cavity relies on the principle of an electromagnetic wave subdued to

specific boundary conditions. This is similar to quantum optics, where two mirrors are

used to built an optical cavity [20]. For microwave light, superconducting waveguide

cavities provide state-of-the-art coherence properties [42, 49], which makes them a

successful tool in circuit QED.

1.1.1 Cavity eigenmodes and quantum states

We start with defining a plane wave, which propagates through a lossless medium in z

direction with the wavevector ~k = (0, 0, k).

~E(x, y, z) = E+
y exp(−ikz) + E−y exp(ikz) (1.1)

Here, E+
y and E−y are the amplitudes of the electric field, which oscillates in the y-

direction. According to Maxwell’s equations [51], the H-field oscillates perpendicular

to the E-field. Both fields are orthogonal to the direction of propagation, which is

characteristic for transverse electromagnetic waves. By placing conducting walls around

5



6 Chapter 1 Theory of dispersive circuit QED

(a) (c)

(d)(b)

a

b
d

high

low

a
b

Figure 1.1: Drawing of (a) electric and (b) magnetic field for an infinitely long waveguide with cross-

section a × b. Shown is the fundamental mode. The magnetic and electric field are

phase-shifted by 90°. (c) and (d) are the corresponding drawings for a waveguide cavity

with the boundary condition ~E = 0 on all sides. Graphics are taken from CST Microwave

Studio [50].

the propagation direction of the wave, one changes the boundary conditions1 and obtains

a waveguide with a rectangular cross-section of a× b [cf. Fig. 1.1 (a)]. Then, only certain

transverse electric (TE) or transverse magnetic (TM) modes can propagate [52]. We

restrict ourselves to a discussion of the TE modes2, which are from a theoretical point

of view equivalent to the TM modes. In a waveguide, the TE mode is expressed as

~Et(x, y, z) = ~e(x, y)
[
E+ exp(−iβmnz) + E− exp(iβmnz)

]
(1.2)

where ~e(x, y) describes the transverse mode profile. The propagation constant of the

m,nth mode is

βmn =
√
k2 −

(
mπ

a

)2
−
(
nπ

b

)2
. (1.3)

Now, we close the waveguide on both ends with conducting walls and a distance d in

between [cf. Fig. 1.1 (b)]. To satisfy this new boundary condition, ~Et = 0 for z = 0,d
we have to solve the equation

~Et(x, y, d) = −~e(x, y)2E0i sin(βmnd) != 0 (1.4)

which assumes E+ = E− = E0 for a perfectly reflecting surface. Hence, the argument

of the sine needs to be an integer multiple of π: βmnd = lπ with l = 1, 2, 3, ... . We

identify these standing waves with the eigenmodes of the cavity. The frequency of these

1This is only valid if the frequency of the electromagnetic waves is smaller than the plasma frequency of
the metal. Since the following experiments are carried out in the gigahertz regime, this assumption
is fulfilled.

2The discussion of the TE and TM modes is found in Ref. [52]
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TEmnl modes can be calculated as [52]

νmnl = c

2π√µrεr

√√√√(mπ
a

)2
+
(
nπ

b

)2
+
(
lπ

d

)2

(1.5)

with the relative permittivity εr and the relative permeability µr for media other than

vacuum. The fundamental mode is referred to as the TE101 mode. For cavities with a

quadratic footprint, a = d, one finds degenerate mode frequencies such as ν201 = ν102.

From Eq. (1.5), we observe that, when changing only one mode number and keeping

the other two constant, the mode frequencies have an equidistant spacing consistent

with a 1D system such as a string.

We look at the quantum properties of a 3D waveguide cavity by introducing the

quantum harmonic oscillator3, which is described by the textbook Hamiltonian

Hosc = ~ωc

(
â†â+ 1

2

)
(1.6)

with ωc being the oscillator frequency and â† (â) the photon creation (annihilation)

operator, respectively. Since the actual cavity is a multimode system, its Hamiltonian

reads

Hcavity = ~
∑
m,n,l

ωmnl

(
â†mnlâmnl + 1

2

)
= ~

∑
i

ωi

(
n̂i + 1

2

)
(1.7)

with n̂ = â†â being the number operator and i being the index of the eigenmode in the

ascending order of their frequencies. The eigenstates of the number operator are Fock

states |n〉 corresponding to n photons in the cavity:

n̂|n〉 = n|n〉. (1.8)

However, in experiment, it is not easily possible to address such a photon number state

directly due to the harmonicity of the cavity. A classical resonant drive on the cavity

leads to a coherent state |α〉, which is a Poisson-distributed superposition of Fock states:

|α〉 = exp
(
−|α|

2

2

) ∞∑
n=0

αn√
n!
|n〉. (1.9)

These are the eigenstates of the annihilation operator â and we obtain â|α〉 = α|α〉.
The eigenvalue α = |α|eiφ is a complex number determined by the amplitude |α| and

phase φ of the drive.
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lant

cavity wall
vacuum

E H

(a) (b)dielectric

Figure 1.2: Schematic drawing of a (a) dipole antenna for electric field coupling and (b) loop antenna

for magnetic field coupling.

1.1.2 External coupling and photon lifetimes

In order to excite the eigenmodes, energy has to be coupled into the cavity. Generally,

one can couple to the electric field via stub antennas or to the magnetic field via loop

antennas [cf. Fig. 1.2 (a) and Fig. 1.2 (b)]. We limit ourselves to stub antennas in this

paragraph, since only these are used throughout this work. In this case, the coupling

is capacitive and can be approximated as dipolar coupling with the dipole moment

~p. Hence, we can write ~κx = ~p · ~E(x,y,z), where κx is the rate of photons excited

in the cavity. The charge q in the dipole moment ~p = q~lant can be calculated via

q = Cx
∫
E‖,ant(x,y,z)dy, where Cx is the coupling capacitance and E‖,ant the electric

field parallel to the direction of the stub antenna with length lant. Here, we let the

antenna point in the y-direction. In conclusion, we obtain for the coupling rate

κx = Cx

~

∫ lant

−∞
E‖,ant(x,y,z)dy ~lant · ~E(x,y,z) (1.10)

= Cx

~

(∫ lant

−∞
E‖,ant(x,y,z)dy

)2

. (1.11)

For the last step, we assume a non-constant field in the y-direction and, hence, integrate

the electric field along the antenna. As a result, the coupling depends on the field

amplitude E‖,ant(x,y,z) at the antenna position and the antenna dipole length lant.

A carefully chosen position of the antenna enables us to set high or low coupling to

specific cavity modes according to their electric field distribution. More details on the

coupling based on the cavity geometry used for the experiments in this work are found

in Sec. 2.1.1.

Antennas as input ports also serve as output ports. Photons, which enter the cavity,

can also leave the cavity via the same or another port. The total rate, at which

this happens, is defined as κ = 4π2∆ν with ∆ν being the linewidth of the cavity

transmission4. To account for the total energy loss caused by the coupling to the output

ports, one defines the external Q-factor. The Q-factor in general is the ratio of total

3For the derivation of circuit quantization, we refer the reader to Refs. [53, 54].
4This definition of the linewidth is valid, if the Lorentzian of the cavity transmission magnitude is
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(a)

Figure 1.3: The loaded QL depending on the coupling coefficient G for three different internal Q-factors.

The undercoupled regime is marked in green, the overcoupled regime in blue.

energy to dissipated energy [55].

QL ≡
2π · average energy stored

energy loss/cycle = ~ω

~∆ω = ν

∆ν (1.12)

We can distinguish between external losses κx and internal losses κ0. The causes for

the latter ones are reviewed in the next section. In the end, the loaded Q-factor can be

written as 1
QL

= 1
Q0

+ 1
Qx

= 1
Q0

(1 +G) . (1.13)

The latter definition is expressed with a coupling coefficient G = Q0/Qx = κx/κ0, which

is proportional to the antenna length and the electric field at the antenna position

according to Eq. (1.11). In experiment, Q0 is set by material parameters (cf. Sec. 1.1.3)

and can be treated as constant. Hence, the coupling is G ∝ 1/Qx, meaning highly

coupled cavities exhibit a low Qx and vice versa. Moreover, the coupling coefficient

helps us to distinguish between three regimes (cf. Fig. 1.3).


Q0 < Qx, G < 1, undercoupled
Q0 = Qx, G = 1, critically coupled
Q0 > Qx, G > 1, overcoupled

(1.14)

The loaded Q-factor determines, how long a photon will circulate inside the cavity

before being absorbed internally or having left the cavity through the output port.

defined as

L(ν) = 1
2

∆ν/2
(ν − νc)2 + (∆ν/2)2

L(ω) = π
∆ω/2

(ω − ωc)2 + (∆ω/2)2 .

It is normalized such that L(νc) = L(ωc) = 1.
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Therefore, the average photon lifetime τ depends on the total quality factor as [56]

τ = QL

ω
= 1

∆ω = 2π
κ
. (1.15)

With this knowledge, we can now estimate the power required to excite an average

number n of photons of frequency ω inside the cavity [57],

Pin = n
~ω

τ
= n~ω

κ

2π . (1.16)

For a cavity with low internal losses, the output power almost equals the input power,

Pin ' Pout. The practical importance of this equation is that a cavity with a large κ

can be probed with a relatively high power while still keeping the average cavity photon

number low. This relieves the requirements on signal amplification of the output signal.

In the case of an overcoupled cavity, the rate κ imposes a limit on how fast quantum

information can be retrieved from the cavity.

1.1.3 Internal damping mechanisms

Until now, we have assumed the damping to be solely external. This only holds for ideal

systems. In reality, internal damping into uncontrolled channels plays an important

role. In this section, we will introduce the mechanism of surface loss at the cavity walls

and discuss the insertion of a lossy medium.

Surface losses

In the case of microwave 3D waveguide cavities, the electromagnetic field exists mainly

in vacuum, which is lossless. Moreover, 3D cavities are advantageous in terms of surface

loss, because the field is strongly diluted by a geometric factor at the material surface

as compared to 2D planar resonators. The power loss at the surface of a conductor

is caused by eddy currents induced by the oscillating magnetic field tangential to the

surface [52] (cf. Fig. 1.4)

Psurf = Rsurf

2

∫
surf
|Ht|2dx2 (1.17)

with Rsurf =
√
ωµ0/2σ being the surface resistance and σ the conductivity of the

material. For a superconducting material, the surface resistance is Rsc
surf = RBCS +

Rres, where RBCS ∝ (ω2/T ) exp(−1.76Tc/T ) is the BCS surface resistance [58] due to

oscillating normal-conducting electrons and Rres is the residual resistance caused by

lattice distortions and other defects. For the TE10l mode in a rectangular cavity, Ht
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(a) (b)

Figure 1.4: (a) Magnetic field in 3D cavity. (b) Surface current created by tangential magnetic field.

Graphics are taken from CST Microwave Studio [50].

consists of components in x and z direction

Hx = −iE0

k

√
k2 −

(
π

a

)2√ ε0
µ0

sin
(
πx

a

)
cos

(
lπz

d

)
(1.18)

Hz = iE0

k

π

a

√
ε0
µ0

cos
(
πx

a

)
sin

(
lπz

d

)
. (1.19)

By calculating the integral in Eq. (1.17), one obtains the dissipated power at the surface

Psurf = Rsurfε0E
2
0λ

2

8µ0

(
l2ab

d2 + bd

a2 + l2a

2d + d

2a

)
(1.20)

where λ = 2π/k is the wavelength and k the associated wave vector. For determination

of the Q-factor, we additionally need the total energy stored in the cavity. The

electromagnetic energy in this cavity volume V accounts to

Wem = 1
4

∫
V

(
ε0 ~E

2 + µ0 ~H
2
)

dr3 = ε0abd

8 E2
0 . (1.21)

Finally, we can express the expected contribution to Q0 of a rectangular cavity due to

lossy walls as

Qsurf = 2ωWem

Psurf
= (kad)3b

2πRsurf

√
µ0

ε0

1
(2l2a3b+ 2bd3 + l2a3d+ ad3) . (1.22)

Cavity modes with higher l display an increase in surface loss, hence, a lower overall

Q-factor. This can be explained by having a look at Ht for higher modes. The more

antinodes of a mode are cramped into the cavity volume, the higher is the field in

the direct vicinity of the surface (cf. Fig. 1.5). For a cavity with quadratic footprint

(a = d) and a realistic ratio of b/a = 1/5, we expect Qsurf to scale with 1 : 0.4 : 0.2 for

TE101 : TE201 : TE301.

Moreover, the relation Qsurf ∝ 1/Rsurf from Eq. (1.22) can be understood intuitively.
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5.60 GHz 8.77 GHz 8.97 GHz 11.20 GHz 12.36 GHz

TE101 TE201 TE102 TE202 TE301

Figure 1.5: Simulated surface currents for the first five cavity modes sorted according to their mode

frequency. The displayed range is normalized to the maximum surface current value of the

TE301 case. The simulation results are obtained from the eigenmode solver (cf. Sec. C.1

in the appendix). Graphics are taken from CST Microwave Studio [50].

For a superconducting cavity casing, the surface resistance is very low, leading to high

internal Q-factors. The remaining resistance stems from quasiparticles [59, 60], material

impurities [61] and the finite H-field penetration depth of the superconductor, which is

also geometrically linked to the surface roughness. In addition, a non-conducting or

poorly conducting slit in the cavity acts as an obstacle to the surface current, hence,

leading to a higher surface resistance.

Dielectric losses

Another source for dissipation is the insertion of a dielectric. Usually, the qubit is

inserted into the cavity as a separate chip. Therefore, we need to discuss the effects of

such a lossy medium placed in the cavity. For reasons of simplicity, we discuss the case

of a cavity, which is completely filled with a lossy dielectric with a loss tangent tan(δ)
and a relative permittivity εr. In this way, we obtain a lower bound for the quality

factor, since, in experiment, the chip only partially occupies the cavity volume. The

resulting Q-factor reads5

Qdiel = s′

tan(δ) . (1.23)

We introduce a susceptibility factor s′ ≥ 1 as a proportionality constant, which takes

into account the volume participation ratio and the field at the chip position. Higher

values of s′ stand for the mode’s resilience to be disturbed by the dielectric, whereas

s′ = 1 means that the whole mode volume is filled with the dielectric.

In addition, the cavity resonance frequency will also change due to this perturbation.

To this end, we define the change in the permittivity as ∆ε = (εr − 1)ε0 and neglect

changes in the permeability ∆µ = 0, since in experiment, the materials are all non-

magnetic. If we assume that the dielectric perturbation is small, we can approximate

the perturbed fields with the original mode fields ~E and ~H and express the change in

5A detailed derivation can be found in Ref. [52].
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resonant frequency as

ν0 − ν
ν0

≈
∫
V

(
∆ε ~E2 + ∆µ ~H2

)
dr3∫

V

(
ε0 ~E2 + µ0 ~H2

)
dx3

= 2
∫
V ∆ε ~E2dr3

ε0abdE2
0

. (1.24)

For the last step, we insert the result from Eq. (1.21) for the denominator. A change

in the dielectric properties of the cavity (∆ε > 0) can be treated as an increase of the

energy stored in the cavity as compared to the unperturbed case. Furthermore, the

resonant frequencies of the cavity modes will decrease depending on the field distribution

and the positioning of the dielectric material.

In the following, we estimate the frequency change for the TE101 mode, if a small Si

chip (εr ' 11.7) is inserted at the center ~r = (a/2, b/2, d/2) of the cavity. We need to

solve the integral
∫
V ∆ε ~E2dr3 for ~E = E0 sin(πx/a) sin(πz/d)~ey and the dimensions of

the chip Vchip = acbcdc. Since the dielectric perturbation ∆ε is finite for Vchip and zero

elsewhere, we can write

∫
V

∆ε ~E2dr3 =
∫ a/2+ac/2

a/2−ac/2

∫ b/2+bc/2

b/2−bc/2

∫ d/2+dc/2

d/2−dc/2
∆εE2

0 sin
(
πx

a

)2
sin

(
πz

d

)2
dx dy dz

= ∆εE2
0bc

[
ac

2 + a

2π sin
(
πac

a

)] [
dc

2 + d

2π sin
(
πdc

d

)]
≈ ∆εE2

0bcacdc = ∆εE2
0Vchip . (1.25)

The approximation to linearize the sine in the second to last step is based on ac,dc � a,d.

If we insert this expression into Eq. (1.24), we obtain

ν0 − ν
ν0

≈ 2∆εE2
0Vchip

ε0E2
0V

= 2(εr − 1)Vchip

V
. (1.26)

This equation states that, in the case of the TE101 mode, a small piece of dielectric at

the center of the cavity experiences a constant electric field E0. If we insert typical chip

and cavity dimensions, we can estimate the fractional frequency downshift to 4 %. We

note, that this approximation is only valid for small chips compared to the size of the

cavity. Another way to determine the frequency shift taking into account the electric

field distribution and the chip position is to use an FEM simulation tool.

To sum up, the internal Q-factor is mainly determined by surface losses (Qsurf) and

the insertion of lossy dielectric media into the cavity (Qdiel).

Q0 =
(

1
Qsurf

+ 1
Qdiel

)−1

(1.27)
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|e⟩

|g⟩

ħωq

qubit

(a)

φ

(b)

θ

Figure 1.6: (a) Energy level scheme of a qubit. The qubit has a transition frequency between ground

state |g〉 and excited state |e〉 of ωq/2π in the gigahertz regime for superconducting qubits.

Inset: Circuit diagram of a superconducting qubit consisting of a capacitor and a Josephson

junction. (b) Bloch sphere representation of an arbitrary pure qubit state.

1.2 The superconducting transmon qubit

Historically, the transmon (transmission line shunted plasma oscillation) qubit has

evolved from the Cooper pair box (CPB) [62]. To date, the transmon circuit is the most

successful qubit architecture [63–66] and has been used to built circuits containing up

to 50 qubits [19] and 72 qubits [67]. We begin this section with the general description

of a qubit, before we explain the Josephson physics necessary for the transmon circuit.

1.2.1 Quantum bits

A qubit can be viewed as an artificial atom in terms of its energy level scheme [cf.

Fig. 1.6 (a)]. Commonly, the qubit is approximated as a two-level system with a ground

state |g〉, excited state |e〉 and a level separation of ~ωq in between. Such a two-level

system is naturally found in trapped ions [68, 69], cold atoms [70] or NV centers [46, 47],

but can also be built artificially. Semiconductor quantum dots [71] or topologically

protected Majorana qubits [72] are just two examples. Our chosen approach is to

harness superconducting circuits for this task.

Mathematically, the qubit state is expressed as |Ψ〉 = p̃g|g〉+p̃e|e〉 with pg = |p̃g|2 (pe =
|p̃e|2) being the population of the ground (excited) state. They obey the normalization

condition |p̃g|2 + |p̃e|2 = 1. Hence, the qubit state can be represented graphically as

a point on a unit sphere centered at the origin of a Cartesian coordinate system, the
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Bloch sphere [cf. Fig. 1.6 (b)]. In spherical coordinates, the state then reads6 [73]

|Ψ〉 = cos
(
θ

2

)
|g〉+ eiϕ sin

(
θ

2

)
|e〉 =

(
eiϕ sin (θ/2)

cos (θ/2)

)
(1.28)

for 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. All states on the surface of the sphere correspond to

pure quantum states, whereas points inside the sphere are mixed states, where energy

relaxation and/or dephasing into the environment has taken place. These effects are

discussed in Sec. 1.4.2. Rotations of the state about the Cartesian x, y, z axes by an

angle of π are accomplished using the Pauli matrices

σ̂x ≡
(

0 1
1 0

)
σ̂y ≡

(
0 −i
i 0

)
σ̂z ≡

(
1 0
0 −1

)
. (1.29)

The expectation value of the Pauli matrices, 〈σ̂x〉, 〈σ̂y〉 and 〈σ̂z〉, are measurement

observables and fully describe the quantum state of the qubit. Typically, the z-axis is

chosen as the energy quantization axis and, then, the Hamiltonian for our qubit reads

Hqubit = ~2ωqσ̂z. (1.30)

A more complete way to express the qubit state is accomplished by the density matrix [73]

ρ̂ ≡ 1
2(1 + ~σ · ~a) (1.31)

= 1
2

(
1 + cos(θ) sin(θ) cos(ϕ)− i sin(θ) sin(ϕ)

sin(θ) cos(ϕ) + i sin(θ) sin(ϕ) 1− cos(θ)

)
(1.32)

which includes the description of mixed states. Here, ~a ≡ (sin θ cosϕ, sin θ sinϕ, cos θ)
is the Bloch vector and ~σ ≡ (σ̂x, σ̂y, σ̂z) a vector of the Pauli matrices. In the case of

a single qubit, ρ̂ is a 2× 2 matrix. To be physically valid, it is normalized to Trρ = 1
and positive (ρ ≥ 0). If we limit our discussion to pure qubit states (Trρ2 = 1), we can

express the density matrix using Eq. (1.28) as ρ̂ = |Ψ〉〈Ψ|.

1.2.2 The Josephson junction

In terms of circuit QED, a superconducting qubit can be thought of as an anharmonic

oscillator. In order to introduce such an anharmonicity into an otherwise linear har-

monic LC-circuit, we have to consider a non-linear circuit element. Typically, such a

nonlinearity is engineered as a Josephson junction. It consists of two superconducting

6We use the physically intuitive convention of |g〉 ≡
(

0
1

)
= (0, 1) and |e〉 ≡

(
1
0

)
= (1, 0), which is in

contrast to the convention used in information theory.
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Figure 1.7: Schematic drawing of a Josephson junction consisting of two superconductors with wave-

functions Ψ1 and Ψ2 separated by a thin oxide barrier.

electrodes weakly coupled by, for example, a thin insulating layer as drawn in Fig. 1.7.

This structure is described by the two Josephson equations [74]

Is = Ic sin(ϕ) (1.33)

dϕ
dt = 2π

Φ0
V . (1.34)

In general, a superconducting state is described by a macroscopic wavefunction Ψ1,2 =
Ψ0 exp(iθ1,2), with Ψ0 being the amplitude and θ1,2 the phase. Here, the wavefunctions

Ψ1 and Ψ2 refer to the superconducting electrode 1 and 2. The first Josephson equation

relates the supercurrent Is and the phase difference ϕ ≡ θ2 − θ1. This phase difference

ϕ occurs between the two superconducting electrodes due to the thin barrier of the

Josephson junction, leading to a sinusoidally modulated supercurrent Is with amplitude

Ic, which is the critical current of the superconductor. Below this critical value, the

Josephson junction remains superconducting. The second Josephson equation, the

voltage-phase relation, shows that the time derivative of the phase drop ϕ across the

junction is proportional to the externally applied voltage V . In this context, Φ0 = h/2e
is the magnetic flux quantum. The non-linear character of the junction becomes evident

by taking the time derivative of the first Josephson equation and inserting the voltage-

phase relation. Then, we obtain a relation between V and dI/dt. The proportionality

constant,

LJ = Φ0

2πIc cos(ϕ) , (1.35)

can be interpreted in circuit language as a non-linear inductance, because it depends on

1/ cos(ϕ). Similar to an inductance, where magnetic energy can be stored, the Josephson

junction is characterized by a Josephson energy EJ = Φ0Ic/(2π)[1 − cos(ϕ)], which

describes energy storage in the kinetic energy of accelerated electrons [53]. In addition

to its inductive behavior, due to the parallel interface of the two superconducting

electrodes, the Josephson junction acts as a parallel plate capacitor with capacitance CJ.
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The corresponding characteristic energy scale is the charging energy

EC = e2

2CJ
. (1.36)

EJ and EC determine the properties of a Josephson junction. As a result, CJ and Ic

have to be well-controlled in fabrication.

So far, the Josephson junction has been treated using classical equations of motion.

When investigating quantum circuits based on Josephson junctions, as they are necessary

for quantum information processing, the semi-classical description of a Josephson

junction has to be replaced by a fully quantized model. In the course of this quantization,

the classical variable for magnetic flux, Φ = (Φ0/2π)ϕ, and its conjugate, the electric

charge, Q, are promoted to operators, which fulfill the commutation relation [Q̂, Φ̂] =
−i~. With this quantized model at hand, we introduce the transmon circuit in the next

section.

1.2.3 The transmon circuit

The transmon circuit consists of a Josephson junction7 acting as a non-linear inductance

(cf. Sec. 1.2.2), which is shunted with a large capacitance CS [cf. Fig. 1.8 (a)]. Therefore,

it can also be treated as an LC-circuit with a non-linear inductance. The total

capacitance accounts to CΣ = CG(CS+CJ)/(CG+CS+CJ) with CG being the capacitance

to ground. Often, the capacitance CJ ' 5 fF (for a typical transmon qubit Josephson

junction) is small compared to the other capacitances in the circuit and, hence, can be

neglected. In contrast to the CPB, the transmon qubit is operated in the flux regime

(EJ/EC � 1) and exhibits a significantly increased protection against charge noise

due to the flat charge dispersion. However, the improved quantum coherence of the

transmon qubit comes at the expense of a strongly decreased anharmonicity, making

it not a strict two level system anymore. We now give a short explanation for this

behavior. For a transmon circuit, the charging energy EC is much smaller than the

Josephson energy EJ. Therefore, we need to treat the system quantum mechanically.

The effective Hamiltonian

Htransmon = 4EC(N̂ −Ng)2 − EJ cos(ϕ̂) (1.37)

contains the number of Cooper pairs N̂ and the Josephson junction phase difference ϕ̂

as quantized operators, which obey the quantum commutation relation [N̂ ,ϕ̂] = 2ie.
7Tunable transmon qubits are fabricated with two Josephson junctions, which are set in parallel

acting as a SQUID. The flux threading the SQUID loop can be used to tune the inductance and,
hence, the qubit frequency. Since in our case, the transmon qubit is placed in a superconducting
cavity, which shields the qubit from external flux, we use fixed-frequency transmon qubits with
a single Josephson junction. By adding normal conducting parts to the superconducting cavity,
sufficient magnetic flux can pass through and be used for tuning a qubit [31, 75].
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Figure 1.8: (a) LC-circuit representation of a transmon qubit with shunting capacitance CS and

capacitance to ground CG. The circuit comprises a Josephson junction with capacitance

CJ and non-linear inductance LJ. (b) Energy level scheme of transmon qubit with a

flat dispersion relation. (c) Sketch of 3D transmon qubit with dipole length lq. The

two rectangular ”paddles” serve as the shunt capacitance CS. The Josephson junction is

depicted as an ”x” and is positioned on the bridge between the two capacitances.

Ng is the offset charge. By solving this Hamiltonian, one obtains the eigenenergies [64]

Em = −EJ +
√

8ECEJ

(
m+ 1

2

)
− EC

12
(
6m2 + 6m+ 3

)
(1.38)

with m = 0,1,2,... . Here, the eigenenergies Em are approximated by perturbation theory

for EJ/EC � 1. In this limit, they become independent of the offset charge Ng [64]. In

the transmon qubit regime (EJ/EC ' 50), the first and second transition energies can

be calculated as

Ege = E1 − E0 ≈
√

8ECEJ − EC (1.39)

Eef = E2 − E1 ≈
√

8ECEJ − 2EC. (1.40)

As a result, the difference between Ege and Eef is determined by the charging energy EC.

We specify this detuning as the transmon anharmonicity α.

α ≡ Eef − Ege ≈ −EC αr = α

Ege
≈ − 1√

8EJ/EC
(1.41)

This anharmonicity distinguishes a transmon qubit from an harmonic oscillator. We

note that the term
√

8ECEJ in Eq. (1.39) can be identified with the plasma energy

~ωp derived from the harmonic approximation of the transmon qubit potential. In the

special case of the transmon circuit, the higher energy levels (|f〉, |h〉, ...) are of practical

importance [76]. Therefore, instead of using the strict two level qubit Hamiltonian

expression in Eq. (1.30), it is sometimes more convenient to treat the transmon circuit

as an anharmonic Duffing oscillator approximating the transmon circuit. We introduce
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the ladder operators σ̂+ and σ̂− [36, 64], where, similar to an harmonic oscillator, σ̂+

(σ̂−) raises (lowers) the number of excitations n̂q = σ̂+σ̂− of the transmon qubit. Based

on these, we can express the transmon qubit Hamiltonian as

Hqubit = ~ωqσ̂
+σ̂− + α

2 σ̂
+σ̂−(σ̂+σ̂− − 1) . (1.42)

where the first term is similar to the harmonic oscillator Hamiltonian and the second

term takes into account the anharmonic level spacing of the higher levels.

The geometry of the transmon circuit [cf. Fig. 1.8 (c)] with its relatively long shunt

capacitors offers an elegant way for coupling the transmon qubit to the cavity. The

paddles serve as an electric dipole antenna of length lq. As a consequence, the transmon

qubit couples in first order to an applied electric field parallel to ~lq. In general, the

characteristic coupling strength per photon is

g = ~µ · ~Erms

~
(1.43)

where ~µ = −2e~lq is the dipole moment with −2e being the charge of one Cooper pair

displaced from capacitor plate to the other and ~Erms the root mean square of the vacuum

electric field, which is given by

~Erms =
√
~ωc/2ε0Vmode~ey (1.44)

for a cavity with a mode volume Vmode [77]. However, we need to consider the field

distribution of the mode inside the cavity and relate it to the qubit position. This leads

us to define an effective mode volume as [78]

Vmode =
∫
V ε(~r) ~E(~r)2dr3

ε(~rq) ~E(~rq)2
. (1.45)

For a rectangular cavity with the qubit placed in the center (~rq = 0), we obtain for the

fundamental mode Vmode = 1/4V and

g = −elq
√

2ωc

~ε0V
(1.46)

where V is the volume of the cavity. We see that the coupling scales linearly with the

length of the qubit. For this reason, designing 3D transmon qubits is straightforward.

For typical transmon qubit and cavity geometries8, we obtain g/2π ' 57 MHz. Moreover,

the coupling can be enhanced by increasing the mode resonant frequency, but leaving

8Typical parameters are lq = 760µm, ωc/2π = 5.7 GHz and V = (a− b)bd+ π/4b2d = 8.785 cm3 for
the cavity dimensions given in Fig. 2.1.
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Figure 1.9: Scheme of transmon qubit (green) coupled to microwave 3D cavity (grey) in the absence of

dephasing. The electric field distribution of the fundamental mode is shown in light blue.

Photons can leak from the cavity through an antenna (yellow) with rate κext. The energy

relaxation is γ for the qubit and κint for the cavity. The coupling of qubit and cavity is

described with the coupling strength g.

the mode volume unchanged. According to Eq. (1.5), cavities with a non-quadratic

footprint (a , d) can be used for this purpose.

1.3 Strong coupling of qubit and cavity

Due to their coupling, cavity and qubit can exchange energy quanta. In the absence of

dephasing, the ratio between the coupling rate g and the qubit and cavity decay rates,

κ and γ, determines the coupling regime. In the important case of strong coupling,

g � κ, γ (1.47)

energy can be exchanged coherently before being lost to the environment (cf. Fig. 1.9).

An additional requirement here is that g is small compared to the eigenfrequencies of

qubit and cavity. This regime is of fundamental importance for quantum science and

technology.

1.3.1 Jaynes-Cummings Hamiltonian

In the case of g being much smaller than the eigenfrequencies of the system, the

interaction of the qubit and the resonator field is well described by the Jaynes-Cummings

Hamiltonian

HJC = Hqubit +Hcavity +Hcoupling (1.48)

= 1
2ωqσ̂z + ωc

(
â†â+ 1

2

)
+ g

(
σ̂+â+ σ̂−â†

)
. (1.49)
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Beside the terms for qubit and cavity, one finds the coupling Hamiltonian, which

describes processes, where one excitation is created in the qubit and one is annihilated

in the resonator and vice versa. The Jaynes-Cummings Hamiltonian can be diagonalized

analytically [22] to obtain the eigenstates and eigenenergies. In the resonant case of

ωq = ωc, this energy exchange between qubit and cavity can be observed as vacuum

Rabi oscillations with a swap frequency of 2g [22]. In this work, however, the qubit is

typically far detuned (∆� g) from the cavity and the energy exchange is prohibited.

Therefore, additional coherent drives, which bridge the energy gap between qubit and

cavity, have to be applied to the system.

1.3.2 Dispersive Hamiltonian

In the dispersive regime, the qubit and cavity frequency are detuned by an amount

which is large compared to the coupling strength,

∆ = ωq − ωc � g (1.50)

Due to the large ∆, the Jaynes-Cummings Hamiltonian can be rewritten to second

order in g into the effective dispersive Hamiltonian [22]

H̃disp = 1
2ωqσ̂z + (ωc + χσ̂z)

(
â†â+ 1

2

)
(1.51)

χ ≡ g2/∆ (1.52)

with χ being the dispersive coupling strength. This quantity describes the effective

energy exchange in a system with a large detuning. The effective exchange rate becomes

smaller by 1/∆ for a constant g. Often, χ is also referred to as the dispersive shift,

since the impact of the qubit onto the cavity results in a shifted cavity frequency

ω̃c = ωc + χσ̂z . (1.53)

From this equation, we see the dependence of the dispersive shift on the qubit state

encoded in σ̂z. In practice, this means that one can use the change in cavity frequency

to detect the qubit state.

The dispersive shift in Eq. (1.52) is a general definition and refers to a perfect two-level

system, i.e., a qubit, coupled dispersively to a resonator. However, for a transmon qubit

with its non-negligible higher levels, the dispersive shift has to be refined to [64]

χ′ = χ01 −
χ12

2 (1.54)

with χij = gij/(ωij − ωc). The coupling to higher levels9 scales as gk,k+1 '
√
k + 1g.

9The higher energy levels of the transmon circuit have a significantly stronger dispersion as compared
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α/ħ = -200 MHz
α/ħ = -100 MHz

Figure 1.10: Dispersive shift χ′ depending on detuning according to Eq. (1.55) for EJ/EC = 50
and g = 50 MHz. The star marks a typical detuning of 720 MHz, which results in

χ′ ' −1 MHz.

We can also express this reduced χ′ by using the anharmonicity α.

χ′ ≈ g2

∆
α

~∆ + α
(1.55)

Here again, the transmon qubit regime (EJ/EC � 1) has to be satisfied. With the

correction factor, we meet the requirements, that the dispersive shift of a transmon qubit

is significantly altered due to the interactions from higher energy levels as compared

to a perfect two-level system. Since the focus of this work lies on transmon qubits, we

will use χ′ instead of χ for the dispersive shift. According to Eq. (1.55), χ′ can become

negative depending on the sign and the value of the detuning ∆. We plot the dispersive

shift depending on the detuning in Fig. 1.10. For large absolute detunings (|∆| > |α|),
the dispersive shift is negative, small and becomes almost independent of ∆. If ∆ is

in the range of −α, we need to distinguish between positive and negative detunings.

For ∆ < 0, the dispersive shift is negative. However, for 0 < ∆ < |α|, we enter the

straddling regime [64], where χ′ > 0 and is relatively large.

For future considerations to move to the strong dispersive regime (|χ′| � κ,γ) [64, 79,

80], where the photon number of the cavity is resolved as separate qubit peaks and the

qubit state is resolved as separate cavity peaks, one has to ensure that the cavity and

qubit decay rates are small and that ∆ may not be larger than approximately α/2~. By

increasing the anharmonicity of the transmon qubit, higher detunings are also possible.

Dispersive energy level scheme

For the coupled system, the equidistant energy level ladder of the harmonic cavity is

shifted by the qubit energy, if the qubit is excited (cf. Fig. 1.11). Here, we assume

to the lowest two levels. As a result, due to the coupling to these higher levels, the sensitivity to
charge fluctuations is increased.
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Figure 1.11: Energy level scheme of the dispersive ladder restricted to |g〉 and |e〉 up to the two photon

Fock state. The first-order dispersive shift χ′ and the second-order Kerr non-linearity

K are considered. The red arrow transitions conserve the number of excitations in the

system and are covered by the Jaynes-Cummings Hamiltonian. Black arrows indicate the

bare qubit transitions and leakage transitions to higher states. The blue dashed arrows

are blue sideband transitions.

ωq > ωc. Between these two ladders, sideband transitions are allowed as second-order

processes [81, 82]. When taking the sum (difference) of qubit and cavity energy, the

blue (red) sideband are defined as

ωb ≡ ω̃c + ω̃q ωr ≡ |ω̃c − ω̃q| (1.56)

where ω̃c,q are the shifted frequencies as discussed in the following.

Multimode AC Stark shift

Common to quantum mechanics is the fact that the shift χ′ is a two-way effect. By

rearranging Eq. (1.51), one finds a shift in the qubit frequency determined by the photon

population in the cavity

ω̃q = ωq + nχ′ + 1
2χ
′ . (1.57)

In literature, the second term is referred to as the AC Stark shift and the third term as

the constant Lamb shift. We plot this linear relation in Fig. 1.12 (a). Equation (1.57) is

valid, if the qubit is coupled solely to a single mode of the cavity. In practice, however,

the qubit often couples to multiple cavity modes. In this situation, a multimode AC
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(a) (b)

Figure 1.12: (a) AC Stark shift according to Eq. (1.57) and (b) Kerr effect according to Eq. (1.59) for

different dispersive shifts and α/h = −200 MHz.

Stark shift occurs together with constant Lamb shifts, which is expressed as

ω̃q = ωq +
∑
i

χ′i

(
ni + 1

2

)
. (1.58)

Here, the index i enumerates the different modes, which are present in the cavity.

Kerr effect

Besides the AC Stark shift, which is linear in the photon number n̂, there is also the

self-Kerr effect, which scales with n̂2. It occurs, because the harmonic cavity partially

inherits the anharmonicity of the qubit. We note as a side remark that, when treating

the transmon qubit as an anharmonic oscillator as shown in Eq. (1.42), the intrinsic qubit

anharmonicity α is often referred to as the self-Kerr shift of the qubit and the dispersive

shift between cavity and qubit as the cross-Kerr shift [83]. For the Kerr-shifted cavity

frequency, we obtain

ω̃c = ωc + K

2 â
†â†ââ (1.59)

with K ' χ2/4α [84]. This relation is plotted in Fig. 1.12 (b). Altogether, the full

dispersive Hamiltonian for a single qubit coupled to i harmonic modes reads

Hdisp/~ = 1
2ωqσ̂z +

∑
i

[
(ωi + χ′iσ̂z)

(
â†i âi + 1

2

)
+ Ki

2 â†i â
†
i âiâi

]
(1.60)

with ωi being the frequency and Ki the self-Kerr shift of the ith mode.
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1.4 Dynamics of a driven qubit-cavity system

Up to this point, we have treated the coupled qubit-cavity setup in a time-independent

fashion. Now, we analyze the pure qubit dynamics and then move on to scenarios,

where the cavity is also involved. For the first task, we take the qubit Hamiltonian from

Eq. (1.30) and add a coherent drive tone with frequency ωd, amplitude Ωd and phase

ϕd.

Hq,drv = Hq +Hdrv (1.61)

= ~

2ωqσ̂z + ~Ωd cos(ωdt+ ϕd)σ̂x (1.62)

If we now move to a frame rotating with the drive frequency and apply a rotating wave

approximation (RWA), the Hamiltonian changes to

HRWA
q,drv = ~2[δσ̂z + Ω0(cos(ϕd)σ̂x + sin(ϕd)σ̂y)] (1.63)

with detuning δ = ωq − ωd and the resonant Rabi oscillation frequency Ω0. In this

frame, the qubit Bloch vector rotates about an axis defined by the phase ϕd and

δ. More quantitatively, near resonance one observes Rabi oscillations with frequency

ΩR =
√
δ2 + Ω2

0 [cf. Fig. 1.13 (a)]. In the resonant case, δ = 0, the Rabi frequency

assumes its minimum value Ω0 [cf. Fig. 1.13 (b)]. From the Rabi frequency, we can

define a time period, which is necessary to create a state flip from |g〉 to |e〉. Since in this

case, the qubit Bloch vector rotates by π, one finds the characteristic time Tπ = 1/2Ω0

[cf. Fig. 1.13 (c)]. Similarly, any polar rotation angle θ can be achieved by choosing the

proper rotation time Tθ. In Fig. 1.13 (d), we plot a Rabi oscillation time trace for zero

and finite detuning. For accurate state preparation, it is important to use correct drive

amplitudes, lengths and frequencies.

1.4.1 Excitation of sideband transitions

In our experiments, the qubit drive is coupled in via the cavity. Since it is typically far

off-resonant to the cavity eigenfrequencies, the cavity mode population remains low.

However, it is possible to apply a drive at the sum frequency of qubit and cavity mode,

which is the blue sideband as defined in Eq. (1.56). In this situation, two excitations,

namely one photon in the cavity and one excitation in the qubit, are created (or

annihilated) at once. Due to parity conservation (cf. Fig. 1.11), for the blue sideband

transition, |g0〉 ⇔ |e1〉, a two-photon drive is necessary. In the interaction picture, the
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Figure 1.13: (a) Rabi oscillations, (b) Rabi frequency ΩR and (c) period T = 1/Ω0 depending on the

drive detuning. At δ = 0, the qubit vector rotates about the x-axis (inset). Hence, the

period is twice Tπ. For finite detunings, the rotation plane is tilted by β = arctan(δ/(Ω0)
regarding the z-axis. (d) Time traces of Rabi oscillations as marked by dotted lines

in (a) for zero and finite detuning δ. The contrast between excited and ground state

is diminished by a factor of Ω2
0/(δ2 + Ω2

0). The light red trace takes into account an

exponential decay into a mixed state, as discussed in the next section.
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Hamiltonian for the blue sideband (BSB) reads [81, 82]

HBSB = ~g
gΩd

(ωm − ωb/2)2
gΩd

(ωq − ωb/2)2

(
â†σ̂+ + âσ̂−

)
(1.64)

= ~g

4
Ω̃m

∆̃m

Ω̃q

∆̃q

(
â†σ̂+ + âσ̂−

)
. (1.65)

In this equation, ωm is the frequency of the involved mode. The effective drive Ω̃m,q =
Ωd · 2g/(ωm,q−ωb/2) = Ωd · 2g/∆̃m,q is reduced by the dispersive factor 2g/∆̃m,q, where

∆̃m,q = ωm,q − ωb/2 is the detuning of the drive at ωb/2 from the qubit or the mode,

respectively. Due to the presence of the drive, the qubit frequency is dispersively shifted

as

ω̃q = ωq + Ω̃mΩ̃q

∆̃m
. (1.66)

Instead of using a single drive providing two photons with the same frequency, we can

also combine two separate drives (Ωd1, Ωd2) and add up the photons. Then, the shift is

described as

ω̃q = ωq + 1
2

Ω̃m1Ω̃q1

∆̃m1
+ 1

2
Ω̃m2Ω̃q2

∆̃m2
. (1.67)

Again, we have introduced effective drives, which are governed by the detuning between

the drive frequencies (ωd1, ωd2) and qubit or mode, respectively.

Ω̃n,i = Ωd,i ·
2g

ωn − ωdi
= Ωd,i ·

2g
∆̃n,i

(1.68)

with n = m,q for mode and qubit and i = 1,2. This model can also be scaled to more

than two drives.

1.4.2 Energy relaxation and dephasing

So far, we have discussed the behavior of ideal quantum systems. For a more realistic

description, one has to take into account energy relaxation and dephasing. Energy

relaxation is related to processes, where state population is lost from the excited to the

ground state. Dephasing refers to the loss of phase coherence. In experiment, energy

relaxation and dephasing occur simultaneously and the combination of both is specified

as decoherence. When these effects become too strong, the observation of coherent

quantum evolution is not possible in practice, because, mathematically speaking, an

initially pure quantum state turns into a mixed state after a certain time. For time

scales much longer than the energy relaxation or dephasing times, the system can be

described classically.

We use the density matrix defined in Eq. (1.32), to describe our quantum state in the

presence of decoherence. We start with a full Hamiltonian Hfull containing the actual
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quantum system of interest and the environment responsible for decoherence. Then,

the time evolution is given by the von Neumann equation

dρ̂full

dt = − i
~

[Hfull(t),ρ̂full(t)]. (1.69)

Here, ρ̂ = ρ̂⊗ρ̂E andHfull = H+HE, where quantities without index refer to the quantum

system of interest and quantities with index E to the environment. When tracing out the

environmental degrees of freedom under the Born-Markov approximation [85] (weakly

coupled, large environment without memory), we obtain the well-known Lindblad master

equation [86, 87]

dρ̂
dt = − i

~
[H(t),ρ̂(t)] +

∑
n

1
2
[
2Ĉnρ(t)Ĉ+

n − ρ̂(t)Ĉ+
n Ĉn − Ĉ+

n Ĉnρ̂(t)
]
. (1.70)

In this equation, Ĉn = √γnÂn are the collapse operators, which describe the coupling

to the environment with the operator Ân and the rate γn. For a two-level system, an

important result is that the decoherence time T2 = 2π/γ2 is related to energy relaxation

(T1 = 2π/γ) and pure dephasing (Tϕ = 2π/γϕ) as

1
T2

= 1
2T1

+ 1
Tϕ

. (1.71)

The corresponding collapse operators are σ− for energy relaxation and σz for dephasing.

Next, we give two specific examples of decoherence, which occur in a coupled qubit

cavity system.

1.4.3 Purcell effect

A qubit coupled to a cavity is subjected to a certain density of states provided by the

cavity10. It differs significantly from that of an open system D3D(ω) = ω2/π2c3. This

new density of states Dcav(ω) is distributed as a Lorentz function around the cavity

resonance frequency.

Dcav(ω) = 1
π

κ/4π
(ω − ωc)2 + (κ/4π)2 (1.72)

According to Fermi’s golden rule Γ = 2πg(ω)2D(ω), this modified final density of states

leads to a new relaxation channel for qubit. It is described by the Purcell decay rate in

the limit of large detunings ∆� κ as [89]

κP ' κ
(
g

∆

)2
. (1.73)

10One has to use the Bloch-Redfield master equation, which takes into account the microscopic
environment [88].
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The stronger a qubit is coupled to the cavity, the higher is the impact from the cavity

decay. We see an enhanced decay for detunings smaller than the coupling strength.

However, in the dispersive regime, this is usually not the case. To sum up, the Purcell

rate gives a measure of how well a highly detuned qubit is protected by the reduced

density of states imposed by the cavity. In the case of a multimode 3D cavity, a better

description of the Purcell effect is via the cavity admittance Y (ω) at the qubit transition

frequency [90]

κ3D
P = Re[Y (ωge)]

2πCΣ
. (1.74)

The transmittance Y (ω) and the transmon qubit capacitance CΣ can be obtained by

HF simulations of the cavity.

1.4.4 Dephasing of a quasi-harmonic mode

A bare harmonic oscillator exhibits no dephasing because the energy level separation

does not change as a function of applied fields. However, the situation changes when a

qubit is inserted. We can explain this dephasing behavior by considering a stochastic

qubit jump rate [42] between the qubit states |g〉 and |e〉. For the dephasing rate, we

obtain

γϕ = γ

2 Re


√√√√(1 + 2iχ′

γ

)2

+ 8iχ′pe

γ
− 1

 (1.75)

where γ is the qubit energy relaxation rate, χ′ is the dispersive shift of the transmon

qubit and pe the qubit excited state population. The population jumps result in

frequency shifts of the mode frequency ωm due to the dispersive interaction and, as a

consequence, the loss of phase information. We note that this dephasing relation also

holds the other way round, meaning that photon shot noise in the resonator causes the

qubit to dephase [91]. For this, one has to exchange the roles of qubit and resonator

(γ ⇒ κ, pe ⇒ nth, where nth is the number of thermal photons in the cavity). In our

case, however, the qubit-induced resonator dephasing dominates over resonator-induced

qubit dephasing due to very high Q of the cavity. As a result, we expand Eq. (1.75) for

χ′ � γ and obtain [41]

γϕ ' peγ

1−O
(
γ

χ′

)2
 ' peγ . (1.76)

In other words, the qubit imposes a second-order Kerr non-linearity onto the cavity,

making it slightly anharmonic and, therefore, susceptible to dephasing.





Chapter 2

Methods and techniques

For a quantum memory to work in practice, a lot of major and minor things have

to be considered. In this chapter, we will reveal the details regarding fabrication

and measurement of the quantum memory and its components. First, we discuss the

fabrication of a high-Q waveguide cavity from scratch. Next, we consider the qubit

design with a focus on nano fabrication and the effect of thermal cycling of qubit

samples. For characterization of the qubit, we briefly introduce the low-temperature

setup and discuss essential types of measurements in the frequency domain. Coming to

time resolved measurements, we accentuate the shaping of the pulses developed and

used in the course of this work.

2.1 Fabrication

The realm of nano fabrication is very diverse. It reaches from self-assembled structur-

ing [92] to sticky-taping graphene [93]. For nanoscale quantum systems, one specific

approach is to use electron beam (e-beam) lithography. In the case of superconducting

qubit fabrication, many methods are based on strategies developed in the semiconductor

industry [94]. This provides optimized fabrication stability, however, prototyping qubits

on a small scale still remains a demanding job.

2.1.1 3D cavity design

In principle, a 3D cavity consists of a free space volume surrounded by metal walls. We

choose a rectangular shaped cavity because of its easily accessible multimode structure.

The height of the cavity is designed such that our standard qubit chips fit in. For the

lateral dimension, one can use Eq. (1.5) to roughly estimate the size. However, a more

accurate design can be achieved by using an FEM simulator [50] to optimize the length

and width for the required eigenfrequencies. For this task, one can setup a transmission

simulation and set the target frequency to be the one with maximum transmission in

the optimizer. The optimization procedure uses the length and width of the cavity as

free parameters in predefined ranges. The frequency of the fundamental mode is set

31
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Figure 2.1: Technical drawing of one half of the 3D cavity. All dimensions are in mm. The other

half has the same dimensions. The relevant parameters for the cavity volume, a, b and d,

are marked in orange color. With the holes (blue) at the side, the cavity is bolted for an

accurate positioning of both halves. In the hole (red) at the top, the coupling antenna is

inserted and screwed in place using the two threads nearby. For the qubit chip fixation,

small dents with a distance of 3 mm are drilled.

to match the rest of the microwave setup, which is typically limited by the cryogenic

HEMT amplifiers with a bandwidth of 4 to 8 GHz or a JPA amplifier [95, 96] with

a very limited bandwidth of a few tens of MHz around 5.75 GHz. Due to machining

constraints, the edges of the cavity are rounded, which has to be taken into account in

the simulation. Analytically, we can express these semicircular profile of the edges by

defining a new width depending on the height [97] as

a′(b) = 1
b

b · (a− b) + π

(
b

2

)2
 = (a− b) + πb

4 . (2.1)

By doing so and using Eq. (1.5), we obtain a calculated resonance frequency of ν101 =
5.64 GHz for the cavity dimensions presented in Fig. 2.1. This resonance frequency

is altered by the insertion of antenna pins, which is discussed in the next paragraph.

Regarding the material, the internal quality factor below Tc does not significantly

differ for casings made of 99.99 % or 99.5 % aluminum. However, aluminum alloy (EN

AW-20071) turns out to be disadvantageous for this task due to its lower intrinsic

conductivity [78, 97].

1EN AW-2007 is a composition of 88 % to 93 % Al, 3.3 % to 4.6 % Cu, ≤ 1.8 % Mn, ≤ 1.5 % Pb, 0.8 %
Fe, Si, Zn, 0.2 % Ni, Ti and 0.1 % Cr
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Antenna geometry and external Q-factor

The cavity is coupled to the environment via two antennas for transmission measurements.

The position, length and diameter of these antennas determine the capacitive coupling

strength. Moreover, as pointed out in Sec. 1.1.1, the coupling depends on the electric

field E‖,ant(x,y,z) at the antenna position. For a simplified cavity model (cf. Sec. C.1

in the appendix), we use CST Microwave Studio [50] to simulate E‖,ant(x,y,z) of the

TE101 mode for different radii of the cylindrical antenna aperture [cf. Fig. 2.2 (a)]. We

evaluate E‖,ant on a line along the y-direction through the center of the aperture. The

origin, y = 0, is set at the transition from the aperture to the cavity. We find that

E‖,ant(y) inside the aperture and the cavity can be well approximated by the function

E‖,ant(y) = E0

ey/r + 1 (2.2)

where E0 is the maximum electric field amplitude and r is a parameter related to the

aperture radius and has the same units as y. Due to the limited height b of the cavity

in the y-direction, which prevents the complete emergence of the electric field, E0 is

only reached for small ratios of the aperture radius to the height b. If the aperture

radius becomes large compared to b, then the electric field is not strictly bound to the

cavity volume anymore, but can also emerge into the aperture leading to a smoother

field distribution along the examined line. When simulating and fitting the electric

field for a cavity with the same dimensions as used for later experiments (cf. Fig. 2.1),

we obtain r = rc = 0.92 mm [cf. Fig. 2.2 (b)] for a real aperture radius of 2.05 mm. In

Fig. 2.2 (c) we plot the fitted r for different aperture radii and find a linear relation

between the real aperture radius and the fit parameter. This linear relation is valid up

to a ratio of approximately r/b ' 1/5.

Based on the knowledge of E‖,ant(y), we are able to use Eq. (1.11) to calculate the

external coupling rate

κx(lant) = Cx

~

(∫ lant

−∞

E0

ey/r + 1 dy
)2

= Cx

~
{E0r ln[exp(lant/r) + 1]}2 . (2.3)

Here, we assume r = rc and E0 = Erms from Eq. (1.44)2. In the end, we choose Cx,

such that typical coupling rates in the order of 10 MHz to 100 MHz are obtained. As

plotted in Fig. 2.2 (d), we notice that when the antenna pin is pulled out of the cavity

volume, κx drops very quickly to zero. Inside the cavity, the coupling rate increases

approximately as κx ∝ l2ant.

The experimentally accessible parameter, however, is not κx, but κ = κx + κ0 or

QL. Therefore, we use Eq. (1.12) and Eq. (1.13) to express QL dependent on κx. With

2For a cavity with ωc/2π = 5.7 GHz and V = (a − b)bd + π/4b2d = 8.785 cm3 for the dimensions
given in Fig. 2.1, we get Erms =

√
2~ωc/ε0V ' 312 µV m−1
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Figure 2.2: (a) Simulated Ey = E‖,ant along a line centered at the antenna aperture and pointing in

the y-direction (cf. inset) for different aperture radii. The wider the aperture becomes, the

smoother is the transition from the cylindrical volume to the rectangular cavity volume.

The field is normalized to the saturation value E0 (cf. simplified cavity model in Sec. C.1

in the appendix). (b) Simulated Ey along the same line as in (a) for real cavity dimensions

given in Fig. 2.1. The red line is a fit based on Eq. (2.2). (c) Real aperture radius versus r,

which is obtained from the fits in (a). The red line is a linear fit. (d) Calculated coupling

rate κx as a function of the length of the antenna lant according to Eq. (2.3) (green line).

The light orange parabola reveals the relation κx ∝ l2ant for lant > 0.



2.1 Fabrication 35

y

0

Figure 2.3: Simulation (open symbols) and measurement (filled symbols) of the TE101 loaded Q-factor

depending on the antenna length for the pure Al cavity and the Al alloy cavity. The

measurement is performed at room temperature. For the simulation to match the data,

we need to introduce a surface roughness to lower the simulated internal Q-factor. At a

retracted antenna position, the loaded Q-factor is approximately the internal Q-factor.

Solid lines are fits using Eq. (2.4) and taking E0 = 312 µV m−1, ωc/2π = 5.7 GHz and

r = 0.92 as fixed parameters.

QL = Q0/(1 + κx/κ0) we obtain the analytical expression

QL(lant) = Q0

1 + Cxωc {E0r ln(exp[(lant + l0)/r] + 1)}2 /~Q0
(2.4)

where l0 is inserted to account for an offset in the antenna length. In order to validate

our theoretical model, we measure a cavity with different antenna pin penetration

depths and use Eq. (2.4) as a fit function. In Fig. 2.3, QL of a bare cavity at room

temperature is shown. In this scenario, the alloy cavity and the pure Al are used (cf.

Tab. B.1 in the appendix). The antenna length is adjusted with spacers [78, 97]. When

the antenna pin is retracted out of the cavity volume, the cavity is heavily undercoupled

and the measured Q-factor is approximately Q0. When comparing the alloy cavity

with the pure Al cavity, we observe that already at room temperature the conductivity

is significantly lower for the alloy cavity as displayed by the internal Q-factor3. The

machined cavities have a certain surface roughness4, which has to be taken into account

in the simulation to get a good agreement with the data.

Furthermore, we see an excellent agreement of the fits based on Eq. (2.4) with the QL

data and the simulation results from CST Microwave Studio [50]. The capacitance Cx,

which is used as a fit parameter, is on the order of 56 to 83 zF for all four fits, meaning

that the theory is consistent for this cavity geometry regarding both simulated and

3At room temperature, bulk aluminum has a resistivity of ρAl = 2.65 · 10−8 Ωm and aluminum alloy
approximately ρalloy = 5.0± 0.5 · 10−8 Ωm [98, 99].

4At the curved sides of the machined and unpolished cavity, the average roughness is Ra = 1.280 µm,
at the flat surfaces it is Ra = 0.3 µm. A definition of the average surface roughness can be found in
Ref. [100].
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CST sim. CST sim. (rough surf.) Al alloy cavity pure Al cavity

C (zF) 60.2 60.6 83.2 55.7
Q0 4850 4495 3777 4559
x0 (mm) -0.9 -0.9 -1.3 -0.5

Table 2.1: Fit parameters of the QL-fits. The fits are displayed in Fig. 2.3.
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Figure 2.4: Simulation of the TE201 mode external Q-factor depending on the antenna x-position for

two different antenna diameters (cf. Sec. C.1 in the appendix). The overcoupled regime is

marked for Qint = 1 · 106. In experiment, we achieve QL ' 3.7 · 105, which is indicated by

the green arrow.

measured data. With this fit, we are able to determine the internal quality factor Q0 of

the cavities. The fit parameters are summarized in Tab. 2.1.

Next, we investigate the antenna position on the cavity x-axis. In Fig. 2.4 (b), a

simulation of the TE201 mode’s external Q-factor is performed (cf. Sec. C.1 in the

appendix). One of the antenna pins is kept at a constant position, whereas the other one

is moved in the x-direction. When sweeping the antenna x-position, the electric field

antinode of TE201 is crossed. Exactly in the center between the field maxima at x = 0,

the coupling vanishes and Qext becomes several orders of magnitude larger. This increase

of Qext is also determined by the diameter of the antenna. Two antenna geometries are

simulated, which differ in the antenna diameter. For a slimmer antenna, the positioning

window for reaching a high external Q-factor is larger than for a commercial 1.6 mm
antenna5. The slim antenna is manufactured by soldering a thin 0.1 mm Au wire onto

a shortened connector. The wire is centered by placing it in a 0.15 mm hole drilled in

the center of the connector end.

5Huber+Suhner 23 SMA-50-0-13
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Chip positioning and internal Q-factor

The chip containing the qubit structure is clamped in between the two cavity halves.

We use small pieces of ductile indium for fixation and thermalization. The cavity halves

possess machined dents in a periodic pattern at the mounting edge for flexible chip

positioning in the x-direction. Simulations show [cf. Fig. 2.5 (a)], how the internal

Q-factor is lowered by the insertion of a dielectric medium as described in Sec. 1.1.3.

First, the loss tangent of the material influences the Q-factor as described in Eq. (1.23).

From the product of Qdiel and tan(δ) we obtain the susceptibility factor s′, which is

constant for each mode and causes the offsets of the curves. A mode with high s′ is

less susceptible to the insertion of a dielectric at a specific position. This can be seen

at the example of the TE202 mode, where the dielectric chip is placed at a field node

[cf. Fig. 2.5 (c)]. Hence, its influence on the mode is small and a high Q-factor is still

possible.

For a better understanding of the effect of off-center chip positions, we fix the loss

tangent to 0.01 and let the chip move from cavity edge to edge along the x-axis in

a simulation [cf. Fig. 2.5 (b)]. We confirm that, if the chip is at a field antinode,

the Q-factor is spoiled most and the field is also distorted6 as it can be seen for the

TE201 mode in Fig. 2.5 (c). This behavior can also be seen in Fig. 2.5 (d), which is

a frequency-resolved transmission measurement of the alloy cavity (cf. Tab. B.1 in

the appendix) with a bare Si chip inserted in order to have similar conditions as in

the simulations. The Si chip of size 6× 10× 0.525 mm3 is positioned at the center of

the cavity, where we should observe a TE101 field antinode in the bare cavity case.

However, the TE101 transmission peak does not appear at room temperature due to

the relatively high impurity conductivity of the Si chip, which damps the mode. The

situation changes at 4 K, because all charge carriers are frozen out and the dielectric

damping is lowered sufficiently to let the TE101 mode reappear. This observation turns

out to be advantageous for low-temperature experiments with qubits on Si chips.

Q-factor stability

For planar 2D resonators, a strong power dependence of the Q-factor is observed [60,

101, 102]. The internal quality degrades at single photon power levels. This behavior

can be explained by taking into account two-level fluctuators at the substrate-metal

or metal-air interface, which are saturated at higher power levels, but fluctuate at low

power levels. In the case of 3D cavities, we do not encounter such a behavior. The

quality factor is constant for excitation powers over several orders of magnitude down to

single photon level (cf. Fig. 2.6). The bare pure Al cavity (cf. Tab. B.1 in the appendix)

6We note, that the frequencies of the TE201 mode and the TE102 mode are almost degenerate.
Hence, if the chip is moved close to the center position at x = 0, the frequency of the TE201 mode
becomes larger than the frequency of the TE102 mode due to a higher participation ratio of the
TE102 mode at the center position.
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Figure 2.5: (a) Simulation of Q0 of four cavity modes. A chip of the size 6× 10× 0.525 mm3 is

positioned in the cavity center at x = 0. The loss tangent of the chip material is varied over

several orders of magnitude. The lines follow Eq. (1.23) and we obtain the susceptibility

factors 8.9, 920.2, 90.3, 43 · 103 for the modes in ascending order. The vertical dashed

line marks the constant loss tangent used in the simulation in (b). For (a) and (b), we

use a simplified cavity model (cf. Sec. C.1 in the appendix). (b) Simulation of Q0 for the

same configuration as in (a). This time, the chip has a constant tan(δ) = 0.01 and the

chip position is varied in the x-direction. The internal Q-factor is affected depending on

the electric field amplitude at the chip position. A high Q0 is reached when the chip is in

a electric field node, such as for the TE202 mode at x = 0. (c) Simulation of the electric

field amplitude for the lowest four modes. Here, the dimensions of the cavity are the same

as depicted in Fig. 2.1. Due to an off-center chip placement, the modes TE101 and TE201

with significant field amplitude at the chip position are slightly distorted. The cavity

center (x,z = 0) is marked with a white cross. (d) Transmission measurement of the alloy

cavity (cf. Tab. B.1 in the appendix) with a 6× 10× 0.525 mm3 undoped high-resistivity

Si chip with natural oxide at the cavity center. The conductivity of the chip at room

temperature due to free charge carriers is sufficiently high to fully damp the TE101 mode.

At a temperature of 4 K, the charge carriers are frozen out and the TE101 mode is visible

as a Lorentz peak.
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Figure 2.6: Loaded Q-factor for the pure Al cavity (cf. Tab. B.1 in the appendix) at 50 mK depending

on probe power. The single photon power is reached at −115 dBm. The slight variations

at low power originate from higher fit inaccuracies due to noisy data. Graphics taken from

Ref. [78].

has an internal Q-factor of 1.5 · 106 for the TE101 mode at 50 mK [78]. The remaining

losses can be attributed to surface losses on the cavity walls.

2.1.2 Transmon qubit design

In order to design a transmon qubit suitable for a 3D cavity, we need to predict the

transition frequency ωq and the coupling strength g. In the following, we show how the

design of a fixed-frequency transmon qubit can be boiled down to a single parameter,

the total capacitance CΣ. The approximate transmon qubit frequency is given by

Eq. (1.39). By taking into account the transmon qubit criterion with a targeted ratio of

EJ/EC ∼ 50, we get

ωq = 19EC

~
= 9.5 e2

~CΣ
. (2.5)

The dipole length lq of the qubit parallel to the electric field determines the coupling

[cf. Eq. (1.43)]. This length is mainly given by the length of the capacitance lC. It is

difficult to analytically calculate the total capacitance of the transmon qubit inside the

cavity, because the capacitance to ground is defined by the geometrical distance of the

capacitor paddles to the cavity walls. Therefore, we use FEM simulations to simulate

the capacitances to get the correct length and width of the transmon qubit.
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Simulation of 3D transmon qubit geometry

One approach to design the size of the capacitor plates is to use the behavior of the

transmon qubit as an LC-resonator. We find, that it is not sufficient to only simulate

the electrostatic capacitance [103]. The basic idea behind this RF approach is to use a

waveguide with a geometry similar to the 3D cavity and probe an LC-structure similar

to the transmon qubit with ωLC = 2π/
√
LCΣ [cf. Fig. 2.7 (a)]. In contrast to a cavity

with discrete and narrow transmission peaks, a waveguide has the advantage of a broad

bandwidth, which makes it possible to probe a large frequency range in transmission.

The waveguide is modeled by expanding the cavity volume at both ends in the direction

perpendicular to the transmon qubit chip surface [cf. Fig. 2.7 (b)]. Instead of the cavity

walls at the ends, we define waveguide ports on each side.

The trick is then to insert a lumped element inductance L in between the two

capacitive plates of the transmon circuit, such that the LC-frequency lies above the

lower waveguide cutoff frequency. In our case, the frequency range between 8 to 11.5 GHz
is advantageous, because it is a passband without sharp waveguide eigenmodes. We

emphasize, that the modeled LC-frequency, where L is a free parameter, and the

final qubit transition frequency do not have to be the same in this simulation. For a

transition frequency of ωq/2π ≈ 7 GHz, the capacitance should be CΣ ≈ 53 fF according

to Eq. (2.5). Hence, an inductance of L ≈ 9.8 nH is chosen to have the LC-frequency

lie in the passband of the waveguide. In the simulation, we can change the length lC,

width wC and gap gC [cf. Fig. 2.7 (a)] in order to move ωLC to the desired 11.29 GHz,

which corresponds to the optimal capacitance. The lumped inductance L can be chosen

in a relatively free manner, because we only need to match the simulation parameter

ωLC. However, it is useful to choose a value close to the expected Josephson inductance

LJ in order to simulate the capacitance in a similar high-frequency regime.

The ratio between lC and wC can be tuned to have larger or smaller coupling to the

cavity electric field. For the coupling, the length lq = 2lC + gC [cf. Eq. (1.43)] is the

relevant factor. An electrostatic simulation approach [103] shows a linear dependence of

the capacitance on wC, whereas increasing lC lets the capacitance rise as c1−exp(−lC/c2)
with c1 and c2 being geometric constants. As a third tuning knob, the gap capacitance

depends linearly on gC.

We validate our simulation with one 3D transmon qubit sample, which has been

successfully simulated and measured (cf. sample TQ1 in Tab. B.2 in the appendix). Each

capacitive plate has a dimension of 705× 355 µm2 with a gap of 50µm, which results

in Cmeas
Σ ≈ 123± 49 fF based on the transmon qubit approximations (EJ/EC ≈ 63).

The simulated capacitance is Csim
Σ ≈ 143± 3 fF, which lies within the measurement

uncertainty. A qubit transition frequency of ωq/2π ' 3.645 GHz and a coupling of

g/2π ' 50 MHz is measured. If one wants to increase the qubit-cavity coupling, a

reshaping of the capacitances is possible. We need to increase lC, however, in order to

keep ωq the same, we need to maintain CΣ, which is achieved by decreasing wC.
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Figure 2.7: (a) Drawing of transmon-qubit-like LC-resonator with a lumped element inductance instead

of a Josephson junction. (b) Simulation model of waveguide with LC-resonator chip inside.

The geometry of the waveguide is similar to that of the 3D cavity. The red surfaces

are the waveguide ports for transmission measurement. The grey transparent part is a

perfect electrical conductor, which encloses the blueish colored vacuum (cf. Sec. C.1 in the

appendix). (c) Transmission simulation of the model with and without LC-resonator. The

additional resonance dip marked by the arrow stems from the LC-resonator and provides

information on the capacitance. We note that due to the presence of the LC-resonator,

the waveguide resonance close to 12 GHz also shifts slightly to higher frequencies. (d) and

(e) Micrographs of transmon qubit samples with paddle length lC = 355µm and widths

wC = 755µm and wC = 305µm, respectively. The grid structure consisting of 20× 20 µm2

holes with 5 µm separation is expected to pin moving flux vortices. The gap between the

two paddles is gC = 50µm. A 500 nm wide bridge with the submicron Josephson junction

in the center connects the two paddles.
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Figure 2.8: Josephson junction fabrication process. The established steps are colored in turquoise, the

steps in light turquoise are optional.

A small drawback of this RF method is that the waveguide differs from the cavity

by having no grounded walls on two sides. Hence, the simulated transmon qubit CG

deviates from that of the real sample. However, we may argue that the contribution

to the total capacitance of the transmon qubit from these two specific walls is small

due to the different lengthscales of the transmon qubit itself and the cavity. Based on

CΣ ∝ 1/r, where r is the distance from the paddles to ground, the contributions from

walls further away is less than from walls close to the transmon qubit, i.e., the walls

above and below. Another approach for simulating transmon qubit capacitances is the

black-box quantization [83], which is a bit more accurate, because it relies on the exact

cavity dimensions.

2.1.3 Fabrication of Josephson junctions

The fabrication process for nanoscale Josephson junctions (cf. Sec. 1.2.2), which are an

essential element for superconducting qubits, is summarized in Fig. 2.8. A recipe can be

found in Sec. B.3 in the appendix.

Fabrication overview

At the beginning, we start with a suitable substrate for the transmon qubit. In the

course of this work, two different silicon substrates are used. The oxidized silicon

substrate comes with a 50 nm thick thermally pre-oxidized silicon oxide layer, whereas

the surface of non-oxidized silicon substrate consists only of the natural silicon oxide

layer. Experiments with both substrates show that two-level systems in the silicon oxide

are a significant loss channel for superconducting quantum circuits [60, 104], which,

in turn, leads to limited qubit coherence times. Hence, the non-oxidized substrate is

preferable. Moreover, there are attempts to remove the natural silicon oxide before

spin-coating by dipping the substrate into hydrofluoric acid [105, 106] or before metal

deposition by milling away the silicon oxide with Ar ions [107]. Both the oxidized and the
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Figure 2.9: Schematic overview of the Dolan shadow evaporation. The substrate (purple) is covered

with two layers of resist (light and dark green). In the top layer, the pattern for Josephson

junction fabrication is visible after e-beam lithography and resist development.

non-oxidized substrates are undoped, have a thickness of 525 µm and a specific resistance

of >1 kΩ cm at room temperature. The 100 mm wafers are diced into 6× 10 mm2 chips

by the supplier7. In contrast to planar qubit-resonator structures it is advantageous for

3D cavity experiments, that both sides of the substrate are polished, in order to reduce

losses from an unpolished backside.

In the first fabrication step, a clean silicon chip is spin coated with a double layer

resist system. The two layers are necessary for a Dolan shadow evaporation step [108]

(cf. Fig. 2.9). We use an e-beam lithography system to write the pattern for the

Josephson junctions and other circuit elements onto the chip. After resist development,

two aluminum layers are evaporated from different angles onto the chip with an in-situ

oxidation in between to obtain the typical sandwich structure of a Josephson junction.

The specific pattern for the Josephson junctions creates overlap areas of the two metal

layers separated by a thin oxide barrier.

For further details, we refer to the fabrication recipe in Sec. B.3 in the appendix and

to Refs. [107, 109, 110]. In a chronological order, the spin coating process and e-beam

focusing was optimized in Ref. [109]. In Ref. [110], the structure development and the

yield of working Josephson junctions was made reliable, and in Ref. [107] the new e-beam

lithography system was set up and the oxidation was analyzed. Hence, in this work, we

only focus on the principal points necessary for transmon qubit junctions. The two key

steps of the process are the nano-patterning to define the size of the Josephson junction

and the metallization with in-situ oxidation to define the thickness of the oxide barrier.

7CrysTec GmbH Kristalltechnologie
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Figure 2.10: (a) Schematic view of metal deposition during Dolan shadow evaporation. The Josephson

junction overlap L can be calculated from the tilting angle α and the height H of the

bottom resist as stated in the text. The height hAl of the first metal layer can be neglected.

(b) Measured L from two different samples using a scanning electron microscope. We

compare the resulting overlaps from the old and the new spin coater. The numbers are

the average value and the standard deviation of the data. The inset shows the positions

(x) of the fabricated Josephson junctions on one chip.

Double layer resist system

The double layer resist system8 consists of a 690 nm bottom layer of PMMA-MA 33%

and a 70 nm top layer of PMMA 950K. The latter one acts as a mask during evaporation

and defines the final structure resolution. The quality of this resist system in terms

of the homogeneity and the surface flatness is important for subsequent process steps.

In particular for the Dolan shadow evaporation, the area of the Josephson junction

depends strongly on the thickness H of the bottom resist as pointed out in Fig. 2.10 (a).

During the course of this work, a new spin coater has been set up9. For benchmarking

the resist quality [107], we fabricate Josephson junctions on two separate chips using

the old10 and the new spin coater and investigate the spread of the junction overlap

length L [cf. Fig. 2.10 (b)]. From this data, we obtain the thickness variations via

∆H = ∆L tan(α), where α = 17° is the tilting angle during the evaporation. The old

spin coater produces resist thickness variations of approximately 230 nm throughout

the whole 6× 10 mm2 chip compared to 80 nm for the new spin coater. This number

of resist thickness variations does not include the edge beads [109] of the chip, since

the evaluated positions on the chip are 2 mm away from the chip edge. The flatter and

more homogeneous resist layer leads to more reliable initial conditions for the e-beam

lithography.

8The trade names are AR-P 617.08 for PMMA-MA 33% and AR-P 679.02 for PMMA 950K from
Allresist.

9New spin coater Laurell WS-650 since 2015
10Old spin coater BLE Delta 20BM
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Electron beam lithography

E-beam lithography relies on the principle of a focused beam of accelerated electrons

patterning an arbitrarily designed structure onto a substrate covered with suitable

resist. Typically, the resist contains long polymer chains [111], which are broken up

due to the electron bombardment at a certain critical dose. In the case of positive

resist, these patterned areas can be dissolved and removed in a subsequent development

step [112]. Compared to standard photo lithography with a pre-manufactured mask,

e-beam lithography surpasses the limits in terms of lateral resolution and offers a higher

pattern design flexibility.

During the course of this work, a new e-beam lithography system11 has been set

up at the WMI. Here, we give a summary of the relevant features, which enable

reproducible Josephson junction fabrication. The system offers a large writing area of

up to 200× 200 mm2 [113], which enables us to load multiple smaller samples at once.

In order to pattern such a large area in a reasonable amount of time, the beam deflection

coils are controlled by DACs with a 55 MHz rate with 20 bit resolution combined with

a fast moving stage12 [113]. Features of minor fabrication importance, but simplifying

sample processing, are the multiple chuck system with a robotic loading arm and the

scripting of lithographic sequences.

The most important aspect is the maximum accelerating voltage of Ve = 100 kV.

For low Ve, back scattering of the electrons occurs, which means that the electrons

are scattered at molecules in the resist or at the substrate surface causing undesired

secondary exposure of the resist known as the proximity effect [114, 115]. Hence, for a

high accelerating voltage, this effect is drastically reduced by ∼ 1/V 2
e [109, 116], since

the electrons simply pass through the material on a straight trajectory. Monte-Carlo

simulations in Ref. [109] and experimental analysis in Ref. [107] confirm this behavior.

For the fabrication of Josephson junctions, however, a certain amount of proximity

effect is necessary, in order to make the Dolan shadow evaporation work. In detail, the

bottom resist has to be exposed without damaging the top resist. This can be achieved

automatically by back scattered electrons when Ve is low enough13. When using high

Ve, which offers a more precise beam, we artificially mimic the proximity effect by a

second exposure step with a slightly larger ghost pattern exposed with a lower dose [cf.

Fig. 2.11 (a)]. We choose the correct dose such that the top resist, which has a higher

critical dose, is not affected, but the bottom resist is exposed. A dose ratio of 1:0.19 for

the actual pattern and the ghost pattern gives reliable results for the before mentioned

resist system.

According to the manufacturer, the nB5 system can focus the e-beam to a beam size

11NanoBeam nB5 system with 100 kV acceleration voltage
12<100 ms for moving 0.5 mm.
13The former e-beam system Phillips SEM XL30sFEG with a RAITH stage has a maximum accelerating

voltage of 30 kV.



46 Chapter 2 Methods and techniques

(a) (b)

Si wafer 

1st evapora on 

L 

hAl 

H 

2nd evapora on 

W 

PMMA MA 33% 

PMMA 950K 

(b) 

C << 1 (overdamped) C >> 1 (underdamped) 

150 nm

500 nm

1.3 µm

308 nm
600 nm

Figure 2.11: (a) Pattern used for Josephson junction with ghost exposure (1.3 µm) to create the

necessary undercut in the bottom resist. The standard Josephson junction pattern

(shaded) is overlayed with a wider ghost pattern (light brown). (b) Scanning electron

micrograph of a test structure. The lines are designed to have a width of 50 nm and

100 nm, respectively.

of <6 nm at 3 nA beam current [113] under optimal conditions. This value surpasses

the resolution of the applied resist, which is 6 nm to 10 nm for the top resist PMMA

950K [111, 117]. In Fig. 2.11 (b) we show a performance test of structures with a

designed width of 50 nm and 100 nm, respectively. After lift-off, the evaporated metal

structures are slightly larger than expected. Nevertheless, by taking inaccuracies in resist

development and beam focusing into account, we are able to safely fabricate structures

with a resolution of approximately 100 nm, which is sufficient for our demands.

Josephson junction critical current density

One important parameter of the Josephson junction is the critical current density jc.

It defines the Josephson energy EJ = jcAJJΦ0/2π (where AJJ is the overlap area of

the Josephson junction) and, hence, the transition frequency of the transmon qubit

according to Eq. (1.43). As pointed out in the previous section, the qubit transition

frequency can be expressed via the transmon qubit criterion with a targeted ratio of

EJ/EC ∼ 50 as ωq = 19EJ/(50~). Therefore, we can write the critical current density

as

jc = 2π
Φ0

EJ

AJJ
= 50h

19 Φ0

2πωq

AJJ
. (2.6)

This equation enables us to check fabricated junctions by measuring the transmon qubit

transition frequency, but more importantly, it gives a first estimation of the required jc

for a desired ωq. The critical current density usually is required to be much lower for

transmon qubit junctions than for, e.g., flux qubit junctions. Taking into account the

resolution of our NanoBeam nB5 e-beam lithography system and the resist resolution,
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1 µm

Figure 2.12: The p1/2t law for determination of critical current densities. Inset: SEM micrograph of a

Josephson junction.

we can reliably fabricate a junction with a minimal area of around 100× 160 nm2.

The latter value is determined by the angle used in the Dolan shadow evaporation

process [108]. Using this value for the junction area, we obtain a required critical current

density of jc ' 32 A/cm2 for a qubit transition frequency of ωq/2π = 6 GHz. The critical

current density is defined by the thickness of the oxide barrier of the Josephson junction.

Thicker oxide barriers turn out to be more reproducible and follow the phenomenological

p1/2t law, which describes the oxidation in terms of oxygen pressure p and oxidation

time t. This law is a result of the Carbera-Mott theory for the formation of thin oxide

films [107, 118]. The critical current density can then be expressed as

jc = aκ

sinh
{

0.664κ [ln(2p1/2t+ c)]2/3
} (2.7)

where a, κ and c are material constants. The units for pressure and time are [p] = mbar
and [t] = s. We use these three parameters as fitting parameters and obtain the fit shown

in Fig. 2.12. For our material system, the values of these parameters are summarized

in Tab. 2.2. Due to the comparably low jc, the oxidation of transmon qubit Josephson

junctions is almost neither time nor pressure critical, which leads to stable fabrication

conditions.

Fit parameter Fit result

a / 10−7Acm−1 554.26 ± 280.70

κ / nm−1 0.77 ± 0.69

c / mbar1/2s -31.08 ± 1.62

Table 2.2: Fitting parameters for the p1/2t law using Eq. (2.7).
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Figure 2.13: Aging of a transmon qubit Josephson junction. Before every cooldown, the sample (cf.

sample QMv3 in Tab. B.2 in the appendix) is exposed to ambient conditions for several

days. During the cooldown, the aging is stopped due to the sample being in an evacuated

environment. The change of the qubit frequency clearly follows an exponential trend

νq(n) = νq,0 + A exp(−n/N0) (turquoise) with a base frequency of νq,0 = 6.25 GHz, an

amplitude A = 1.3 GHz and a ”decay time” of N0 = 0.62. The numbers next to the data

points are the year and month of the beginning of a cooldown.

Effect of thermal cycling

Our Josephson junctions are defined by a 5 to 10 Å [110] thin oxide barrier sandwiched

between two thin layers of superconducting aluminum. On top of the upper aluminum

layer, a natural oxide forms when the structure is exposed to ambient conditions.

Although the oxidation of an aluminum surface tends to stop naturally after a few

nanometers, the effect of junction aging has been reported occasionally [119]. This

implies, that the thickness of the oxide barrier increases, resulting in a lower critical

current. For a transmon qubit, this means that the transition frequency decreases as

νq ∼
√
Ic. We report on the effect of thermal cycling of one sample, where the sample

has been exposed several times to ambient conditions in between the cooldowns (cf.

Fig. 2.13). We note that the frequency drop does not depend on the time between the

cooldowns14 or the duration of the cooldown, but only on the number of cycles. The

drop in qubit frequency points to an increase of the insulating oxide barrier thickness d

of the Josephson junction [νq ∼ exp(−d)] [110]. A possible explanation for this behavior

could be a change in the boundary conditions for the oxide barrier, such as mechanical

stress, during the cooldown or heatup procedure. To circumvent or at least reduce such

changes in the qubit frequency, it is possible to post-oxidize the sample in a controlled

manner after the deposition of the second metal layer [90].

14Between the cooldowns, the inner vacuum chamber of the cryostat is often not vented. However,
if it is vented for changing samples or the cabling, which takes up to a few days, we restore the
vacuum of the inner vacuum chamber immediately. Hence, the samples typically remain most of
the time in evacuated conditions.
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2.2 Qubit spectroscopy

In order to investigate the characteristics of a transmon qubit, it is necessary to cool it

below T � Eq/kB to prevent thermal excitations. We start by reviewing the cryogenic

setup. Next, we describe the frequency domain measurements, and afterwards move on

to the time domain.

2.2.1 Cryogenic setup

The apparatus for cooling qubit samples and other necessary microwave equipment to a

few tens of millikelvin above absolute zero is complex. 3He-4He dilution cryostats are

suitable for this task, because of their continuous operation, sufficient cooling power and

sample space [cf. Fig. 2.14 (a)]. In a simplified picture, a dilution cryostat is based on

the principle of creating a non-equilibrium state between an 3He-dilute and an 3He-rich

phase by pumping away 3He from the dilute phase. Then, 3He from the 3He-rich phase

needs to get dissolved into the 3He-dilute phase across the phase boundary. The enthalpy

for this process provides the cooling power to remove heat from the surrounding. We

use a home-made liquid 4He precooled dilution cryostat for our experiments, which is

described in more detail in Ref. [120]. Typically, a cryostat has several temperature

stages, where the components necessary for qubit experiments are located. To some of

the stages, a radiation shield is mounted [cf. Fig. 2.14 (b)].

The RF input line is thermally anchored with attenuators at specific stages to protect

the sample from thermal radiation via the cable inner or outer conductor. At the sample

stage, which has a base temperature of approximately 30 mK, the input line is filtered

with a low-pass filter15 with a cutoff frequency of 12 GHz to limit the spectrum to the

bandwidth of interest, and thereby keeping high-frequency noise away from the qubit.

A second filter of the same kind is inserted in the output line. One qubit sample (cf.

sample QMv4 in Tab. B.2 in the appendix) measured with and without these filters

exhibits a shifted transition frequency. By inserting a filter in the input and output line,

the qubit frequency rises from 5.284 GHz to 5.360 GHz. This is most probably a result

of an increased critical current of the Josephson junction due to less high frequency

noise [21, 121]. When taking into account the aging of the junction (cf. Sec. 2.1.3),

which leads to a lower critical current, the real increase of Ic must be even larger. The

changes are summarized in Tab. 2.3.

The sample itself is thermally anchored to the sample stage and has an heater and

a thermometer attached for individual temperature control. Thermal anchoring of a

bulk superconducting cavity proves to be more demanding than of a normal metal box,

because a superconductor has a very low thermal conductivity [122]. We have tested

three different methods, which are shown in Fig. 2.15, and come to the conclusion that

15K&L 6L-250-12000 tubular filters
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Figure 2.14: (a) Photograph of the cryostat sample stage before cooldown. (b) Cryostat setup scheme

with all relevant microwave components. For simplicity, only one of several mounted

cavities is shown.

without filters with filters

ωq/2π (GHz) 5.284 5.360
Ic (nA) 23.1 24.1
CΣ (fF) 63.7 64.6
α/h (MHz) -304 -300

Table 2.3: Parameters of a transmon qubit with and without cryogenic K&L tubular low-pass filters.

Ic and CΣ are calculated using the transmon qubit formulas in Sec. 1.2.3. This sample

has EJ/EC ≈ 40, hence the transmon qubit approximation is valid (cf. sample QMv4 in

Tab. B.2 in the appendix).
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Figure 2.15: Different sample mounting techniques and the corresponding thermalization. The elapsed

time of 192 h from the beginning of the cooldown ensures base temperature at all

components. For a simultaneous and homogeneous heatup, the mixing cycle is stopped

for approximately 30 min and then restarted again. The fitting function is a sum of three

exponential decay functions in the form of
∑
Ai exp(−rit), because, most probably, at

least three different heat transfer channels contribute in total. We give the cooling rates

ri of the leading one, which is the one with the highest amplitude Ai.

screwing the 3D cavity directly to the sample rod with a large contact area works best.

Second comes the clamping type thermalization, which has the same cooling rate, but

gives a base temperatures higher by 10 mK. Silver wire thermalization may only be

used in addition to the before mentioned methods, but on its own it does not let the

sample reach its base temperature sufficiently fast due to the limited contact area.

For the RF output line, attenuators cannot be used for thermalization, because of

the low-level measurement signal. Therefore, circulators are used, which break the

time symmetry in such a way, that thermal radiation from higher temperature stages is

dissipated in a cold 50Ω termination, but the measurement signal from lower stages

can pass through. They are also important for blocking the back action signal from the

cryogenic amplifiers. The measurement signal is amplified by these amplifiers with a

low noise temperature at 4 K, before it leaves the fridge for further analysis.

2.2.2 Single-tone transmission measurement

We first characterize the bare cavity transmission using a vector network analyzer

(VNA)16 (cf. Fig. 2.16). We measure a Lorentzian shaped magnitude response for the

eigenmodes. The frequency-resolved transmission magnitude M(ν) is expressed as

M(ν) =
(

G

1 +G

)2 1
2

∆ν/2
(ν − νm)2 + (∆ν/2)2 (2.8)

16Models of different brands have been used throughout this work: Rohde & Schwarz
ZVA8/ZVB8/ZVA24 and Agilent N5222A PNA
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Figure 2.16: Transmission measurement scheme for (a) frequency sweeps and (b) continuous-wave

dispersive readout at frequency ωRO with additional coherent drives at frequencies ωd1

and ωd2.

where the center frequency of the Lorentzian is the mode frequency νm = ωm/2π. The

maximum height M(νm) gives information on the coupling coefficient G =
√
M(νm)/[1−√

M(νm)] [52] and the full width half maximum (FWHM = ∆ν = κ/4π2) is related to

damping. The same information, except for the coupling, is contained in the phase

response

ϕ(ν) = − tan−1
( 2

∆ν (ν − νm)
)
. (2.9)

We plot both quantities in Fig. 2.17 and compare them with measured data. The

measured resonator parameters are important for the resonator-assisted qubit readout

explained in the next section. The full transmission spectrum is the sum of all modes

which can form inside the cavity. Such a transmission spectrum is shown in Fig. 2.18

for a microwave 3D cavity at 50 mK with an off-center qubit chip (cf. sample QMv3 in

Tab. B.2 in the appendix). The measured fundamental TE101 mode is at 5.604 GHz.

From a CST Microwave Studio [50] frequency solver simulation (cf. cavity model

in Sec. C.1 in the appendix), we expect a slightly lower value of 5.591 GHz for this

mode and also slightly shifted frequencies for the higher modes. We attribute this

behavior partially to the shrinking of the material at low temperatures, which causes

the frequencies to increase by several tens of megahertz [97]. The internal quality factor

of particular modes, which have an antinode at the chip position (cf. Sec. 2.1.1), is

significantly changed due to the dielectric properties of the chip. For the simulation,

we assume εr = 11.9 for silicon, although this value is expected to be slightly lower

at cryogenic temperatures, leading to less disturbance of the mode. To obtain the
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(a) (c)

(d)(b)

Figure 2.17: Theoretical (a) magnitude and (b) phase response function of a resonator measured

in transmission. The resonance frequency is set to 5 GHz. (c) and (d) Calibrated

measurement (dots) of the pure Al cavity (cf. Tab. B.1 in the appendix) at 50 mK.

Both pins are retracted to −1.6 mm and κ/2π ' 8.43 kHz at ω101/2π ' 5.718 279 GHz.

From the transmission amplitude, we calculate G ' 1.25. With QL ' 678000 we

obtain Q0 ≈ 2.25 ·QL ' 1.5 · 106 according to Eq. (1.13). The fits (line) are performed

according to Eq. (2.8) and (2.9). The global phase offset in (d) is due to the measurement

configuration.

frequencies of modes with low external coupling, we use the eigenmode solver and obtain

the simulated frequencies of all cavity modes. In order to match the frequency results

from the simulation to the ones measured for the cavity at cryogenic temperatures,

we adjust the antenna pin penetration depths of the simulation model such that the

frequency of the TE101 mode is approximately matched. The simulation results are

summarized in Tab. 2.5 up to 22 GHz.

2.2.3 Single-tone determination of the dispersive shift

For a coupled qubit 3D cavity system we investigate the cavity dispersive shift χ by

ramping up the power of the VNA probe tone [cf. Fig. 2.19 (b)]. Although the drive is

off-resonant from the qubit frequency, at some point, the power at the qubit frequency

is sufficient to saturate the qubit and to bring it into a mixed state with the expectation

value 〈σz〉2 = 0. According to Eq. (1.53), the resonator frequency shifts by an amount

χ′ as compared to the qubit in |g〉. In the measurement, due to the high drive strength,

also higher levels of the transmon qubit are populated and contribute to the total



54 Chapter 2 Methods and techniques

Figure 2.18: Frequency spectrum of a microwave 3D cavity with a single off-center qubit chip at 50 mK
(turquoise) (cf. sample QMv3 2nd in Tab. B.2 in the appendix) and corresponding FEM

simulation (black). Modes with a high coupling coefficient are well distinguishable and

indicated. The cryogenic amplifier used in this measurement has a nominal bandwidth

of 4 to 20 GHz and the amplifier at room temperature is limited to 4 to 8 GHz. Small

features beside the major peaks result from higher order transitions involving the qubit

or can be attributed to parasitic modes.

dispersive shift. Hence, we need to give consideration to the correction factor for the

dispersive shift for the transmon qubit as given in Eq. (1.55). This correction takes into

account the dispersive shift of the second excited level of the transmon qubit, which is

typically sufficiently accurate.

2.2.4 Two-tone measurement and higher qubit levels

In order to reveal further important transmon qubit parameters, we use the dispersive

readout scheme (cf. Fig. 2.19). In this scenario, the resonator is weakly probed at a fixed

frequency ωRO close to the resonance frequency. If now the transmon qubit changes

its state, the resonator peak shifts in frequency and, as a result, the transmission at

ωRO changes accordingly. With an additional coherent drive at the qubit frequency, we

excite the transmon qubit. In experiment, the frequency ωd of this additional tone is

swept and the change in the probe tone amplitude or phase is measured, to obtain the

transition frequency ωq of the transmon qubit (cf. Fig. 2.20). The probe tone itself has

to be weak enough not to excite the qubit. However, it still causes a population of the

readout resonator, leading to an AC Stark shift of the qubit frequency [cf. Eq. (1.57)],

which has to be calibrated. With correctly determined values of the qubit frequency,

the resonator frequency and the dispersive shift, we can calculate the detuning ∆ and

the coupling g from Eq. (1.52). At high qubit drive power, we are able to excite higher

levels of the transmon qubit in a process involving multiple photons. In Fig. 2.20 (a) we

observe the higher levels of the transmon qubit at a sufficiently high drive power. This
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Frequency (GHz)
Coupling to

qubit
(off-center)

Coupling to
qubit (center)

Coupling to
antennas

Mode TExyz

5.6050638 high high high 101
8.8500887 high low low 102
8.896803 low low high 201
11.388082 low low low 202
12.118731 high high high 301
12.773434 high high high 103
13.797072 high low low 302
14.219597 high low high 203
14.830305 high low high 203
16.363629 high low low 104
16.675641 high low high 401
17.338904 high high high 303
17.893519 low low low 402
18.01824 low low low 204
18.910263 high high high *
20.164729 high low low 304
20.193551 low low high 403
20.212452 low low high 304
20.56252 high low low *
20.658771 low high high *

Table 2.4: Simulated modes of a microwave 3D cavity with a single off-center Si chip using the

eigenmode solver (cf. Sec. C.1 in the appendix) and the coupling to the qubit chip and

antennas. Some of the frequencies calculated by the eigenmode solver deviate from the

frequency domain solver, because the antennas are neglected, however they are sufficiently

accurate for a coarse estimation. The modes marked with a star do not follow the bare

cavity modes TExyz numbering scheme, since they occur only due to the insertion of the

chip and the antennas.

kind of measurement is necessary in order to calculate the anharmonicity α

α = ~(ωgf − 2ωq) ≈ −EC (2.10)

and obtain the value of the capacitance CΣ = e2/2EC. When the anharmonicity of the

qubit is known, a refinement of the coupling strength g can be done by using Eq. (1.55).

In addition, we can draw conclusions on the size of EJ from EC by using the relation in

Eq. (1.39). In the end, by measuring the anharmonicity, we disclose the basic parameters

of the transmon qubit, namely the total capacitance CΣ and the critical current Ic. In

App. A.1, we summarize the measurement strategy for characterizing a transmon qubit

from scratch.
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Figure 2.19: (a) Scheme for dispersive readout in the case of a negative χ, which is valid for a qubit

frequency higher than the cavity mode frequency ωm. The transmon qubit cavity pull χ′ is

reduced compared to that of an ideal two-level system (light red and blue lines) according

to Eq. (1.54). (b) Single-tone transmission measurement of the readout mode (cf. sample

QMv3 1st in Tab. B.2 in the appendix). For low probe powers up to approximately 0 dBm
at the VNA output, the qubit stays in |g〉. When moving to higher powers, the qubit

is excited into a mixed state, which shifts the resonator frequency up by χ′. The cuts

discussed in (c) are marked by he vertical dashed lines. (c) Vertical cuts at −10 dBm and

18 dBm. We can extract χ′ = −1.6 MHz for this sample. Negligible deviations on the

order of 0.2 dB in the height of the resonance peak come from the frequency-dependent

gain of the amplification chain.

2.2.5 AC Stark shift and photon number calibration

The AC Stark shift of the qubit frequency described in Eq. (1.57) provides an elegant

way to calibrate the input power with sub-single photon accuracy. This calibration

is necessary, because for the dispersive readout, the readout power should stay below

one photon on average in the cavity to enable a quantum non-destructive (QND)

measurement [120]. Moreover, the bare qubit frequency is obtained from such a

calibration. Figure 2.21 shows an experimental example17. We perform a dispersive

readout for different readout powers and find a linear relation between the linearized

17This data is recorded for the same qubit QMv3 as in Fig. 2.20, however in a different cooldown
without intermediate exposure of the sample to ambient conditions. Therefore, νq has dropped
slightly from 7.6 GHz to 7.54 GHz.
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Figure 2.20: (a) Two-tone spectroscopy of higher qubit levels. We plot the transmission phase as

a function of the qubit drive frequency ωd1 and the qubit drive power Pd1 (cf. sample

QMv3 1st in Tab. B.2 in the appendix). (b) Vertical cuts at the positions indicated by

the dashed lines in (a). At low drive power, only the lowest qubit transition is visible

(blue). If the drive power is increased, the lower qubit transitions start to power broaden

(green) and higher order processes occur, which lead to an excitation of the higher qubit

levels (orange, red). Moreover, the dispersive readout is disturbed at high drive power

due to extensive AC Stark shifts in the system, which is visible in the phase offset of the

red curve.

readout power and the qubit frequency. By extrapolating the power to zero, we obtain

the bare qubit frequency ωq. The average photon number can be calculated from the

input power with Eq. (1.16) and the dispersive shift χ′ per photon [123].

Moreover, the qubit transition is affected by measurement induced dephasing. At

higher probe powers, the transition dip becomes broader. Therefore, we can use this

effect to estimate the qubit decoherence time T2 using [124]

π∆ν =
√( 1

T2

)2
+ np(2g)2T1

T2
. (2.11)

Here, np denotes the number of probe photons. If we extrapolate the FWHM in

Fig. 2.21 (c) to zero power, ∆ν = γ/4π2 is a direct estimation of the decoherence time

T2 = 1
π∆ν . (2.12)

From this estimation, we get T est
2 ' 3.31 µs. With a Ramsey-type time domain

measurement [cf. Fig. 2.21 (d)], we confirm the decoherence time to be T q
2 = 3.4 µs for

this specific qubit (cf. sample QMv3 1st in Tab. B.2 in the appendix). Details on the

time domain measurement setup can be found in Sec. 2.3. The small difference between

these values can be accounted for by fit errors during the determination of the FWHM

from the data and to errors of the linear fit. At a relatively high probe power, also

other cavity modes are excited, which contribute to the frequency shift. This can be
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Figure 2.21: (a) Qubit frequency shift depending on probe power (cf. sample QMv3 1st in Tab. B.2 in

the appendix). (b) Photon number calibration using the AC Stark shift. One photon on

average is excited in the cavity at 22 µW output power at the RF source. (c) Squared

FWHM of the qubit transition against probe power. We limit the probe power range

to lower values to increase the fit fidelity. (d) Time domain measurement for the

determination of T q
2 . Red line: fit. Inset: Ramsey-type pulse sequence.

seen in Fig. 2.21 (a) near 0 dBm probe power. The qubit transition cannot be clearly

distinguished anymore from other system excitations. To estimate this effect, we need

to selectively excite the modes, which is discussed in the next paragraph.

2.2.6 Triple-tone measurement

The setup is extended with a second microwave source with drive frequency ωd2 [cf.

Fig. 2.16 (b)]. Together with the VNA, which supplies the continuous wave readout

tone, three coherent microwave tones can be applied to study higher order effects or to

selectively probe certain transitions.
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Qubit assisted measurement of higher qubit-cavity modes

With a triple-tone setup, we are able to quantitatively measure higher modes of the

cavity-qubit system and their coupling to the qubit, even though they are beyond the

bandwidth of the cryogenic amplifiers, which are typically limiting the frequency range

for the experiment. To this end, we again readout dispersively with a low readout power

at ωRO and sweep ωd1 through the qubit transition frequency (or any other transition

in which the qubit contributes to) to monitor AC Stark shifts of the qubit. The drive

ωd2 is an additional, selective mode populating drive, which we scan over a broad range.

If now a mode with frequency ωm is populated, the qubit experiences an AC Stark

shift, which is recorded as a frequency dip (ωq < ωm) or peak (ωq > ωm). In contrast to

a two-tone measurement, where only one additional drive can be swept in frequency,

since ωRO is fixed at a frequency close to the readout mode for dispersive readout of

the qubit, here, we have two frequency tunable drives available. As a result, we can

make use of the sensitivity of the qubit transition on the cavity photon population and

make statements on the frequency-resolved parameters of the cavity modes.

In Fig. 2.22 we present such a triple-tone measurement on the blue sideband transition.

We use a similar approach to Eq. (1.66), which we extend to multiple modes, to fit the

curves. In detail, this means that we quantify the frequency shift with the AC Stark

shift term Ω2
d2 · 4g2/[(ωm − ωd2)2(ωq − ωd2)]. If we limit our investigation to 5 modes

between 11.5 GHz to 13 GHz, m1 to m5, the total frequency shift is the sum of the

single shifts caused by each of the five modes, and we obtain

ω′q = ωq +
5∑
i=1

Ω2
d2

(ωmi − ωd2)2
4g2

i

ωq − ωd2
= ωq +

5∑
i=1

Ω2
d2

∆̃2
mi

4g2
i

∆̃q
, (2.13)

where the index i enumerates the modes. Until now, the modes are assumed to be

lossless, which is reflected in an infinitely sharp peak in frequency space. To describe

our data correctly, we need to introduce a linewidth ∆ωmi for each mode and obtain a

fitting function

ω′q = ωq +
5∑
i=1

π
∆ωmi/2

(ωmi − ωd2)2 + (∆ωmi/2)2
8(Ωd2gi)2

π∆ωmi(ωq − ωd2) (2.14)

= ωq +
5∑
i=1

π
∆ωmi/2

∆̃2
mi + (∆ωmi/2)2

8(Ωd2gi)2

π∆ωmi∆̃q
, (2.15)

which is a sum of Lorentzians, where the second term in the sum is the amplitude of

the Lorentzian. The fitting function has fitting parameters ωmi, ∆ωmi and Ωd2gi. As

a result, the linewidth of a certain cavity mode can be seen in the width of the dips.

The coupling of a mode to the drive antenna and to the qubit is reflected in the depth

of the shift. In other words, the value of the frequency shift stands for the ability to

create photon population, which interacts dispersively with the qubit.
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Figure 2.22: (a) AC Stark shifts of the BSB transition for a wide selective drive frequency range

ωd2 (cf. sample QMv3 1st in Tab. B.2 in the appendix). Yellow rectangle: closeup

discussed in (b). The horizontal line at approximately 7.46 GHz is the BSB transition.

At frequencies, where ωd2 is swept over a cavity mode, this BSB transition frequency

is shifted downward according to Eq. (2.15). The vertical dark lines indicate strongly

driven transitions in first order, such as the cavity mode at 5.518 GHz or the first qubit

transition at 6.234 GHz. (b) AC Stark shift contributions from higher cavity modes. The

Lorentz dips give information about the mode bandwidths and coupling to the qubit. The

fit (red line) is performed on extracted data points (blue dots). We limit the extracted

data points to those modes, which have a negative dispersive shift. Pink line: Direct

single tone transmission measurement of the cavity in dB as in Fig. 2.18. (c) Closeups of

cavity modes fitted in (b).

For the fit, the drive amplitude Ωd2 can be set to an arbitrary value. We only fit the

modes, which have a dispersive shift towards the qubit. The other features, which are

visible throughout the whole vertical range of ωd1 are higher order transitions, such as

other sidebands, or direct transitions, which are strongly driven. They are also detected

by the dispersive readout. From the fit, we are able to extract the exact mode frequency

ωmi and the mode linewidth ∆ωmi (cf. Tab. 2.5). By comparing these results to the

single-tone transmission spectrum in this frequency range (cf. Fig. 2.18), the qubit

assisted measurement of higher modes circumvents the limitations imposed by the VNA

noise floor and the frequency range of the amplifiers. Hence, the individual modes can

be resolved more accurately. In terms of the mode linewidths, however, one has to be

careful to remain in a low drive power regime, where power broadening does not affect

the linewidth. Therefore, the resulting Q-factors have to be taken as lower bounds.

Another advantages of this type of measurement is that the impact of the modes on the
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ωm/2π (GHz) ∆ωm/2π (MHz) QL

10.648 20.2 525
11.113 22.9 486
11.138 14.6 781
12.253 21.7 564
12.745 5.3 2417

Table 2.5: Frequency, linewidth and quality factor of higher modes.

qubit is better resolved. This becomes important when dealing with transitions, where

the AC Stark shift has to be taken into account.

If we examine the obtained frequencies ωmi of the qubit-cavity system and compare

them with the simulated ones of the bare cavity system in Tab. 2.4, we observe that

the measured modes are only present in a qubit-cavity system and non-existent in a

bare cavity. In the frequency range from 10.5 GHz to 13 GHz, we obtain with the FEM

simulation bare cavity modes at 11.39 GHz, 12.12 GHz and 12.77 GHz, whereas the

triple-tone measurement reveals multiple modes in between these frequencies. Hence,

the FEM simulation of a bare cavity is not sufficient to capture the full mode spectrum of

a qubit-cavity system, but a triple-tone measurement is necessary. Due to the resulting

qubit frequency shifts, it is crucial for the calibration of an experiment to take into

account all relevant qubit-cavity modes. To this end, the triple-tone measurement is a

useful tool to identify and quantify these modes.

Sidebands

Another experiment based on the triple-tone setup is to investigate the red (ωr) and

the blue (ωb) sideband in more detail according to the Hamiltonian given in Eq. (1.65).

The first drive ωRO remains the resonator probe for dispersive readout, whereas the

second and third drive, ωd1 and ωd2, populate the qubit and the resonator mode. We

fix one drive at a frequency close to the qubit frequency with a constant detuning

ωd1 = ωq ± δd of a few megahertz. This drive provides the qubit excitation. Typically,

we sweep the other drive across the mode frequency to provide the mode excitation. If

the requirement of ωd1 + ωd2 = ωb for the blue sideband is met, a transmission dip can

be observed. For the drive close to the resonator frequency, this means ωd2 = ωm ∓ δd

has to be fulfilled. In the case of the red sideband, we have the difference frequency

ωr = ωd1 − ωd2 and ωd2 = ωm ± δd has to be satisfied. The detuning δd has a practical

reason, since without it, the sideband feature would coincide with either the qubit

transition feature or the resonator peak, rendering it indistinguishable. The adjustment

of the detuning is limited to a specific range, because the transition matrix element is

proportional to 1/δ2
d [81] and according to Fermi’s golden rule, the transition rate is

proportional to 1/δ4
d.
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The drive ωd2 populates the mode with photons according to the Lorentzian cavity

filter function. At a constant drive power, the closer the drive frequency comes to the

resonance frequency, the higher is the excited population, leading to an increasingly

divergent AC Stark shift of the qubit. To compensate for this, we adjust the drive

power with the inverse of the cavity filter function to maintain a constant population in

the resonator mode [cf. Fig. 2.23 (d)].

In Fig. 2.23 (a)-(c), we present measurements of the sidebands of the qubit and

the TE101 mode and the TE201 mode, respectively [123]. The bare frequencies are

ωq/2π ' 7.60 GHz, ω101/2π ' 5.606 GHz and ω201/2π ' 8.904 GHz. The almost

degenerate ”twin” mode of the TE201 is at ω102/2π ' 8.944 GHz. In Fig. 2.23 (a), we

observe both the red and the blue sideband as diagonal lines in the graph, since they

correspond to the difference and sum of the qubit and mode frequency, respectively

[cf. Eq. (1.56)]. To calculate the frequency of the blue sideband, we add up the

values of ωd1 and ωd2 at an arbitrary point on the diagonal line and obtain ω′b =
5.578 GHz + 7.591 GHz = 13.169 GHz. We notice that this value is lower than the bare

sum ωq + ω101. The reason for this difference is the AC Stark shift of the qubit, which

we account to 20× χ′. In other words, the TE101 mode is populated with a constant

amount of approximately 20 photons on average, and we obtain ωb = ωq + ω101 + 20χ′.
In this calculation, we neglect the Kerr shift of the mode [cf. Eq. (1.59)], which is on

the order of tens of kilohertz. For the red sideband, we can follow the same procedure

and obtain ω′r = 1.960 GHz.

The blue sideband of the qubit and the TE201 mode is shown in Fig. 2.23 (c). Here,

the mode photon population is significantly lower, because the linewidth of this mode

is about 30 times smaller than in the case of the TE101 mode. This makes it difficult

to maintain a constant photon population due to the high power, which is necessary to

populate the mode with photons [cf. Eq. (1.16)]. Furthermore, the degenerate mode with

a large linewidth is close by and requires to be considered in the cavity filter function.

Thus, the power adjustment function becomes more complex and the system becomes

more susceptible to small drive fluctuations, which lead to shifted frequencies. As a

workaround, it is easier to keep the drive power low and accept that the higher order

sideband transitions are less visible. The red sideband is not visible in this scenario,

because it needs an excitation already present in the system (|g1〉 ⇔ |e0〉), which is not

fulfilled for such low drive powers. Close to the mode, the qubit frequency is inevitably

AC Stark shifted as it can be seen in the data. Moreover, it is shifted for frequencies

higher than ω201 due to the presence of the TE102 mode. Nevertheless, we can observe

the blue sideband of the qubit and the TE201 mode18.

18A sideband of the qubit with the TE102 mode is not observed, since the the qubit coupling to this
mode is lower by one order of magnitude as compared to the TE201 or TE101 mode due to the
position of the qubit chip.
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Figure 2.23: Triple-tone spectroscopy of sideband transitions for (a) TE101 mode and (c) TE201 mode

(cf. sample QMv3 1st in Tab. B.2 in the appendix). On the vertical axis, we sweep the

qubit drive frequency (ωd1) to excite the qubit at the qubit transition frequency. On the

horizontal axis, we sweep the mode drive frequency (ωd2) across the corresponding mode

frequency to populate the mode with photons. We record the transmission phase in a

dispersive readout scheme. If the sum or the difference of both drives equals a sideband

transition, we observe a dip in the transmission phase. (b) Blow-up of the TE101 mode

spectroscopy as marked by the yellow rectangle in (a). Sidebands up to the 6th order are

visible. (d) Power adjustment function (solid red), which is the inverse of the cavity filter

function (dashed turquoise). To prevent additional AC Stark shifts, the drive power is

adjusted to maintain the same amount of photons during the frequency sweeps over the

resonance peaks.

2.3 Time domain measurements

The dynamics of a qubit can only be revealed with a time resolved measurement

setup [16, 120]. Based on Sec. 1.4, one has to be able to rotate the qubit on the Bloch

sphere in a controlled manner. After that, a readout has to be performed, which is

similar to taking a snapshot of the system right after preparation. Both the preparation

and the readout require pulsed microwave signals with nanosecond accuracy. In the

following, we introduce the pulse generation setup and basic pulse protocols for qubit

measurements. Then, we discuss pulse shaping techniques and the effect of spectrally

broad pulses on a transmon qubit. We also include qubit phase control with I and Q

quadratures.
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Figure 2.24: Pulse generation setup for time domain measurements. This setup has the flexibility

of using a standard analog RF source or a vector modulated RF source for IQ drive

pulse control. The band-pass filter in front of the RF vector source is interchangeable

depending on the drive frequency requirements. An RF switch is implemented for quick

validation of the pulse generation on the oscilloscope.

2.3.1 Pulse generation setup

The pulse envelope is generated by an arbitrary function generator (AFG)19 with a

sampling rate of 2.5 GSa/s, 14bit vertical resolution and a 500 MHz bandwidth. A

continuous microwave signal at the desired gigahertz frequency is sent from an analog

microwave source to a chain of two RF mixers, which are connected to the AFG and,

hence, modulate the pulse envelope onto the microwave signal (cf. Fig. 2.24). Two RF

mixers in series are necessary to provide a sufficient on/off ratio. This scheme is scalable

to multiple pulsed microwave drives, which are then combined with power combiners20.

The minimum setup consists of a pulsed readout at the cavity frequency ωRO and one

pulsed drive at the qubit transition frequency ωq. We extend this setup with a vector

modulated source21 for qubit phase control. In this case, the two channels of the AFG

are directly connected to the differential wideband IQ inputs of the vector source, which

takes care of the pulse modulation.

The recording of the measurement signal is only briefly discussed here, because it

is the same setup used in Ref. [120]. We use a field programmable gate array (FPGA)

card22 with a sampling rate of 250 MHz for digitizing the measurement signals. Since the

readout signal oscillates at a gigahertz frequency, it is downconverted with an IQ mixer

to 62.5 MHz in order to fit the sampling rate of the FPGA card. This intermediate

19Agilent/Keysight 81160A
20Minicircuit ZX10-2-183-S+ and MCLI PS2-11
21Agilent E8267D PSG with differential wideband IQ option (016)
22X5-RX from Innovative Integration
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Figure 2.25: Basic pulse protocols: (a) Pulsed spectroscopy with sweep of qubit drive frequency ωq.

(b) Driven Rabi oscillations. (c) Direct T1 measurement. (d) Ramsey T2 measurement.

(e) Spin echo T2 measurement. The qubit preparation pulse is colored in green, the

resonator readout pulse in orange. (f) Histogram of qubit T1 measured by performing

the 5 · 105 times averaged protocol of (c) approximately 1000 times in a row (cf. sample

QMv3 2nd in Tab. B.2 in the appendix).

frequency (IF) is chosen to fulfill the Nyquist-Shannon sampling theorem [125, 126].

To synchronize the microwave drive pulses and the data acquisition, the FPGA card

is triggered by one of the AFGs. Each measurement is repeated 5 · 105 times and the

recorded IF signal is streamed from the FPGA card to the computer. A post processing

step is performed on the computer using LabView, where the data is averaged and

another demodulation to DC is applied.

2.3.2 Basic pulse protocols and automatic tune-up

With a time resolved measurement setup, one is able to perform all the measurements,

which can be done with the VNA, however, in a pulsed manner. The temporal separation

of the preparation and the readout has the advantage, that the probe signal does not

disturb the qubit by, e.g., AC Stark shifting it. In Fig. 2.25 (a), the protocol for such a

pulsed spectroscopy is shown. The drive pulse shape is fixed and the frequency of the

drive carrier is swept. In practice, the preparation pulse only needs to be close to a

π-pulse in order to excite the qubit and give a measurable response different from the

ground state.

By resonantly driving the qubit, one can induce Rabi oscillations as described in

Eq. (1.63). To this end, the length τ of the drive pulse is increased for each sweep [cf.

Fig. 2.25 (b)]. With this method, we determine the π-pulse length Tπ. Depending on

the drive power Pd, the π-pulse length can be longer for low Pd or shorter for high Pd.

The knowledge of Tπ paves the way to perform energy relaxation measurements by

pulsing the qubit to |e〉 and record the decay directly during the readout pulse [cf.

Fig. 2.25 (c)]. This decay constant describes the energy relaxation time T1. Since energy
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relaxation is a statistical process, we typically perform statistics on this parameter. An

exemplary histogram of the normal distributed qubit decay time is shown in Fig. 2.25 (f).

The qubit decoherence time T2 is typically measured with either a Ramsey or a

spin echo sequence [cf. Fig. 2.25 (d) and Fig. 2.25 (e)]. Both are based on letting the

qubit rotate freely in the equatorial plane, however, the spin echo sequence contains

an intermediate refocusing π-pulse to mask out low frequency noise [53]. For the

Ramsey sequence, the qubit is pulsed with a π/2-pulse into the equatorial plane for free

precession around the z-axis for a waiting time τ . In the end, the qubit is rotated back

onto the z-axis with a second π/2-pulse and the readout is performed.

All above mentioned protocols are based on a clean preparation of the qubit via a

π- or π/2-pulse23. During the course of this work, an automated fitting procedure for

finding the optimal Tπ has been implemented as a pre-processing step in the LabView

measurement program (cf. Fig. 2.26). Based on initial estimations of ωq and Tπ, the

software is able to find the correct qubit frequency and π-pulse length for a given drive

power. By doing pulsed spectroscopy and taking the transmission minimum, we get the

qubit frequency. For the π-pulse length, a Rabi oscillation measurement is performed

and the data is fitted with a damped sine fitting function. The first oscillation peak

or dip then is the correct Tπ. This tune-up procedure can be performed before each

measurement and enhances the subsequent qubit preparation precision.

If the specific goal is to obtain two consecutive π-pulses at different transition

frequencies, we begin with calibrating the π-pulse for the first transition. Then, the

same pre-measurements are repeated for the second transition, however with the first

optimized π-pulse preceding.

2.3.3 Pulse shaping

The shape of the pulse envelopes is of substantial importance for the fidelity of the

qubit preparation. We can understand this, if we Fourier transform (FT) the pulse

shape s(t) from time domain to frequency domain [127].

S(ω) =
+∞∫
−∞

s(t)e−iωtdt = F {s(t)} (2.16)

s(t) = 1
2π

+∞∫
−∞

S(ω)e−iωtdω = F−1 {S(ω)} (2.17)

The Fourier transformation is equal to expressing the shape s(t) with an infinite series

of cosine and sine functions of certain frequencies. Taking a rectangular sharp pulse

23For calibrating the π/2-pulse, it is convenient to use two equal pulses in series and sweep the length
of both pulses simultaneously. At a certain pulse length, where the qubit is prepared in |e〉, both
pulses have contributed a π/2 rotation. Especially, when using non-rectangular pulse shapes, this
method is far more accurate than estimating the π/2-pulse length from the first quarter period of a
Rabi oscillation pattern.
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Figure 2.26: Tune-up procedure for π-pulse optimization. The pulse scheme and the schematic

measurement outcome are shown in each panel. Red arrows mark the local extrema found

by the optimization routine. For finding the optimized Tπ, the extremum search range

is limited to the first oscillation period (cyan dashed rectangle). In this scenario, we

optimize a π-pulse at the transition frequency ωb and another π-pulse at the transition

frequency ωq. The final measurement sequence (cf. Sec. 3.1.2) requires these two π-pulses

to be consecutive with the π-pulse at ωb in front. Hence, we first optimize the π-pulse at

ωb and then the one at ωq.
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Figure 2.27: (a) Spectrum analysis of typical pulse shapes used in the experiment. The pulse shapes

differ in their ramp up time tr. We apply one pulse at the frequency ωb/4π and one at

ωq/2π with different drive power. The frequencies are matched to sample QMv3 1st in

Tab. B.2 in the appendix. Strong parasitic driving of the first and second qubit transition

is visible for 10 ns pulses. (b) Rectangular pulse shape. (c) Gaussian pulse shape. (d)

Gaussian flattop pulse shape as a hybrid of the former two. The temporal resolution of

the AFG is 2.5 GSa/s and hence, the minimal rise time is about 1 ns.

in time domain, an infinite number of different frequency components is necessary to

model the sharp edge. Hence, the frequency spectrum of the pulse envelope is very

broad. Especially when working with a transmon qubit with limited anharmonicity, the

spectral width of the pulses has to be considered. Therefore, we analyze different pulse

shapes with a spectrum analyzer24. A spectrum analyzer performs a discrete FT of the

measured s(t).
One important pulse shape is a Gaussian shaped pulse g(t), which maintains its

functional form when Fourier transformed.

g(t) = exp
(
− t2

2σ2

)
(2.18)

G(ω) = F {g(t)} = 1
σ
√

2π exp
(
−σ2ω2

2

)
(2.19)

Hence, it is convenient to use such kind of pulses. With regard to the pulse protocols,

however, the drive amplitude is proportional to the area under the pulse and defines

how far the qubit is rotated on the Bloch sphere. When using rectangular shaped pulses

[cf. Fig. 2.27 (b)], the area has a favorable linear dependence on the pulse length. When

using a Gaussian shaped pulse [cf. Fig. 2.27 (c)], the area does not increase linearly

24Rohde & Schwarz FSP7
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when the length of the pulse is adjusted. Moreover, the spectral width of the pulse

changes as well. In order to circumvent this problem, we use flattop Gaussian pulses

gf(t) with a fixed Gaussian edge, but a flat top [cf. Fig. 2.27 (d)]. The pulse shape is

piecewise defined as

gf(t) =



0 0 ≤ t < tstart

exp
(
− (t/tr−1)2

2σ2

)
tstart ≤ t < tstart + tr

1 tstart + tr ≤ t < tstart + tr + tflat

exp
(
− (t/tr)2

2σ2

)
tstart + tr + tflat ≤ t < tstart + tr + tflat + tr

0 tstart + tr + tflat + tr ≤ t < tend.

As a result, the area can be scaled linearly with the pulse length with a slight offset

due to the Gaussian edges. Furthermore, the spectral width is independent from the

pulse length.

2.3.4 Qubit phase control

A microwave signal with amplitude A and phase ϕ can be expressed in terms of the

in-phase and quadrature components I and Q

I = A cos(ϕ) (2.20)

Q = A sin(ϕ) . (2.21)

Typically, they are represented in a 2D plot, the IQ plane [cf. Fig.2.28 (a)]. We can

use I and Q to modulate our microwave drives in phase or amplitude [128]. According

to Eq. (1.63), the phase ϕd of our drive signal translates into the phase angle ϕ of the

qubit vector. By setting a certain relative phase25, we are able to rotate the qubit about

different axes on the Bloch sphere. The phase and the amplitude are given as

A =
√
I2 +Q2 (2.22)

ϕ = arctan
(
Q

I

)
. (2.23)

Using an IQ mixer, where the carrier of the drive is supplied at the local oscillator

port, we can modulate the drive with pulsed signals at the I and the Q port26 [cf.

Fig. 2.28 (b)]. By adjusting the ratio, while keeping the amplitude A constant, we are

able to change the phase of the drive during the pulse. We plot several pulse sequence

25We note that ϕd refers to the relative phase between different pulses in the same pulse sequence
generated by a single RF source. The global phase is of minor relevance in this context.

26Typically, we add a second RF mixer behind the IQ mixer for gating the IQ-modulated pulses. This
increases the on/off ratio for the drive and reduces unwanted population during the off-time.
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Figure 2.28: (a) IQ plane with amplitude A, phase ϕ and I and Q. (b) Setup scheme for phase

controlled pulses with an external IQ mixer. The two channels of the AFG have to be

set to coupling mode in order to properly synchronize the pulses. (c) Exemplary pulse

sequences for setting phase angles during a pulse.

examples for different phase angles in Fig. 2.28 (c).

With this type of qubit control, we are able to perform measurements not only

on the naturally given z-axis, but can also obtain information about 〈σ̂x〉 and 〈σ̂y〉
by rotating the qubit onto our preferred measurement axis with π/2-pulses and a

corresponding phase of 0° or 90°. This opens up the possibility to perform quantum

state tomography [129], and as a subsequent step, quantum process tomography [73].

2.3.5 IQ-mixer calibration

For qubit experiments with phase control, it is important to keep the amplitude of the

signal constant over a wide range of given phases according to Eq. (2.23). This means,

the imperfections of a commercial IQ mixer have to be calibrated. Typically a slight

imbalance of the I and the Q channel causes the amplitude to vary for certain phase

angles. The solution is either to use a calibrated, but expensive, vector modulated



2.3 Time domain measurements 71

dr
iv

e 
ph

as
e 

(d
eg

)

transm
. phase (deg)

τ (µs) τ (µs)

(b) (c)

I-input (V)

transm
. am

pl. (dB)

Q
-in

pu
t (

V
)

(a)

Figure 2.29: (a) Data for calibrating the IQ mixer at ωd/2π = 6.2155 GHz. The red circle is a contour

of I and Q pairs with constant amplitude A in the ideal case. The origin at I,Q = 0 is

marked with a red cross. (b) and (c) Driven qubit Rabi oscillations at ωd/2π = 6.234 GHz
(cf. sample QMv3 2nd in Tab. B.2 in the appendix) for a drive phase ϕd from 0° to 90°
using (b) a PSG vector RF source and (c) an uncalibrated IQ mixer connected to an

analog RF source.

microwave source27 or to calibrate an external IQ mixer28 and use it together with an

analog microwave source.

For calibration, the IQ mixer is connected to the AFG as depicted in Fig. 2.28 (b).

The signal from the RF port of the IQ mixer is directly routed to the receiver port

of the VNA, without passing through the cryostat. Due to the fact that the I and Q

channel of the IQ mixer are not independent, we have to perform a 2D calibration [130]

[cf. Fig. 2.29 (a)]. Using two channels of the AFG, we modulate I and Q from −1 V to

1 V onto a carrier RF signal with ωd and measure the RF signal level with the VNA.

The AFG sets a constant DC voltage signal at the I and Q channel in the limit of the

allowed input voltages. For each voltage value at the I input, the voltage at the Q

input is swept. We note that this calibration procedure sets the phase and amplitude

relations only for a single frequency. Nevertheless, in the case of fixed-frequency qubits

as used in this thesis, a single calibration per sample is sufficient.

The inversion of this 2D plane is nontrivial, because monotony is not given for the

whole calibration range. As workaround, one can shift the global minimum of the

calibration data to the origin of the IQ-plane by applying constant offset voltages on

the I- and Q-channel. Then, we can correct analytically for the remaining ellipticity to

match the ideal IQ-plane circle. However, for most applications, only a set of discrete

phase angles is necessary, which is easy to calibrate. For benchmarking our calibration,

we have the option to use Rabi oscillations of a qubit, which acts as a very sensitive

power detector according to Eq. (1.63). We perform the same Rabi oscillation pulse

sequence for various phase angles. In case of a successful calibration, the Rabi frequency

stays the same for all phase angles.

27Agilent E8267D PSG with differential wideband IQ option (016)
28Marki MLIQ-0416 Microlithic Double-Balanced I/Q Mixer



72 Chapter 2 Methods and techniques

Qubit Rabi oscillations using an uncalibrated IQ mixer are shown in Fig. 2.29 (c).

The imbalance between I and Q is clearly visible due to a significant change in the

Rabi frequency. This demonstrates a non-constant drive amplitude over the range of

drive phases. In Fig. 2.29 (b) we show data for a calibrated PSG vector RF source.

After the first oscillation period, we notice a slight deviation in Rabi frequency due

to a slightly imperfect internal power calibration of the PSG. However, for typical

qubit experiments, only a pulse length smaller than Tπ is required. For the following

tomography experiments, we conveniently use the calibrated PSG vector RF source.

2.3.6 Quantum state tomography

In order to fully characterize a quantum state, one has to know the density matrix ρ̂

[cf. Eq. (1.32)]. For a single qubit, this means that all three components of the Bloch

vector are known. By using the dispersive readout scheme, we only weakly measure the

z-component 〈σ̂z〉2 and the other two components remain unknown. In the picture of the

Bloch sphere, it is easy to understand that we need to rotate the qubit vector by a set

of certain rotations to gain knowledge of the other two components. This procedure is

called quantum state tomography (QST), because, in an intuitive picture, the quantum

state has to prepared multiple times and snapshots from different perspectives have to

be taken to obtain the full state. The x- and y-components are measured by rotating

the prepared state |Ψ〉 with the following rotation matrices [131].

Rx(θ) ≡ e−iσ̂xθ/2 = cos
(
θ

2

)
1− i sin

(
θ

2

)
σ̂x =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)

Ry(θ) ≡ e−iσ̂yθ/2 = cos
(
θ

2

)
1− i sin

(
θ

2

)
σ̂y =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)

Rz(θ) ≡ e−iσ̂zθ/2 = cos
(
θ

2

)
1− i sin

(
θ

2

)
σ̂z =

(
exp(−iθ/2) 0

0 exp(iθ/2)

)

The z-axis is the natural quantization and measurement axis. To project the x-

component onto the z-axis for measurement, we have to apply Ry(π/2). The same is

valid for the y-component with Rx(π/2). In experiment, these operations are performed

by applying a π/2-pulse with ϕd = 0° or 90°, respectively. This drive phase is adjusted

by choosing the I- and Q-component of the pulse envelope in a suitable manner [cf.

Fig. 2.28 (c)]. The pulse sequences for projective measurements of an arbitrary state

|Ψ〉 are shown in Fig. 2.30.

For calculating the density matrix, we assume in the following that the dispersive

readout is based on a linear relation between the measured dispersive readout mode

phase shift ϕ and the probability of the qubit being in the |e〉-state [64]. Then, we can
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Figure 2.30: Schematic pulse protocols for QST. A state |Ψ〉 is prepared and then measured in the z-,

x- and y-direction of the Bloch sphere to obtain 〈σ̂z〉2, 〈σ̂x〉2 and 〈σ̂y〉2. For this kind of

measurement, an IQ-modulated setup (cf. Fig. 2.24) is necessary in order to control the

qubit phase.

express the populations of the qubit as

pg = ϕg − ϕRO

ϕg − ϕe
, pe = ϕRO − ϕe

ϕg − ϕe
(2.24)

where ϕg and ϕe are the readout phase for the ground state and the excited state,

respectively, and ϕRO is the measured phase with ϕe ≤ ϕRO ≤ ϕg. Here, we assume that

ϕe < ϕg, which eventually depends on the sign of the dispersive shift and the selected

readout frequency (cf. Fig. 2.19). In experiment, we choose ϕg = 0 and calibrate ϕe

with a π-pulse. Typically, we neglect decoherence effects during Tπ, since the effects on

the final QST fidelity are on the order of <1% for typical π-pulse times and Tq ' 1.3 µs.
Depending on the direction of the projective measurement, the measured ϕRO is either

ϕz, ϕy or ϕx. Finally, we reconstruct the density matrix as

ρ̂ = 1
ϕg − ϕe

(
ϕz − ϕe ϕ̄− ϕx − i(ϕ̄− ϕy)

ϕ̄− ϕx + i(ϕ̄− ϕy) ϕg − ϕz

)
. (2.25)

where ϕ̄ = (ϕg + ϕe)/2 is the mean phase. Typically, the measured phases ϕx, ϕy and

ϕz are average values from a large set of equal measurements. In case of an unphysical

reconstructed density matrix, e.g. Trρ̂2 > 1, one has to apply a maximum likelihood

estimation (MLE) in order to obtain the physical ρ̂ (cf. App. D). In Fig. 2.31, we present

reconstructed density matrices for three distinct qubit states |e〉, |+〉 and |−〉. Here,

|+〉 and |−〉 denote the superpositions in x- and y-direction, respectively,

|+〉 = 1√
2

(|g〉+ |e〉) |−〉 = 1√
2

(|g〉+ i|e〉). (2.26)

Each density matrix consists of 50 separate measurements of ϕz, ϕy or ϕx, which are

performed in a cyclical sequence. To determine the deviation of the experimental

results from the ideal theoretical results, the fidelity F is used, which is defined as

F (ρ̂t, ρ̂) = Tr
√√

ρ̂ρ̂t
√
ρ̂. For all three states, we achieve fidelities close to 1.
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Figure 2.31: Measured QST for three distinct qubit states (cf. sample QMv3 2nd in Tab. B.2 in the

appendix). We compare the density matrix from experimental data with the theoretically

expected density matrix. The color code is for better visibility of the single matrix

elements. The QST fidelities are F|e〉 = 98.21 %, F|+〉 = 99.62 % and F|−〉 = 99.16 %.
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2.3.7 Quantum process tomography

We give a short introduction to quantum process tomography (QPT), which is a useful

tool to quantify the fidelity of quantum operations. Here, we will first derive the

quantum process matrix χ̂ for a Hilbert space of dimension d and, then, limit the

discussion to d = 2 for the single qubit case. A more general review on QPT can be

found in Refs. [73, 132].

The aim of QPT is to determine the effect of an arbitrary quantum process E which

can be regarded as a transition from an initial state ρ̂ to the final state ρ̂′:

E(ρ̂) = ρ̂′ (2.27)

If E represents a physically valid process, a Kraus representation [133] for the quantum

process can be found, which means that there are trace-preserving operators Êi such

that the process can be decomposed into an operator sum [132]

E(ρ̂) =
∑
i

Êiρ̂Ê
†
i . (2.28)

Typically, for an arbitrary process, we lack detailed information about the Kraus

operators Êi. Nevertheless, we can choose a fixed operator basis {B̂m} and rewrite E(ρ̂)
into

E(ρ̂) =
∑
m,n

B̂mρ̂B̂
†
nχmn (2.29)

with the positive and Hermitian quantum process matrix χ̂, which we obtain by reshaping

the evolution coefficients χmn into a (d2× d2) matrix. In other words, the superoperator

E , which acts on the initial density matrix ρ̂ to obtain the final E(ρ̂), is encoded in the

process matrix χ̂. Consequently, the goal of QPT is achieved if an expression for the

χ̂-matrix in terms of experimentally available data can be found. To do so, we need

to apply the quantum process, whose fidelity we want to analyze, to d2 independent

quantum states ρ̂i of the system. The ρ̂i then form a basis for the space of the complex

Hermitian matrices of dimension (d× d). By applying the quantum operation E to the

chosen input states ρ̂i, we obtain E(ρ̂i), which can be decomposed in the ρ̂i-basis:

E(ρ̂i) =
∑
j

λij ρ̂j (2.30)

To switch to the basis of the experiment {B̂m}, we can find coefficients βmnji such that

B̂mρiB̂
†
n =

∑
j

βmnji ρ̂j . (2.31)

If the (d2 × d2) matrix χ̂ is reshaped into a column vector χ and the d2 values λij are

reordered in a column vector λ, the βmnji can be interpreted as the entries of a matrix
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B with Bji,mn = βmnji and the problem can be rewritten as

λ = B · χ. (2.32)

This means that χ̂ can be obtained by multiplying λ with the (pseudo-)inverse of B

and reshaping χ. After that, χ̂ can be diagonalized

χ̂ = UDU † (2.33)

with D = diag(q1,...,qd2) and the Kraus-operators Êi can be found by using Êi =
√
qi
∑
m UmiBm, where qi are the eigenvalues of the diagonal matrix D. If χ̂ repre-

sents a physical process matrix, it must be positive Hermitian, which implies that

there are no negative eigenvalues: qi ≥ 0. Additionally, χ̂ should be trace-preserving

(
∑
m,nBmχ̂mnB

†
n = I). This attribute is inherited from the Kraus representation. For

better practical implementation, a vector quantity that contains all basis matrices is

defined B ≡ (B†1,...,B†d2). In experiments with a single qubit, we have d2 = 4. For this

case, we choose the B-vector as

B = (I,X, iY, Z) , (2.34)

where I is the 2x2 identity matrix, X ≡ σ̂x, Y ≡ σ̂y and Z ≡ σ̂z [cf. Eq. (1.29)]. For

the independent initial states {Ψi}, we choose |g〉, |e〉, |+〉 and |−〉 [44]. The quantum

process E is applied to each of these states. Both the initial states and the resulting

states E(|g〉〈g|), E(|e〉〈e|), E(|+〉〈+|) and E(|−〉〈−|) are reconstructed using QST (cf.

Fig. 2.32).

In order to simplify the reconstruction of χ̂ and transform it into a block matrix, we

switch to the following basis of auxiliary density matrices [73].

ρ̂1 =
(

1 0
0 0

)
ρ̂2 =

(
0 1
0 0

)
ρ̂3 =

(
0 0
1 0

)
ρ̂4 =

(
0 0
0 1

)
(2.35)

In this new basis, the resulting states ρ̂′ are linear combinations of the actually measured

outcome E(Ψi).

ρ̂′1 = E(|g〉〈g|) (2.36)

ρ̂′2 = E(|+〉〈+|) + iE(|−〉〈−|)− (1 + i)
2 [E(|g〉〈g|) + E(|e〉〈e|)] (2.37)

ρ̂′3 = E(|+〉〈+|)− iE(|−〉〈−|)− (1− i)
2 [E(|g〉〈g|) + E(|e〉〈e|)] (2.38)

ρ̂′4 = E(|e〉〈e|) (2.39)
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Figure 2.32: Schematic pulse protocols for QPT. In the first step, QST is performed on a set of

independent states {Ψi}. Afterwards, QST is performed on the same set of states, to

which a quantum operator is applied. This can be (a) the identity operator, (b) a rotation

of π/2 about the y-axis and (c) a rotation of π/2 about the x-axis. For this kind of

measurement, an IQ-modulated setup (cf. Fig. 2.24) is necessary in order to control the

qubit phase.

Finally, we can express the process matrix as

χ̂ = Λ ·
(
ρ̂′1 ρ̂′2
ρ̂′3 ρ̂′4

)
· Λ (2.40)

where Λ includes the auxiliary transformation29 and is also a block matrix consisting of

I and X.

Λ = 1
2

(
I X

X −I

)
(2.41)

We apply QPT in experiment on a single qubit and determine the χ̂-matrix for the

identity operation, for a rotation of π/2 with respect to the y-axis and for a rotation

with respect to the x-axis. The minimum number of different measurements for a single

process matrix can be calculated from the number of measurements for QST nQST and

the number of the basis states nΨ = |{Ψi}|. Since QST is performed once without and

a second time with the quantum operation (cf. Fig. 2.30), we have to account for a

factor of 2. In total, we obtain 2 · nΨ · nQST = 2 · 4 · 3 = 24.

The results from QPT are depicted in Fig. 2.33. The fidelity is determined in the

same manner as in the QST case. In our measurement (cf. sample QMv3 2nd in Tab. B.2

in the appendix) and for the identity operation, the fidelity of the QPT is FI = 97.37 %.

This value is almost identical to the bare QST fidelities, since no actual operation takes

29It can be shown that for the chosen auxiliary basis, there is a closed expression for B, which is
related to Λ as B = Λ⊗ Λ
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Figure 2.33: Measured QPT for three distinct quantum operations on a single qubit (cf. sample QMv3

2nd in Tab. B.2 in the appendix). We compare the process matrix from experimental data

with the theoretically expected process matrix. The color code is for better visibility of

the single matrix elements. The resulting fidelities are FI = 97.37 %, FRy(π/2) = 89.03 %
and FRx(π/2) = 90.85 %.

place. For a rotation about the y-axis, the fidelity drops and we get FRy(π/2) = 89.03 %.

The reconstruction fidelity of a rotation about the x-axis FRx(π/2) = 90.85 % has a

similar value as compared to a rotation about the y-axis. This result shows, that the

qubit phase control in the experiment is reliable, since the rotation around the y-axis is

the natural operation, whereas for the rotation about the x-axis, we need to specify a

drive phase ϕd = 90°. From estimations (cf. Sec. 3.4.2), we can identify qubit decay

and state leakage as the main sources for fidelity limitations in this experiment.
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2.3.8 Suppression of state leakage

The approach to use (flattop) Gaussian pulses is limited when aiming for very short

pulses, where the length of the pulse mainly determines the spectral width. A 10 ns
long pulse physically has a minimum spectral width of 100 MHz. In the case of a weakly

anharmonic transmon qubit, where the anharmonicity is similar to the spectral width of

the pulse, the pulse causes higher level excitations. We refer to this phenomenon as state

leakage. In other words, the qubit population leaves the computational space spanned

by |g〉 and |e〉. To avoid these scenarios, a special pulse shape has been developed,

which is the derivative removal by adiabatic gate (DRAG) method [76, 134–136]. The

necessary control pulses are shown in Fig. 2.34 (a) and are described as

I(t) = Ωπ (2.42)

Q(t) = − Ω̇π

α/~
(2.43)

where Ωπ is a Gaussian pulse, which creates a π-flip in the computational space. We

note, that the quadrature component is the time derivative of the in-phase component

scaled with the inverse of the anharmonicity. These pulse envelopes can be derived

from an effective Hamiltonian as first order solutions with minimal state leakage. The

leakage is eliminated to order Ω4
π/(α/~)3 as compared to a pure Gaussian pulse [cf.

Fig. 2.34 (b)]. For typical values (Ωπ/2π = 60 MHz and α/h = −92 MHz), we obtain

an attenuation of approximately 10 dB in the spectrum of the pulse at the unwanted

frequency.

The gate fidelity is increased, as it can be seen in Fig. 2.34 (c) in the Bloch sphere

representation. In this simple picture, the difference between DRAG and non-DRAG

pulses is that the drive phase is controlled during the pulse in such a way, that the

qubit trajectory ends closer to the desired final state. When looking at the spectral

distribution of the DRAG pulse shape [cf. Fig. 2.34 (d)], we see that the frequency

at −2α/h is eliminated to a certain degree. Hence, in the energy level scheme, the

transition from the ground state to the second qubit level as a two-photon process is

avoided.

In experiment, the population of higher qubit levels leads to an unwanted additional

dispersive shift, which spoils the dispersive readout. This can be seen in Fig. 2.35 (a).

For sharp rectangular pulses with 1 ns rise time, the readout resonator signal does not

follow the typical Rabi oscillation pattern, but additional dispersive shifts [cf. Eq. (1.54)]

are measurable. This problem can be overcome by using the DRAG method. Then, the

oscillations are exactly centered with respect to the mixed state with 〈σz〉2 = 0. We note

that the Rabi oscillations are recorded versus the drive amplitude and, hence, should

not exhibit any temporal decay. However, the data shows a decreasing amplitude of the

oscillations, when using DRAG. In an intuitive way, this behavior can be explained by
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Figure 2.34: (a) Pulse envelopes of typical DRAG pulse for I and Q matched to a qubit with ωq/2π =
3.87 GHz and α/h = −92 MHz (cf. sample B in Tab. B.2 in the appendix). The pulse

length and control amplitude are chosen to create a π-flip. (b) Calculated leakage

population for a Gaussian pulse (cyan) compared to a DRAG pulse (green). A significant

suppression in leakage population is clearly seen. (c) Bloch sphere representation of qubit

dynamics during the pulse shown in (a). Due to the adiabatic changes in the DRAG

protocol, the final state is closer to the ideal |e〉 state when using DRAG. According to

simulations, we obtain a state preparation of 99.554 % for the DRAG π-pulse shown in

(a) and a fidelity of 94.978 % for a pure Gaussian π-pulse. The infidelity (1− F ) can also

be seen in (c) at the end of the pulse at 50 ns. (d) Calculated frequency spectrum of

the DRAG pulse (green) shown in (a) compared to a pure Gaussian pulse (cyan). The

suppressed frequency of −2α/h is indicated by the dashed line.
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Figure 2.35: (a) Qubit Rabi oscillations with rectangular pulse shape (50 ns) and DRAG pulse shape

(200 ns). The pulse envelope is kept fixed to maintain a constant spectral width of the

pulse. We choose the length of the pulses, such that the area enclosed by the pulse

envelope is equal. This leads to the same oscillation frequency, when the drive amplitude

of the carrier tone is swept. In the case of DRAG, the Rabi oscillations are centered

around the mixed state, whereas for the spectrally wide rectangular pulse, the Rabi

oscillations are skewed. The qubit used in this measurement has ωq/2π = 3.87 GHz and

α/h = −92 MHz (cf. sample B in Tab. B.2 in the appendix). (b) Qubit trajectory on the

Bloch sphere after applying a DRAG pulse with high amplitude. The qubit state vector

is rotated multiple times about the x-axis. The rotational plane gets tilted due to the

DRAG pulse. Hence, a nominal 3π-pulse does not bring the qubit into the excited state

with a high fidelity. (c) Qubit T1 statistics. The excited state is prepared with a DRAG

(165 times) or rectangular (50 times) π-pulse. We note that the pulse envelopes differ

from those used in (a).
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the fact, that the DRAG pulse, in contrast to the rectangular pulse, does not induce a

rotation about the x-axis, which is parallel to the zy-plane, but which has a curvature

[cf. Fig. 2.35 (b)]. If we increase the drive amplitude, we let the state vector rotate more

often on the Bloch sphere. In each round, the rotational plane acquires an additional

tilt by a certain angle, leading to a diminished contrast on the measurement z-axis for

high drive amplitudes. In order to accurately prepare an excited qubit state with the

DRAG technique, such high drive amplitudes are not necessary, since only a π-pulse

with comparably low amplitude is applied.

We can make use of a qubit T1 measurement to quantify the accuracy of the prepared

excited state, since the leakage population can be the cause for a wrong assessment of

the qubit T1 time. In general, the qubit T1 time is a measure for the energy relaxation

from |e〉 to |g〉. However, leakage population with a higher decay rate is measured

together with the actual decay rate. For the qubit described in this paragraph, we find

with rectangular pulses T rec
1 = 2.09± 0.53 µs, and with DRAG TDR

1 = 2.75± 0.50 µs
[cf. Fig. 2.35 (c)]. The latter is a better description of the real qubit T1, because it is

strictly limited to the computational space. We can estimate the impact of the leakage

population pL with a simple rate equation, if we assume the decay time of the leakage

population to be T L
1 = T1/

√
2, since the ith higher level coupling also follows a 1/

√
i

law. The total rate equation for the relevant decay times reads

1
T rec

1
= pe

1
TDR

1
+ pL

1
T L

1
. (2.44)

Here, the total population is normalized to pL+pe = 1. The ground state population does

not need to be considered in this rate equation, since no decay occurs from the ground

state. In other words, we only distinguish between population in the computational

space with a decay time of TDR
1 and population in all other transmon qubit levels with

a decay time of T L
1 . For the measured T1 values, we evaluate the leakage population

to be pL = 0.76, if we presume TDR
1 to coincide with the actual qubit T1. This value

appears to be reasonable, if we bear in mind that the dispersive shift is also altered by

a factor of 1.5 for certain drive powers [cf. Fig. 2.35 (a)], indicating a similar population

of the computational space and higher levels.

Using the DRAG technique in experiment is typically advantageous in terms of state

preparation fidelities. Nevertheless, we would like to point out that the example shown

here is a qubit with a particular low anharmonicity, which makes the use DRAG pulses

very effective. For transmon qubits with a higher anharmonicity, the effect of applying

DRAG pulses decreases. If we assume a qubit with α/h = −185 MHz and a 50 ns
π-pulse, then the state preparation fidelity for a DRAG π-pulse is 99.998 % versus

99.177 % for a pure Gaussian π-pulse according to simulations. At some point, owing

the complexity of this technique, it is often more robust to use flat-top Gaussian pulses.



Chapter 3

Results

This chapter1 begins with a description of the quantum memory sample. The technical

optimization of the storage mode is shown and the resulting improvement is discussed.

Based on qubit manipulation pulses, we explain the memory pulse sequence. By

executing single steps of the sequence, we can present data on coherent population

transfer to and from different intermediate states. With the full protocol implemented,

we are able to measure a significant enhancement in storage time for arbitrary initial

states. On the sidelines of these investigations, we present data on higher cavity modes,

which may also serve as potential memory modes. Finally, we discuss the fidelity of the

protocol and estimate the limitations.

3.1 Quantum memory protocol

In circuit QED architectures, long storage times and fast readout are conflicting

requirements, asking for slow and fast cavity decay, respectively. A possible solution

is to physically separate the storage and the readout resonators [32, 33, 137–139].

However, regarding scalabitiy and reduction of footprint, this approach is not optimal.

By combining the high Q-factors of 3D cavities with the fast readout capabilities and

compactness of 2D resonators, the system dimensions can be reduced [37]. Another

promising approach is to use the multimode structure of 2D resonators [43]. In this

case, the system turns out to be even more compact and scalable, however, this is

achieved at the expense of a rather low storage time of only 1.45µs. To combine the

benefits from both approaches, the multimode structure of a single 3D cavity can be

employed [140, 141]. On the one hand, we take advantage of high-Q 3D cavities and,

on the other hand, we entirely get rid of a separate readout resonator without losing

the fast readout capability.

1Most parts of this chapter are based on the publication ”Compact 3D quantum memory”, Applied
Physics Letters, 112, 202601 (2018).
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Figure 3.1: (a) Photograph of the aluminum 3D cavity. The red dashed line indicates the equatorial

plane of the cavity. (b) Open cavity with two qubit chips. The red rectangle marks the

position of the transmon qubit. The chips are fixed with small pieces of indium. (c) Optical

micrograph of the superconducting transmon qubit. The two metallic capacitors are

connected via a submicron Josephson junction indicated by the red arrow. (d) Simulated

y-component of the electric field distribution in the cavity equatorial plane for the lowest

three modes. Antenna pins are depicted as circles. The chip positions are marked

with black rectangles. Their center positions are placed off the cavity center by 6.2 mm.

(e) Transmission measurement of the storage mode (dots) with Lorentzian fit (line).

3.1.1 Optimized storage and readout mode

The cavity is made of aluminum (Al 99.5 %) with two antennas for external coupling

[cf. Fig. 3.1 (a)]. It is mounted inside a dilution refrigerator with approximately 30 mK
base temperature. From an FEM simulation [50] of the cavity transverse electric (TE)

modes [cf. Fig. 3.1 (c)], we observe that the TE101 mode can be overcoupled while

maintaining an undercoupled TE201 mode by properly placing the coupling antennas.

In this way, the completely decoupled, highly coherent TE201 mode can be used

for information storage and the well-coupled TE101 mode for dispersive readout at

a megahertz rate [22]. In our configuration, the fundamental TE101 readout mode

ωRO/2π = 5.518 GHz is overcoupled and has a decay rate κRO/2π = 25 MHz, whereas

the first harmonic TE201 storage mode2 ωs/2π = 8.707 546 GHz has a decay rate

κs/2π = 155 kHz [cf. Fig. 3.1 (d)]. From a bare cavity measurement (cf. Sec. 2.1.1), we

estimate the internal Q-factors QRO
0 ' 1.5 · 106 and Qs

0 ' 6 · 105.

2Due to the small decay rate on the order of tens of kilohertz, we give the value of ωs with a kilohertz
precision.



3.1 Quantum memory protocol 85

Figure 3.2: Comparison of storage mode single photon Fock state decay for two different chip configura-

tions (cf. sample QMv3 1st and QMv4 3rd in Tab. B.2 in the appendix). Inset: Symmetric

chip configuration. In the case of the asymmetric chip configuration, one of the chips is

missing. The cavities from both measurements are made of the same material (Al 99.5 %)

and are without subsequent surface treatment. The single photon Fock state is prepared

as described in Fig. 3.4. The reason for the population loss at zero storage time is found in

state leakage (cf. Sec. 3.2).

Mode symmetry and qubit coupling

For the TE201 mode to be symmetric with regard to the antennas [cf. Fig. 3.1 (b)],

we insert two 3× 10 mm2 large silicon chips centered near the electric field antinodes.

In Fig. 3.2 we compare the decay times of a Fock state in the storage mode for the

symmetric (two chips) and the asymmetric (one chip) sample configuration (cf. sample

QMv3 1st and QMv4 3rd in Tab. B.2 in the appendix). We observe a T s
1 improvement

of approximately 20 % with the symmetric configuration.

On one of the chips, we fabricate the single-junction transmon qubit using aluminum

technology and double-angle shadow evaporation. Due to its off-center placement inside

the cavity, it couples to both the TE101 and the TE201 mode simultaneously with

an equal coupling strength g/2π ' 53 MHz. In addition, there is a small residual

coupling g102/2π ' 8 MHz to the TE102 mode [80]. The qubit transition frequency

ωq/2π = 6.234 GHz is designed to fall in between ωs and ωRO resulting in dispersive

shifts of χ′RO/2π = 3.6 MHz and χ′s/2π = −1.1 MHz for the readout and storage mode,

respectively. We measure an average qubit energy decay time T q
1 = 1.32± 0.05 µs and

a decoherence time T q
2 = 2.49 µs, which is obtained via a Ramsey-type experiment [cf.

Fig. 2.25 (d)]. The qubit has an anharmonicity α/h = (ωef − ωq)/2π ' −185 MHz. Due

to the large detuning between qubit and readout mode, the qubit lifetime is not Purcell

limited, even though the readout mode is designed to have a fast decay. For our sample,

the Purcell limit for the qubit lifetime is calculated to be 20 µs.
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Figure 3.3: Comparison of storage mode single photon Fock state decay for two different antenna

configurations (cf. sample QMv3 2nd and QMv4 3rd in Tab. B.2 in the appendix). The

reason for the population loss at zero storage time is found in state leakage (cf. Sec. 3.2).

Inset (a) Photograph of commercial antenna (left) and modified version with slimmer

diameter (right). Inset (b) Photograph of commercial antenna mounted in open cavity.

Slim antenna

The mode profile of the TE201 mode in the x-direction at the antenna position favors

slim antennas in order to keep the coupling low. Commercial antennas3 come with a

diameter of 1.6 mm. We slim it down to 0.1 mm as described in Sec. 2.1.1.

As already pointed out in Fig. 2.4 (b), the highest Qs
x is achieved at a center position at

exactly x = 0. However, in experiment, such conditions are difficult to fulfill. Deviations

from this sweet spot let Qs
x drop rapidly. In the case of the modified slim antenna, this

Q-factor decrease is alleviated as compared to the off-the-shelf antenna. In the end, for

reaching high Qs
x this means that the positioning accuracy becomes less demanding

when using a slim antenna. In Fig. 3.3, we present storage mode Fock state decay

data from two different quantum memory samples, where both samples feature the

symmetric chip mounting and differ only in the antenna diameter (cf. sample QMv3 2nd

and QMv4 3rd in Tab. B.2 in the appendix). With the slim antenna, we are able to

increase T s
1 by approximately a factor of 2.3.

If we conclude the improvements from using a symmetric chip configuration and from

using a slimmer antenna, we reason that both approaches are necessary. In the first

step, the symmetric chip configuration ensures the antinode of the storage mode to

coincide exactly with the antenna position. Only if this criterion is met, the coupling to

3Huber+Suhner 23 SMA-50-0-13
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the antenna can be reduced even more by choosing a slimmer antenna diameter.

3.1.2 Memory pulse sequence

We now discuss the storage protocol based on the energy level diagram shown in

Fig. 3.4 (a). Neglecting small second-order shifts, the equidistant ladder of the harmonic

storage mode is shifted by the amount of the qubit energy if the qubit is excited. For

the quantum memory protocol, we need to drive the blue sideband transition from |g0〉
to |e1〉 between these two ladders with the frequency ωb ≡ ωs +ωq +χs +(2nRO−1)χRO.

Here, we take into account the dispersive shifts χRO of the readout and χs of the storage

mode. In the experiment, we keep nRO ' 0 during the protocol sequence. To fulfill

parity conservation [142], we drive the BSB transition with two photons at ωb/2. This

transition is described by the effective BSB Hamiltonian from Eq. (1.65).

Our measurement protocol [cf. Fig. 3.4 (b)] starts with a qubit preparation pulse. By

placing it at the beginning of the memory sequence, we are able to transfer various

states into the memory. The actual memory sequence begins with a π-pulse on the BSB

transition. In this way, the ground state population of the qubit pg is transferred to the

first excited memory state on the right ladder. Then, by means of a qubit π-pulse, the

qubit is deexcited and all population is swapped back to the left ladder. As a result, the

qubit state is now encoded in the first two states of the storage mode [43]. Specifically,

the qubit ground (excited) state is transferred to the first excited (ground) state of the

storage.

For state retrieval, we use the same pulse scheme in a reverse order and map the

excitation back onto the qubit, which we read out dispersively. In general, we use

flat-top Gaussian pulses with a rise time of 20 ns to minimize leakage to higher qubit

levels (cf. Sec. 2.3.3).

3.2 Coherent population transfer and decoherence

effects

When considering the qubit-resonator energy level diagram with its many levels, we

are not limited to the qubit subspace only, but are able to coherently swap population

to and from composite states of qubit and resonator. In our protocols, we typically

start in |g0〉, where the resonator and the qubit are not excited. Applying a coherent

drive pulse at ωq with a certain pulse length creates a driven Rabi oscillation between

|g0〉 and |e0〉, which is depicted in Fig. 3.5 (a)4. The Rabi oscillation measurements

4Please note, that the qubit-cavity system used in this section is different from the one used for the
full quantum memory protocol. The key parameters are: ωq/2π ' 5.360 GHz, α/h ' −300 MHz,

ωr/2π ' 5.485 GHz, g/2π ' 32 MHz, T q0
1 ' 159 ns and T s

1 ' 3.8 µs (cf. sample QMv4 2nd in
Tab. B.2 in the appendix).
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Figure 3.4: (a) Level scheme of the qubit (ωq) coupled to the storage mode (ωs). The second-order

transition from |g0〉 to |e1〉 is driven with two photons of frequency ωb/2. (b) Quantum

memory protocol for storage and retrieval. Grey: Qubit preparation pulse. Blue: BSB

pulse. Green: Qubit pulse. Orange: Readout (RO) pulse applied to the readout mode.

(c) Ramsey-type sequence for the quantum memory protocol. The preparation pulse is

a π/2-pulse in order to bring the qubit into a superposition state. Another π/2-pulse is

sequenced in front of the readout pulse in order to map the qubit state back onto the

z-axis.

are performed by reading out the qubit state dispersively (cf. Sec. 2.2.4). From the

fit to the data, we determine T q0
1 = 159± 7 ns, which is well below the Purcell limit

of 822 ns of the qubit-resonator system [cf. Eq. (1.74)]. The qubit-resonator detuning

is ∆ ' −125 MHz. Due to decoherence, the total coherent population is diminished

exponentially with time. After a time of t ≈ T q0
1 , only pe ' 0.37p0

e remain, where p0
e is

the initial excited state population, and for t� T q0
1 , we obtain a mixed state with a

steady state population pst
e .

From |g0〉 we can reach the |e1〉 level by coherently pumping two photons at ωb/2 into

the system. Here, a single photon Fock state is created in the resonator and the excited

level of the qubit is populated simultaneously. We notice that the steady state population

for long Rabi drive pulses is not centered around 0.5 anymore. This can be explained via

a rate equation [143], where we take into account the drive rate Ωb/2π ' 3.3 MHz, the

qubit decay rate γ/2π ' 6.3 MHz and the storage mode decay rate κs/2π ' 0.26 MHz.

The value for the drive rate is extracted from the Rabi oscillation fit, whereas the other

two values are from separate measurements. Since γ is the dominating decay in this

configuration, in the steady state, population will be built up on the |g1〉 level. Then,
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the steady state excited population can be estimated to

pst
e = 1− γΩb

γΩb + κsΩb + γκs
' 11 %. (3.1)

This value coincides well with the Rabi oscillation data of the BSB transition in

Fig. 3.5 (b).

In order to determine the maximum initial population p0
e at t = 0, we extrapolate the

curve with an exponential function, which has the same decay time as the BSB Rabi

oscillation T b
1 = 497± 53 ns. This decay time is a combination of the storage mode

decay time and the qubit decay time. As a result, we obtain p0
e ' 30 %, which means,

that pL = 1−p0
e = 70 % of the population is not transferred via the BSB transition in the

first place and is not available for further processing. Due to the use of rectangular pulses

with 1 ns rise times and the required high power to drive the BSB, we can attribute this

leakage population to parasitic population transfers to higher levels of the transmon

qubit. The qubit in this experiment has an anharmonicity of α/h ' −300 MHz. In

this extreme case, where pL is very large, the memory enhancement will only work for

a small percentage of the population. By means of diminishing pL, more population

can be transferred into the long-lived cavity mode leading to a higher visibility. In

another experiment (cf. sample QMv3 2nd in Tab. B.2 in the appendix), where the

anharmonicity of the qubit is even lower (α/h ' −185 MHz), we achieve with flat-top

Gaussian pulses pL ' 35 % [cf. Fig. 3.5 (d)]. Consequently, for transmon qubits with

their low anharmonicity, the use of flat-top Gaussian pulses is much more advantageous

than the use of rectangular pulses.

Next, we investigate Rabi oscillations of the qubit with a single photon Fock state

in the cavity. The |e1〉 state is reached with a BSB π-pulse. Then a coherent drive

at ωq is applied to coherently swap the qubit population. Hence, the driven Rabi

oscillation occurs between |e1〉 and |g1〉. In Fig. 3.5 (c), we show such a Rabi oscillation

measurement. Compared to the qubit Rabi oscillations with no photon inside the cavity,

we notice that the oscillation starts with |e1〉 and the oscillation amplitude is much

smaller. The reduced oscillation amplitude is due to the preceding 160 ns BSB π-pulse,

which is comparable to T q
1 and, hence, the loss of population due to energy relaxation is

significant. Apart from this, there is no measurable difference between Rabi oscillations

with zero or one photon in the cavity. An energy relaxation time T q1
1 = 130± 20 ns is

determined from the fit, which agrees well with T q0
1 .

3.3 Enhanced quantum information storage time

In order to study the decay time of the quantum memory (cf. sample QMv3 2nd in

Tab. B.2 in the appendix), we use a protocol preparing the qubit in the |g〉 state to

obtain the Fock state |1〉s in the memory. The decay of this state is plotted versus the
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Figure 3.5: Driven Rabi oscillation measurement between various states of the qubit-cavity system (cf.

sample QMv4 2nd in Tab. B.2 in the appendix). The data (dots) is fitted with a damped

sine function (red line). Next to the graphs, we draw the corresponding pulse schemes.

(a) Qubit-only Rabi oscillation between |g0〉 and |e0〉 without an excitation in the cavity.

(b) Blue sideband two-photon transition driven with a coherent drive at ωb/2. Green

diamonds are local maxima used for fitting the exponential envelope (dotted green). The

leakage population at t = 0 is pL = 70 %. (c) Qubit Rabi oscillations with a single photon

Fock state in the cavity. The drive power used here differs from the drive power used in

(a) leading to an altered Rabi frequency. (d) Coherently driven blue sideband transition

performed on a different sample (cf. sample QMv3 2nd in Tab. B.2 in the appendix) as

compared to the data in (a)-(c). Another difference is the use of flat-top Gaussian pulses

with a rise time of 20 ns in (d) in contrast to rectangular pulses with a 1 ns rise time in

(a)-(c). Consequently, the leakage population at t = 0 is reduced to pL = 35 %.
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Figure 3.6: (a) Comparison of decay rates of the quantum memory system (cf. sample QMv3 2nd in

Tab. B.2 in the appendix). (b) and (c) Statistics of the T s
1 and T s

2 of a Fock state |1〉s in

the storage mode. (d) Ramsey-type T s
2 measurement data (dots) fitted with a damped

sine function (red line).
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storage time in Fig. 3.6 (a). We measure an average relaxation time T s
1 = 8.0± 1.8 µs.

The data is in good agreement with an exponential decay. Small deviations from

this behavior can be attributed to measurement artifacts. We can also perform a

protocol preparing the qubit in state 1/
√

2 (|g〉+ |e〉) and rotating the qubit by π/2
at the end of the protocol [cf. Fig. 3.4 (c)]. Such Ramsey-type measurement yields

T s
2 = 15.5± 2.2 µs. Figure 3.6 (b) and (c) display histograms of the measured memory

decay and decoherence times, respectively. Both follow a normal distribution. These

fluctuations are frequently observed in literature and typically explained by ensembles

of microscopic two-level fluctuators [91, 144]. The measured coherence time is slightly

lower than expected from the 2T1-bound [cf. Eq. (1.71)]. As a result, we extract a

dephasing time T s
ϕ = (1/T s

2 − 1/2T s
1)−1 = 0.5 ms for the storage mode. Originally, a

bare harmonic oscillator exhibits no dephasing, however, in our case, we can explain

this behavior by considering a stochastic qubit jump rate [42] between |g〉 and |e〉. This

process results in frequency jumps of ωs due to the dispersive interaction and, as a

consequence, in a loss of phase information. We consider this mechanism to be dominant

in our experiment because, via the relation [41] γϕ ' peγ [cf. Eq. (1.76)], with γ being

the qubit decay rate and γϕ the pure dephasing rate, we extract a qubit excited state

population in equilibrium pe = 0.3 % in agreement with an estimate [145] based on

the temperature of the cavity walls of 50 mK. Furthermore, both T s
1 and T s

2 are by

a factor of 6 longer than their bare-qubit counterparts. This observation is another

indication, that the storage mode partially inherits the dephasing properties of the

qubit. Finally, we compare the quantum storage time with the decay time of a coherent

state in the storage mode. To this end, we excite the storage mode directly with a

sufficiently long microwave pulse of frequency ωs and directly monitor the field leaking

out of the resonator (cf. Fig. 3.7). The resulting value T coh
1 = 9.2 µs agrees well with the

Fock state storage time T s
1 within the expected statistical variation.

The next parameter of interest is the decay time of the readout mode TRO
1 , which

we determine to TRO
1 = 80 ns in a similar way. This values shows that the overcoupled

antenna configuration allows us to read out the qubit state on a time scale 100 times

shorter than the storage time. A similar 2D system [43] with a single planar on-chip

resonator reaches only a factor of 37. With a single 3D cavity [140, 141], ratios of 16.7 and

154 have been demonstrated. Using a combination of two rectangular superconducting

3D cavities [32, 33, 137–139], where one serves for readout and the other one for

storage, ratios of 15.8, 45.8, 1500, 1818 and 2500 are obtained. By proper surface

treatment of the cavity, we expect to be able to increase Qs
0 to approximately 5 · 107 as

demonstrated in Ref. [49]. Our simulations [cf. Fig. 3.1(e)] show that comparable values

can be obtained for Qs
x with a more accurate antenna positioning of ±0.016 mm. In

this way, we predict that the ratio between readout and storage time could be extended

to 25 000, exceeding the highest currently reported value of 7300 for superconducting

qubit-memory architectures employing cylindrical 3D cavities [35]. Other memory
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Figure 3.7: Decay of a coherent state in the storage mode and the readout mode (cf. sample QMv3

2nd in Tab. B.2 in the appendix). Dotted and dashed lines are fits to the data. Details on

the measurement technique are found in Sec. A.3 in the appendix.

systems, such as spin-ensembles coupled to superconducting qubits, exhibit storage

times comparable to rectangular superconducting 3D cavities [46, 146]. However, the

spread in Rabi frequencies is a source for dephasing and the low cooperativity leads

to a low efficiency in terms of the absorbed and re-emitted signal. Both drawbacks

are not present in our type of system. Quantum memories based on nano-mechanical

resonators also have similar storage times [45], but currently suffer from access times

which are two orders of magnitude higher than those presented in this work.

3.3.1 Higher cavity memory modes

The placement of the antenna pins enables us to analyze higher cavity modes, other

than the TE201 mode, as memory modes. These are modes, which couple well to the

qubit, but only weakly to the antennas. According to Tab. 2.5, these are TE203, TE401

and TE403. The electric field distribution for these modes is depicted in Fig. 3.8 (a)-(c).

We perform the memory protocol from Fig. 3.4 on the TE203 mode5 and find a storage

time of T 302
1 = 1.5 µs (cf. sample QMv3 2nd in Tab. B.2 in the appendix). This value is

only slightly higher than the bare qubit decay time. From simulations, we expect the

TE203, TE401 and TE403 modes to have lower storage times due to a steeper mode

profile in the x-direction at the antenna position, since the antinodes are more cramped

in the cavity volume [cf. Fig. 3.8 (d)]. Consequently, the modes are more difficult to

decouple from the antenna because small antenna positioning inaccuracies lead to a

relatively high residual electric field interacting with the antenna.

To improve these storage times, which means to decrease the external coupling, one

5The BSB π-pulse is limited by the output power Pd ' 25 dBm of the PSG RF source. With this
and the reduced effective coupling due to a larger detuning, a minimum π-pulse length of 150 ns is
achieved.
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Figure 3.8: (a)-(c) Electric field distribution of higher cavity modes for potential quantum memory

applications. The coupling to the antennas (white circles) is low, whereas the coupling to

the off-center qubit chips (black rectangles) is high. (d) Absolute electric field evaulated

along the white dashed line in (a)-(c). The electric field of the TE201 mode (black dashed

line) is plotted for comparison and has a significantly smaller slope around x = 0 than the

field of the other modes. For all modes, the electric field vanishes at ±19.2 mm due to the

cavity wall. Simulations are performed using CST Microwave Studio [50] on the cavity

model described in Sec. C.1 in the appendix.

has to optimize the cavity antennas to fit these modes better by making them even

slimmer. A more precise chip positioning helps to maintain the symmetry of the electric

field and lets the positions of the nodes of the higher modes coincide with the antennas.

With regard to the memory protocol, a higher drive power for the BSB is required to

obtain short pulses, since higher cavity modes are further detuned from the qubit and

the effective coupling decreases with 1/∆. A small drawback of the higher cavity modes

is that the frequency spectrum at these higher mode frequencies is crowded due to

second- and third-order transitions, which occur as multiples or combinations of lower

frequency transitions. Nevertheless, we have demonstrated that the option to access

these higher modes as quantum memories is given despite the fact that optimization

remains a technical challenge.

3.3.2 Storage of superposition states

So far, only the ground state of the qubit has been stored in the memory. In this section,

we investigate the storage of superposition states. In Fig. 3.9, the decay during the

storage time is shown for qubit states prepared with different preparation pulse lengths.

The typical Rabi oscillation pattern is visible, however, with a significantly smaller

decay rate as compared to that of the bare qubit. Hence, we find that superposition
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Figure 3.9: Decay of qubit superposition states transferred to the memory (cf. sample QMv3 2nd in

Tab. B.2 in the appendix). The quantum memory protocol is applied to qubit states with dif-

ferent Rabi angles. An equal superposition state of the qubit is stored as 1/
√

2 (|0〉s + |1〉s)
in the memory.

states of the qubit are stored as superpositions of Fock states in the storage mode as

expected.

3.4 Quantum memory fidelity

The next step is to quantify how well a quantum state can be stored in the memory.

To this end, we characterize the fidelity of the protocol by means of the retrieved qubit

population pg(tp) after the protocol of duration tp. The Z fidelity FZ = pg(tp)/pg(0),
which is the fidelity obtained from measurements along the quantization axis, is depicted

in Fig. 3.11 (a) for seven different working points of the quantum memory protocol. At

each working point, we perform several quantum memory measurements with calibrated

π-pulses. The working points differ in the average protocol length tp. When using

short pulses, which require a higher drive power to accomplish a π-rotation, we achieve

a maximum of FZ = 82± 7 %. Longer tp let the maximum fidelity drop to 76± 3 %
due to qubit decay during the pulse sequence. However, within the statistical error

margins, FZ is constant over the range of protocol lengths. As a cross-check, we perform

quantum process tomography of the memory protocol starting in the |g0〉 state. We

find a process fidelity FQPT = 78 %. The process matrix is plotted in Fig. 3.10 (for

technical details cf. Sec. E.2 in the appendix). This value coincides very well with

the outcomes of the Z fidelity measurements and proves that our experiment is not

limited by dephasing. Hence, further analysis is performed using FZ. To shed more

light onto the origin of these observations, we make FZ from protocols of various lengths

comparable by computationally eliminating the qubit decay. From this corrected Z

fidelity F corr
Z = FZ/ exp(−t/T q

1 ), we determine a maximum value of F corr
Z = 96± 4 %
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Figure 3.10: Measured χ̂ and theoretical χ̂t for the quantum memory protocol performed on sample

QMv3 2nd (cf. Tab. B.2 in the appendix).

for tp = 370 ns as shown in Fig. 3.11 (b). This value is already very close to the ideal

fidelity and errors come from state leakage as discussed in Sec. 3.4.2.

3.4.1 Reduction of fidelity variation

In this section, we analyze the stability of the setup with regard to drive power

fluctuations. To this end, we use the memory fidelity variations as a figure of merit.

We find that the qubit participating in the memory experiment is subdued to AC

Stark shifts from various mode populations [cf. Eq. (1.58)]. Strong drives at the cavity

antenna lead to such populations and, hence, shifted transition frequencies. Especially

the strong drive necessary for the BSB transition suffers from a drive power dependent

frequency shift. In Fig. 3.12 (a), we plot the AC Stark shift of ωb/2 for different drive

powers. In a setup without any band-pass filters, the shift accounts to approximately

150 MHz for the relevant drive powers. We test various band-pass filter configurations6

by recording the shifted 1/2ωb. The transmission characteristics of the inserted filters is

shown in App. A.2. These band-pass filters prove to be a practical solution to suppress

spurious population of other cavity modes. The total shift can be decreased to 10 MHz.

However, it remains unknown, which mode exactly causes the AC Stark shift. According

to Eq. (1.66) and Fig. 2.22, candidates are modes, which couple well to the antenna

(high Ωd) and well to the qubit (high g) simultaneously. Additionally, they are relatively

close to the qubit in frequency (low ∆).

We benchmark these filter configurations by looking at F corr
Z . The fidelity for each

configuration is averaged over multiple runs of the same memory experiment. For each

run, the pulse lengths for the π-pulses and the frequency of the drives are automatically

determined by a tune-up procedure (cf. Fig.2.26). We report on a decrease in fidelity

variation as demonstrated in Fig. 3.12 (b) with a more or less constant absolute F corr
Z .

Conclusively, we gain more stable experimental conditions when limiting the drive

bandwidth of the pulsed microwave signal. This result is supported by the decrease in

6Mini Circuits VBF-7200+ and VBF-7350+
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Figure 3.11: (a) Z fidelity measurements of the quantum memory protocol depending on the protocol

length. Green line: maximum fidelity limited by qubit decay with T q
1 . Light green

area: Statistical variations. Protocol lengths (inset) are set using different drive powers.

Triangles: Long protocol lengths are achieved using 3π pulses for the qubit transition.
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limited fidelity F corr
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1 . (b) Z fidelity corrected for the qubit decay

in order to make different protocol lengths comparable. Dotted line: fit. Red transparent

region: Fit uncertainty.

relative variations in tp. The effect of using different pulse shapes, such as rectangular

or flat-top Gaussian pulses, is discussed in the next paragraph in terms of qubit state

leakage.

3.4.2 State leakage fidelity limit

Interestingly, in Fig. 3.11 we observe a lower F corr
Z for shorter protocol lengths in

contradiction to the expectation that the fidelity could be limited by qubit decay.

This result points to a typical source of error for transmon qubits, namely state

leakage caused by the low anharmonicity. To quantify the leakage [76], we use a

simplified picture and define the leakage rate as γL = γ↑ + γ↓ + γsp, with the excitation

rate γ↑, the stimulated emission rate γ↓ and the spontaneous emission rate γsp to
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Figure 3.12: (a) AC Stark shift of the BSB transition for different drive line filter configurations.

(b) Variations in F corr
Z and tp for different filter configurations. In the brackets, we state

the pulse shape. The variations in tp are relative to the total protocol length.

and from higher states, respectively. Then, we can write the steady state leakage

population pL = γ↑/γL [1− exp(−γLtp)] = a/(2a+ γsptp) [1− exp(−2a− γsptp)], with

a = γ↑tp = γ↓tp. The rates γ↑,γ↓ are directly proportional to the drive strength Ωdrv

and indirectly proportional to tp, because the spectral width of our flat-top Gaussian

shaped pulses with a fixed rise time is independent of the plateau length. We can

identify a with the ability of the drive pulse to create a leakage population, which

depends on the fixed pulse rise time and the anharmonicity of the qubit. In the end,

the corrected Z fidelity is expected to behave as F corr
Z = 1− pL(tp, a,γsp). We use this

function with a and γsp as fit parameters to fit our data. Fitting the data we obtain

the reasonable value γsp/2π = 13.8± 11.5 MHz for the spontaneous emission rate. The

leakage population at tp = 0 is pL = 31 %. This value coincides well with the calculated

pL = 35 % from Fig. 3.5 (d) for the same sample and pulse shapes. Therefore, when

aiming for even shorter pulses, the fidelity will be limited to FZ ' 69 % due to the qubit

anharmonicity. To further increase the fidelity, optimal control pulses are necessary

to reduce state leakage for short pulses [134]. In addition, a longer qubit lifetime [42]

would allow for longer pulses and, in turn, for a higher fidelity at a given anharmonicity.
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Conclusions and Outlook

In conclusion, we have designed superconducting microwave 3D cavities suitable for

quantum memory experiments [78, 97]. For cavity design, an FEM simulation procedure

has been established using the eigenmode solver and the frequency domain solver of

CST Microwave Studio [50], to study the electric field distribution of the fundamental

and higher cavity modes. A machined cavity made of 99.99 % Al displays an internal

Q-factor exceeding one million at millikelvin temperatures without extensive surface

treatment. The Q-factor is independent of the photon population inside the cavity and

remains constantly high down to the single photon level. This stands in strong contrast

to planar resonators, where the Q-factor decreases with decreasing photon population

due to the strong coupling to omnipresent two-level fluctuators [60]. Complementary,

the external Q-factor has been studied alongside with the coupling mechanism via the

antennas. We have quantified the coupling of the antenna pins to the electric field,

which can easily be adjusted by changing the length of the antennas and their position

relative to a field antinode.

In order to make use of the high-Q cavities for qubit experiments, the qubit design has

to be adapted to fulfill the requirement of strong coupling. We have shown that the design

parameters of the transmon qubits can be reduced to simply designing the geometry

of the transmon qubit shunt capacitors. We have developed a method to successfully

simulate the RF capacitance of a transmon qubit in CST Microwave Studio [50]. To do

so, the transmon qubit can be treated as an LC-circuit with the inductance being a

free adjustable parameter. In the simulation, we spectroscopically probe this circuit in

a waveguide environment similar to the cavity geometry. This simulated capacitance

has been validated in experiment to be sufficiently correct [103]. With this at hand,

we are able to built 3D transmon qubits. In terms of nanoscale qubit fabrication, a

new electron beam lithography system together with a new spin-coater has been set up.

The fabrication recipe has been adapted to the new facilities and optimized towards

high fabrication yield and reproducibility [107]. We pre-characterize the 3D transmon

qubits with a defined set of spectroscopic measurements to gain the experimentally

relevant parameters ωq and α and the parameters relevant for fabrication such as CΣ

and Ic. In the end, combining both newly designed components, the highly coherent
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3D cavity and the transmon qubit, we measure qubit energy relaxation properties in

the microsecond regime. WMI record coherence times of T1 ' 2.7 µs and T2 ' 3.4 µs
have been demonstrated in experiment. At the time of this thesis, coherence times of a

transmon qubit in a superconducting 3D cavity are reported to be about 150µs for T1

and 240µs for T2 [147, 148].

This paves the way for more complex pulse protocols including multiple pulses at

different transition frequencies. In this field, we have analyzed and optimized pulse

shapes starting from simple rectangular pulses over (flattop) Gaussian shaped pulses

up to IQ-modulated DRAG pulses. These are suitable remedies, counteracting the

drawback of the low transmon qubit anharmonicity in order to keep unwanted state

leakage low. In an experiment using a transmon qubit with a low anharmonicity of

α/h = −92 MHz, the population leakage is reduced from 76 % with rectangular pulses

to an estimated value close to 0 % with DRAG pulses.

For an accurate description of state leakage, several steps towards quantum state

tomography of a qubit have been taken. We have implemented a measurement protocol

for tomography and find that our state preparation occurs with a fidelity close to 1.

Furthermore, for characterizing arbitrary quantum processes, we have experimentally

demonstrated quantum process tomography for single qubit gates with decent fidelity.

This protocol can be effortlessly adapted to more complex quantum operations.

As a final result, we have realized a quantum memory protocol for a fixed-frequency

transmon qubit by harnessing the multimode structure of a single 3D cavity. In this

way, we have access to a long-lived storage mode but retain a fast readout capability.

We successfully store qubit superposition states into the memory. The ratio between

the storage and the readout rate is determined to be 100 and shows a significant

improvement compared to planar multimode resonators (ratio of 37) [43]. Our result is

on a par with values measured for single rectangular 3D cavities (ratio of 154) [141].

Furthermore, our measurements indicate that the dephasing of the memory is limited

by the coupling to the qubit. We find a maximum Z fidelity of 82± 7 % for the optimal

trade-off between qubit anharmonicity and relaxation rate in our sample. This value

matches well with the quantum process fidelity of FQPT = 78 %.

With few straightforward technical improvements, our compact platform can be

further improved to store cat states [33] or GHZ states [36] for continuous variable

quantum computing. In detail, surface polishing techniques can enhance Q0 of the

cavity [41, 149] and qubit chip substrate pre-treatment [60, 150] can increase the bare

qubit lifetime.

Regarding scalability, there are multiple attractive options. For example, more

superconducting qubits using the storage mode as a bus can be inserted into the cavity

for building logical qubits [151]. Furthermore, coupling the qubit to higher cavity modes

allows for a quantum memory register [152]. In this direction, we have already performed

pre-characterization measurements. With respect to analog quantum simulation, the
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implementation of Bose-Hubbard chains [153] with the storage modes acting as bosons

is facilitated by our compact architecture and less constraints on the amount of control

lines (cf. Fig. B.1 in the appendix). In particular, one can think of 2D lattice geometries

for simulation of molecules [154] or solid state systems [155].





Appendix A

Experimental setup details

A.1 Measurement strategy

Here, we describe an established measurement sequence to characterize the relevant

parameters of a qubit-cavity system from the scratch. The procedure is summarized in

Tab. A.1. We specify the input parameters, the measurement type and the obtained

parameters.

Meas. Known
param.

X sweep Y sweep Meas. type Meas. out-
come

Disp. shift - PRO ν transm. χ, Q, νRO,
max. PRO

AC Stark
shift meas.

νRO PRO ∼ νq CW at νRO νq, ∆, g, cal.
of PRO

Higher
qubit levels

νRO, PRO Pd ∼ νq CW at νRO EC, α, EJ,
Ic, C

Sidebands νRO, PRO,
νq

Pd ∼ νb CW at νRO νb

Driven
Rabi*

νRO, PRO,
νq, (α)*

tp transm. at
νRO

pulsed TD Tπ

Qubit
decay*

νRO, PRO,
νq, Tπ, (α)*

τ transm. at
νRO

pulsed TD T1

Qubit
dephasing*

νRO, PRO,
νq, Tπ, (α)*

τ transm. at
νRO

Ramsey or
spin echo

T2

Table A.1: Measurement strategy for characterization of a qubit-cavity system. (* = IQ-modulated

pulse generation with one additional AFG and PSG RF source)

A.2 Band-pass filter for RF drive line

The drive of the BSB requires high-power pulses due to its second-order nature. This

drive supposedly creates off-resonant cavity population, which causes the qubit frequency
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Figure A.1: Filter transmission characteristics of Mini Circuits VPF-7200+ and VPF-7350+.

to shift. To prevent this effect, we add band-pass filters to the BSB drive line, which have

their passband around the drive frequency. The filters are added at room temperature

in front of the ouput port of the Agilent E8267 PSG microwave source, where the pulsed

RF signal is emitted. The transmission characteristics of these filters is measured with

a VNA and shown in Fig. A.1.

A.3 Direct measurement of coherent state decay

We measure the decay of a coherent state in the readout and the storage mode,

respectively, by applying a microwave pulse at the required mode frequency. The

duration of the pulse is longer than the ring up of the corresponding mode. We then

use heterodyne detection with an IF frequency of 62.5 MHz to downconvert the signal

for digitizing. The recording limit of our FPGA card is around 16µs. We observe a

much noisier signal at the storage mode frequency due to bandwidth limitations of our

HEMT amplifiers, which are limited to 4 to 8 GHz according to their specifications.



Appendix B

Sample overview

B.1 Cavity samples

All single 3D cavities used in this work have inner dimensions and positions of the

antenna insertion holes as depicted in Fig. 2.1. The material of the cavities is always Al,

but differs in its purity (cf. Tab. B.1).

Alloy cavity Al cavity pure Al cavity

Material EN AW-2007 99.5% Al 99.99% Al

Table B.1: Summary of measured cavity samples. The Al alloy EN AW-2007 is a composition of 88 %
to 93 % Al, 3.3 % to 4.6 % Cu, ≤ 1.8 % Mn, ≤ 1.5 % Pb, 0.8 % Fe, Si, Zn, 0.2 % Ni, Ti and

0.1 % Cr.

B.2 Qubit samples

In Tab. B.2, we summarize measured qubits during the work of this thesis. Not all of

them are mentioned in the main text. ”QMv3 2nd” is the 2nd cooldown of the same

sample. The last three qubits in the table are all built into one double cavity system

with cavities C1 and C2. The bridge qubit is connected to both and characterized using

C1. In Fig. B.1, we show a photograph of the opened double cavity system with the

technical drawing in Fig. B.2.

B.3 Sample fabrication recipe

The cavity is made in the in-house workshop out of 99.5 % bulk aluminum. The slim

cavity connector is a 100 µm gold wire soldered onto the tip of a commercial connector.

We fabricate the transmon qubit on a silicon substrate with standard electron-beam

lithography. For shadow evaporation of the Josephson junctions we use a double layer

resist system of 700 nm PMMA 33 % and 70 nm PMMA 950K. Development is done
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Figure B.1: Photograph of opened double cavity system with 3 qubit chips. On the center chip is the

bridge qubit. All three chips are viewed from their unpolished backside.

first with AR600-56 for 30 s at room temperature and followed by IPA for 20 min at 4 ◦C.

We evaporate a bottom layer Al of 50 nm, then oxidize in pure oxygen for 70 min at a

constant pressure of 7.85 · 10−3 mbar. The top layer is 70 nm Al. The lift-off process is

performed in Acetone at 70 ◦C.
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TQ1 QMv3 1st QMv3 2nd QMv4 1st QMv4 2nd QMv4 3rd C1 B C2
qubit chip
position

center off-center
(asymm.)

off-center
(symm.)

off-center
(asymm.)

off-center
(asymm.)

off-center
(symm.)

double
cavity

bridge
qubit

double
cavity

νq (GHz) 3.650 7.602 6.234 5.284 5.36 5.203 6.310 3.871 7.402
α/h (MHz) -168 -190 -187 -301 -300 -317 -694 -92 -821
EJ/EC 60 206 142 37.8 40 33.9 9.1 221 10.09
T1 (µs) - 2.8 1.3 - 0.159 0.2 0.64 2.47* -
T2 (µs) - 3.4 2.5 - - - - 0.37 -

νRO (GHz) 5.462 5.604 5.518 5.485 5.485 5.4785 5.7154 5.717 5.7244
FWHMRO (MHz) 0.3 2.844 4 19 19 21.5 16.5 16.5 17
χ′RO (MHz) 1.18 2 3.6 -8 -8 -5.5 1.5 -2 0.55
gRO/2π (MHz) 49.3 62.3 53 40 31.6 39.3 29.9 60.8 30.4
∆q,RO/2π (GHz) 1.8 1.944 0.716 -0.2 -0.13 -0.3 0.595 -1.847 1.678

νs (GHz) - 8.904 8.707546 - 8.454 8.6371 7.696 - 7.726
FWHMs (kHz) - 39 24.7 - 42 48 776 - 555
χ′s (MHz) - - -1.1 - - - - - -
gs/2π (MHz) - - 53 - - - - - -
∆q,s/2π (GHz) - -1.302 -2.474 - -3.094 -3.434 -1.386 - -0.324

C (fF) 123 104 105 63.7 64.6 61.3 26.18 211 23.51
Ic (nA) 20 76.7 53 23.1 24.1 21.6 13.54 41 16.7
wq (µm) 705 305 305 305 305 305 230 80 230
lq (µm) 760 760 760 760 760 760 760 7760 760
gq (µm) 50 50 50 50 50 50 50 50 50
tox (s) 4200
pox (µbar) 7.85

Table B.2: Summary of measured qubit samples. (* = measured with DRAG). The QMv3 2ndsample has a 0.1 mm thin antenna. All other samples

have the commercial Huber+Suhner 23 SMA-50-0-13 with a diameter of 1.6 mm. Between the cooldowns of QMv4 1st and QMv4 2nd, K&L

6L-250-12000 tubular low-pass filters are added to the QMv4 sample RF input and output lines, which leads to a rise in νq and Ic.
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Figure B.2: CAD drawing of double cavity parts.



Appendix C

FEM simulation with CST

C.1 Cavity simulation models

The FEM simulations with CST Microwave Studio [50] are based on the CAD drawings

of the cavities [cf. Fig. C.1 (a)]. Typically, the cavity volume can also be modeled as a

vacuum surrounded by PEC as depicted in Fig. C.1 (b). In a few cases, where the actual

dimensions of the cavity are unimportant, such as in the simulation of the antenna

coupling [cf. Fig. 2.2 (a)] or in the theoretical electric field distribution (cf. Fig. 1.1),

we use a simple rectangular model without the semicircular edges [cf. Fig. C.1 (c)] to

accelerate the simulation.

(a) (b) (c)

Figure C.1: (a) CST cavity model based on imported CAD file of cavity (SAT format). In the

simulation software, the vacuum is depicted blue and PEC grey. The red rectangle on top

is the waveguide port. The blowup is the antenna pin with rounded edges. (b) Cavity

model with dimensions as described in Fig. 2.1. The vacuum is surrounded by PEC (not

visible). The light brown structure in the center is the Si chip. (c) Simplified cavity model

with a = 10 mm, d = 10 mm and b = 5 mm.

The waveguide structure for the transmon qubit capacitance determination (cf.

Sec. 2.1.2) has the same dimensions a and b, but d = 60 mm. Here, it is especially

important to create a local mesh for the transmon qubit capacitances due to the

large difference in length scales of the waveguide ( 40 mm) and of the transmon qubit

capacitances ( 100µm).

Since CST Microwave Studio [50] does not support the simulation of a superconductor,

we always use PEC for the cavity casing and the antenna pins. If the transmon qubit chip
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is necessary for the simulation, we insert a rectangular structure of the corresponding

size and use Silicon with εr = 11.9 and µr = 1 as the material.

C.2 Frequency solver

The frequency solver probes the cavity model in transmission through an input and

output port, which are the antennas in our case. The waveguide ports in the frequency

domain simulation are 10× 10 mm2 large (compared to an aperture diameter of 4.7 mm)

in order to couple in all relevant frequencies. In the simulations, the antenna pins

possess rounded edges in order to prevent the emergence of high electric fields at sharp

corners [cf. Fig. C.1 (a)].

The results of the frequency solver are the scattering parameters (S-parameters) of the

system for the specified frequency range. Hence, it can directly be compared with the

results obtained via a VNA measurement. Furthermore, by defining a goal function and

variable parameters, the frequency solver can be used to optimize the cavity dimensions

to fit a desired mode frequency.

C.3 Eigenmode solver

The eigenmode solver is a very efficient solver to determine the eigenmodes of the cavity

and the corresponding electric and magnetic field distribution. Moreover, the surface

current distribution is also obtained. To calculate in addition the external quality factor

of the simulated eigenmodes, one has to define input and output waveguide ports similar

to the those in frequency solver setup.



Appendix D

Maximum likelihood estimation

D.1 MLE for the density matrix

Theoretically ρ̂ is physical, however, in experiment it is not always the case that positivity

is guaranteed and there can be reconstructed states with Trρ̂2 > 1. The reason for

this behavior is (thermal) noise caused by the environment or the experimental setup

or systematic errors in the setup. If unphysical results are obtained, physicality can

be enforced by using a maximum-likelihood-estimation (MLE) approach. This means

that the physical density operator ρ̃, which has the highest probability to describe the

system, is approximated with the measured ρ̂. For a single qubit, the general form of a

physical density matrix is given by

ρ̃ = T †T

Tr(T †T ) . (D.1)

with a matrix

T =
(

t1 0
t3 + it4 t2

)
(D.2)

where t1, t2, t3, t4 ∈ R are the coefficients to be determined with the MLE.

If it is considered that ϕ̃x,y,z are the phases that yield the physical density matrix ρ̃,

we get according to the relation Eq. (2.25)

ϕ̃x = ϕ̄− Tr(ρ̃X)
2 (ϕ0 − ϕ1) (D.3)

ϕ̃y = ϕ̄− Tr(ρ̃Y )
2 (ϕ0 − ϕ1) (D.4)

ϕ̃z = ϕ̄+ Tr(ρ̃Z)
2 (ϕ0 − ϕ1). (D.5)

These equations depend on the yet unknown parameters t1, t2, t3, t4. The ϕ̃x,y,z are now

chosen such that the probability of the ϕ̃x,y,z representing the actual physical mean
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values is maximized.

P (t1, t2, t3, t4) = N
∏

i=x,y,z

N∏
j=1

exp
−(ϕ(j)

i − ϕ̃i)2

2σ2
i

 (D.6)

N is a constant for normalization. Mathematically, the problem can be reformulated as

a minimization problem of the function

L(t1, t2, t3, t4) =
∑

i=x,y,z

N∑
j=1

(ϕ(j)
i − ϕ̃i)2

2σ2
i

(D.7)

Furthermore, it can be shown that the minimum of this function is identical to the

minimum of

L(t1, t2, t3, t4) =
∑

i=x,y,z

1
2σ2

i

(ϕ̃i − ϕi)2 (D.8)

from which the parameters t1, t2, t3, t4, which yield the optimal physical ρ̃, are obtained.

D.2 MLE for the process matrix

For the same reasons as in QST, it may occur that the χ̂-matrix does not satisfy the

physicality conditions. Again, a MLE approach is necessary to determine the optimal

physical process matrix χ̃, which describes the quantum operation best. To guarantee

that χ̃ is positive Hermitian, we chooses the ansatz:

χ̃(t) = T (t)†T (t) (D.9)

with a lower triangular matrix T that depends on d4 parameters ti ∈ R and ~t = (t1,...,td4).
For the single qubit case with d = 2, this matrix is given as

T =


t1 0 0 0

t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4

 . (D.10)

The minimization problem consists of minimizing the distance ∆ of χ and χ̃ under the

trace preserving constraint (
∑
m,nBmχ̂mnB

†
n = I). It is expressed as

∆(~t) =
∑
m,n

|χ̃mn(~t)− χmn|2 + λ

∣∣∣∣∣∑
m,n

B†mχ̃mn(~t)Bn − I
∣∣∣∣∣
2

(D.11)
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with a Lagrange multiplier λ. For better practical implementation, a vector quantity

that contains all basis matrices is defined.

B ≡ (B†1,...,B†d2) (D.12)

Hence, the problem can be reformulated as

∆(t) = ‖χ̃(t)− χ̂‖2
F + λ‖B · (χ̃(t)⊗ I) ·B† − I‖2

F (D.13)

where ‖ · ‖F denotes the Frobenius norm and ⊗ is the Kronecker product. This

optimization was performed using the fminsearch() function in Matlab®, but the

trace-preserving condition was not fulfilled very well after convergence. As a result,

trace-preserving was enforced before the minimization procedure. Again, for practical

reasons, this condition is written in the form

M †(~t)M(~t) = I (D.14)

with

M ≡ (T (t)⊗ I) ·B. (D.15)

The optimization problem is then solved by minimizing

∆(t) = ‖T †(t)T (t)− χ̂‖2
F (D.16)

under the constraint Eq. (D.14) using the fmincon() function in Matlab®. It is an

important issue that the optimization problem for ∆(~t) is not convex in general, which

means that many local minima may exist. The problem that the solving algorithm

converges towards such a local minimum has to be avoided. This can be achieved by

assuming that the physical process matrix χ̃ does only slightly differ from the measured

unphysical matrix χ̂. Let χ̂0 denote the initial guess matrix for the minimization

algorithm. Physicality of χ̂0 enforces the matrix can be decomposed in the way

described in Eq. (D.9).

χ̂0 = T0(t)†T0(t) (D.17)

This can be achieved via Cholesky decomposition [156]. In order to realize this, χ̂0

needs to be constructed as a positive definite matrix, which means that all eigenvalues

have to be larger than 0. Let {qi} be the set of the eigenvalues of the experimentally

determined χ̂. A diagonal matrix D0 = diag(p1,...,pd2) is constructed in the way

pi =

qi if qi > 0
ε else

(D.18)
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where ε > 0 is a tolerance limit, which is set to double type machine precision (1.1·10−16).

Equation (2.33) is used in order to obtain an expression for χ̂0, which is positive definite

by construction and optimally close to the measured χ̂-matrix.

χ0 = UD0U
† (D.19)
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Additional measurement data

E.1 Quantum state tomography and quantum process

tomography of a single qubit

We obtain the following density matrices ρ̂, which are depicted in Fig. 2.31.

For the |1〉-state:

ρ̂ =
(

0.0354 0.1841− 0.0169i
0.1841 + 0.0169i 0.09646

)
ρ̂t =

(
0 0
0 1

)
F (ρ̂, ρ̂t) = 0.9821

For the |+〉-state:

ρ̂ =
(

0.5372 0.4925 + 0.0778i
0.4925− 0.0778i 0.4628

)
ρ̂t = 1

2

(
1 1
1 1

)
F (ρ̂, ρ̂t) = 0.9962

For the |−〉-state:

ρ̂ =
(

0.5850 −0.0962− 0.4832i
−0.0962 + 0.4832i 0.4150

)
ρ̂t = 1

2

(
1 −i
i 1

)
F (ρ̂,ρ̂t) = 0.9916

We obtain the following process matrices χ̂-matrices, which are depicted in Fig. 2.33.

For the identity operation:

χ̂ =


0.9480 −0.0118i 0 0
0.0118i 0.0520 0 0

0 0 0 0
0 0 0 0


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χ̂t =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


F (χ̂, χ̂t) = 0.9737

For the Ry

(
π
2

)
- operation:

χ̂ =


0.4538 −0.0023− 0.2252i 0.3671− 0.0006i 0.0004 + 0.0286i

−0.0023 + 0.2252i 0.1435 −0.0004 + 0.1337i −0.0151 + 0.0006i
0.3671 + 0.0006i −0.0004− 0.1337i 0.3975 −0.0023 + 0.0260i
0.0004− 0.0286i −0.0151− 0.0006i −0.0023− 0.0260i 0.0053



χ̂t = 1
2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0


F (χ̂, χ̂t) = 0.8903

For the Rx

(
π
2

)
- operation:

χ̂ =


0.4927 0.0108− 0.3536i −0.0191− 0.0071i −0.0200− 0.0396i

0.0108 + 0.3536i 0.4509 0.0200− 0.0176i 0.0401 + 0.0071i
−0.0191 + 0.0071i 0.0200 + 0.0176i 0.0109 0.0108 + 0.0128i
−0.0200 + 0.0396i 0.0401− 0.0071i 0.0108− 0.0128i 0.0455



χ̂t = 1
2


1 −i 0 0
i 1 0 0
0 0 0 0
0 0 0 0


F (χ̂, χ̂t) = 0.9085

E.2 Quantum process tomography of the quantum

memory protocol

We perform quantum process tomography on the memory protocol with an initial state

|g0〉. We choose a total protocol length of tp = 332 ns. In order to obtain the process

matrix χ̂, we need to measure the density matrix ρ̂ using quantum state tomography
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before and after the memory operation. Quantum state tomography is done using

the set of independent states |e〉, |g〉, |−〉 and |+〉. We use the maximum likelihood

estimation to enforce physicality for the ρ̂ and χ̂ matrices. The fidelity is defined

as FQPT = Tr
√√

χ̂χ̂t
√
χ̂, where χ̂t is the ideal process matrix. For our memory

application, this χ̂id coincides with I (cf. Fig. 2.33). Here, we show the χ̂ and the χ̂t

matrices.

χ̂ =


0.6115 −0.0054− 0.0305i −0.0015− 0.0047i −0.0002 + 0.0008i

−0.0054 + 0.0305i 0.2761 0.0002− 0.1263i 0.0044 + 0.0047i
−0.0015 + 0.0047i 0.0002 + 0.1263i 0.1118 −0.0054 + 0.0047i
−0.0002− 0.0008i 0.0044− 0.0047i −0.0054− 0.0047i 0.0005



χ̂t =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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O. Dial, D. F. Bogorin, B. L. T. Plourde, M. Steffen, A. W. Cross, J. M. Gambetta,

and J. M. Chow, “Experimental Demonstration of a Resonator-Induced Phase

Gate in a Multiqubit Circuit-QED System”, Phys. Rev. Lett. 117, 250502 (2016).

[37] C. Axline, M. Reagor, R. Heeres, P. Reinhold, C. Wang, K. Shain, W. Pfaff,

Y. Chu, L. Frunzio, and R. J. Schoelkopf, “An architecture for integrating planar

and 3D cQED devices”, Appl. Phys. Lett. 109, 042601 (2016).

[38] W. Pfaff, C. J. Axline, L. D. Burkhart, U. Vool, P. Reinhold, L. Frunzio, L. Jiang,

M. H. Devoret, and R. J. Schoelkopf, “Controlled release of multiphoton quantum

states from a microwave cavity memory”, Nat. Phys. 13, 882 (2017).

[39] C. J. Axline, L. D. Burkhart, W. Pfaff, M. Zhang, K. Chou, P. Campagne-

Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin, L. Jiang, M. H. Devoret, and

R. J. Schoelkopf, “On-demand quantum state transfer and entanglement between

remote microwave cavity memories”, Nat. Phys. (2018).

[40] P. Campagne-Ibarcq, E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold,

L. Burkhart, C. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, and M. H. De-

voret, “Deterministic Remote Entanglement of Superconducting Circuits through

Microwave Two-Photon Transitions”, Phys. Rev. Lett. 120, 200501 (2018).

[41] M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland,

C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang,

and R. J. Schoelkopf, “Quantum memory with millisecond coherence in circuit

QED”, Phys. Rev. B 94, 014506 (2016).

[42] C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M. Chow, A. D.
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H. Safa, T. Schilcher, P. Schmüser, J. Sekutowicz, S. Simrock, W. Singer,

M. Tigner, D. Trines, K. Twarowski, G. Weichert, J. Weisend, J. Wojtkiewicz,

S. Wolff, and K. Zapfe, “Superconducting TESLA cavities”, Phys. Rev. Spec. Top.

- Accel. Beams 3, 092001 (2000).

[59] G. Catelani, J. Koch, L. Frunzio, R. J. Schoelkopf, M. H. Devoret, and L. I.

Glazman, “Quasiparticle Relaxation of Superconducting Qubits in the Presence

of Flux”, Phys. Rev. Lett. 106, 077002 (2011).

[60] J. Goetz, F. Deppe, M. Haeberlein, F. Wulschner, C. W. Zollitsch, S. Meier,

M. Fischer, P. Eder, E. Xie, K. G. Fedorov, E. P. Menzel, A. Marx, and R. Gross,

“Loss mechanisms in superconducting thin film microwave resonators”, J. Appl.

Phys. 119, 015304 (2016).

[61] D. L. Creedon, M. Goryachev, N. Kostylev, T. B. Sercombe, and M. E. Tobar, “A

3D printed superconducting aluminium microwave cavity”, Appl. Phys. Lett. 109,

032601 (2016).

[62] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic

quantum states in a single-Cooper-pair box”, Nature 398, 786 (1999).

[63] A. A. Houck, J. Koch, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Life

after charge noise: Recent results with transmon qubits”, Quantum Inf. Process.

8, 105 (2009).

[64] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais,

M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit

design derived from the Cooper pair box”, Phys. Rev. A 76, 042319 (2007).

[65] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro,

J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C. White, A. N.

Cleland, and J. M. Martinis, “Coherent Josephson Qubit Suitable for Scalable

Quantum Integrated Circuits”, Phys. Rev. Lett. 111, 080502 (2013).

http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1103/PhysRevSTAB.3.092001
http://dx.doi.org/10.1103/PhysRevSTAB.3.092001
http://dx.doi.org/10.1103/PhysRevLett.106.077002
http://dx.doi.org/10.1063/1.4939299
http://dx.doi.org/10.1063/1.4939299
http://dx.doi.org/10.1063/1.4958684
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1007/s11128-009-0100-6
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1103/PhysRevLett.111.080502


Bibliography 125

[66] R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider, D. J. Michalak,

A. Bruno, K. Bertels, and L. DiCarlo, “Scalable Quantum Circuit and Control for

a Superconducting Surface Code”, Phys. Rev. Applied 8, 034021 (2017).

[67] J. Kelly, “A Preview of Bristlecone, Google’s New Quantum Pro-

cessor”, (2018), URL https://research.googleblog.com/2018/03/

a-preview-of-bristlecone-googles-new.html.

[68] R. Blatt and D. Wineland, “Entangled states of trapped atomic ions”, Nature

453, 1008 (2008).

[69] R. Blatt and C. F. Roos, “Quantum simulations with trapped ions”, Nat. Phys. 8,

277 (2012).

[70] S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S. M. Reimann, L. Santos,

T. Lompe, and S. Jochim, “Antiferromagnetic Heisenberg Spin Chain of a Few

Cold Atoms in a One-Dimensional Trap”, Phys. Rev. Lett. 115, 215301 (2015).

[71] A. C. Johnson, J. R. Petta, J. M. Taylor, A. Yacoby, M. D. Lukin, C. M. Marcus,

M. P. Hanson, and A. C. Gossard, “Triplet-singlet spin relaxation via nuclei in a

double quantum dot”, Nature 435, 925 (2005).

[72] S. Plugge, A. Rasmussen, R. Egger, and K. Flensberg, “Majorana box qubits”,

New Journal of Physics 19, 012001 (2017).

[73] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information:

10th Anniversary Edition (Cambridge University Press, 2011), 10th ed.

[74] B. Josephson, “Possible new effects in superconductive tunnelling”, Phys. Lett. 1,

251 (1962).

[75] Y. Reshitnyk, M. Jerger, and A. Fedorov, “3D microwave cavity with magnetic

flux control and enhanced quality factor”, EPJ Quant. Tech. 3, 13 (2016).

[76] Z. Chen, J. Kelly, C. Quintana, R. Barends, B. Campbell, Y. Chen, B. Chiaro,

A. Dunsworth, A. G. Fowler, E. Lucero, E. Jeffrey, A. Megrant, J. Mutus,

M. Neeley, C. Neill, P. J. J. O’Malley, P. Roushan, D. Sank, A. Vainsencher,

J. Wenner, T. C. White, A. N. Korotkov, and J. M. Martinis, “Measuring and

Suppressing Quantum State Leakage in a Superconducting Qubit”, Phys. Rev.

Lett. 116, 020501 (2016).

[77] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and atoms:

introduction to quantum electrodynamics (Wiley, 1989).

http://dx.doi.org/10.1103/PhysRevApplied.8.034021
https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/NPHYS2252
http://dx.doi.org/10.1103/PhysRevLett.115.215301
http://dx.doi.org/10.1038/nature03815
http://dx.doi.org/10.1088/1367-2630/aa54e1
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1140/epjqt/s40507-016-0050-8
http://dx.doi.org/10.1103/PhysRevLett.116.020501
http://dx.doi.org/10.1103/PhysRevLett.116.020501


126 Bibliography

[78] G. Andersson, “Circuit quantum electrodynamics with a transmon qubit in a 3D

cavity”, Master’s thesis, TU München (2015).

[79] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta, A. Blais,

L. Frunzio, J. Majer, B. Johnson, M. H. Devoret, S. M. Girvin, and R. J.

Schoelkopf, “Resolving photon number states in a superconducting circuit”, Nature

445, 515 (2007).

[80] A. P. Sears, A. Petrenko, G. Catelani, L. Sun, H. Paik, G. Kirchmair, L. Frunzio,

L. I. Glazman, S. M. Girvin, and R. J. Schoelkopf, “Photon shot noise dephasing

in the strong-dispersive limit of circuit QED”, Phys. Rev. B 86, 180504 (2012).

[81] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret,

and R. J. Schoelkopf, “Quantum-information processing with circuit quantum

electrodynamics”, Phys. Rev. A 75, 032329 (2007).

[82] A. Wallraff, D. I. Schuster, A. Blais, J. M. Gambetta, J. Schreier, L. Frunzio,

M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Sideband Transitions and

Two-Tone Spectroscopy of a Superconducting Qubit Strongly Coupled to an

On-Chip Cavity”, Phys. Rev. Lett. 99, 050501 (2007).

[83] S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L. Frunzio, M. H.

Devoret, R. J. Schoelkopf, and S. M. Girvin, “Black-box superconducting circuit

quantization.”, Phys. Rev. Lett. 108, 240502 (2012).

[84] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mir-

rahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Observation of quantum

state collapse and revival due to the single-photon Kerr effect”, Nature 495, 205

(2013).

[85] D. F. Walls and G. J. Milburn, “Effect of dissipation on quantum coherence”,

Phys. Rev. A 31, 2403 (1985).

[86] G. Lindblad, “On the generators of quantum dynamical semigroups”, Commun.

Math. Phys. 48, 119 (1976).

[87] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford

University Press, 2007).

[88] A. G. Redfield, “The Theory of Relaxation Processes”, Adv. Magn. Opt. Reson.

1, 1 (1965).

[89] E. M. Purcell, “Spontaneous Emission Probabliities at Radio Frquencies”, Phys.

Rev. 69, 674 (1946).

http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1103/PhysRevB.86.180504
http://dx.doi.org/10.1103/PhysRevA.75.032329
http://dx.doi.org/10.1103/PhysRevLett.99.050501
http://dx.doi.org/10.1103/PhysRevLett.108.240502
http://dx.doi.org/10.1038/nature11902
http://dx.doi.org/10.1103/PhysRevA.31.2403
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1016/B978-1-4832-3114-3.50007-6
http://dx.doi.org/10.1103/PhysRev.69.674.2
http://dx.doi.org/10.1103/PhysRev.69.674.2


Bibliography 127

[90] K. L. Geerlings, “Improving Coherence of Superconducting Qubits and Resonators

Improving Coherence of Superconducting Qubits and Resonators”, Ph.D. thesis,

Yale University (2013).

[91] J. Goetz, F. Deppe, P. Eder, M. Fischer, M. Müting, J. P. MartÃnez, S. Pogorzalek,
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