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Chapter 1

Introduction

Over the last century, quantum mechanics has led to various developments in fundamental

physical theory and generated numerous technological advances. In particular, the

field of quantum information has grown rapidly in the last decades. This includes

developments in various topics such as quantum computing [1], quantum communication

[2, 3], quantum sensing [4, 5], and quantum simulation [6]. In the field of quantum

information, fundamental quantum properties such as superposition and entanglement are

exploited to achieve quantum advantages over classical systems. Quantum information

science can then lead to improvements in the efficiency, security, precision, and computing

power of various technologies.

Many physical platforms are used to realize concepts in quantum information science.

Among these platforms, superconducting circuits is especially promising due to its strong

interaction strengths and tunability [7–9]. A central component of superconducting

circuits is the Josephson junction, which functions as a nonlinear, tunable, and lossless

inductance. This component allows superconducting circuits to be built into artificial

atoms in the gigahertz regime and be used to implement qubits. One of the most exciting

present developments in quantum information is the construction of quantum computers

based on superconducting circuits [10]. In order to scale up these quantum computers,

multiple quantum processors should be connected in a quantum network. This requires

efficient communication between superconducting circuits and thus motivates the study

of quantum communication in the microwave frequency regime.

Quantum communication exploits non-classical correlations to achieve efficient and

unconditionally secure exchange of information. It can be implemented with continuous-

variable (CV) systems, which are described by a continuous spectrum of eigenvalues

[11, 12]. In the microwave regime, one promising approach to quantum communication is

by using propagating quantum microwaves, which are described by the quadratures of

their propagating electromagnetic field [12]. This is because the frequency of propagating

quantum signals can easily match that of superconducting processors, without large

conversion inefficiencies [13]. Furthermore, most modern communication and computation

tasks operate in the microwave regime, so propagating quantum microwaves can interface

well with current infrastructure,
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2 Chapter 1 Introduction

Quantum teleportation, which uses quantum entanglement and classical communication,

is an outstanding quantum communication protocol that allows for secure transfer of

unknown quantum states without directly sending them. Analog quantum teleportation

with propagating quantum microwaves has already been experimentally demonstrated in

a laboratory setting at the Walther-Meißner-Institute [14]. We extend this experimental

result by implementing microwave quantum teleportation between two spatially-separated

dilution refrigerators. The two dilution refrigerators are connected by a custom-made

cryogenic link that can maintain superconducting temperatures. This setup imitates a

realistic scenario of quantum communication between two spatially separated quantum

computers. Implementing spatially-separated microwave quantum teleportation can also

have applications for interfaces between various quantum devices. In our experiments, we

extensively use the Josephson parametric amplifier (JPA), which is a superconducting

circuit that functions as a nonlinear, tunable resonator [15–17]. JPAs can be used to

generate squeezed states, where noise in one quadrature is reduced below the vacuum

level and the noise in the orthogonal quadrature is amplified proportionally. Orthogonally

squeezed states can be superimposed to generate a two-mode squeezed (TMS) state that

carries entanglement [11]. We employ TMS states as the entangled resource to accomplish

our CV quantum teleportation protocol in the microwave regime. In order to characterize

the performance of our quantum teleportation procedure, we calculate the fidelity, which

measures the overlap between the initial state and the teleported state. The fidelity allows

us to determine whether we obtain a quantum advantage and whether the communication

is unconditionally secure [12].

In our work, we study microwave quantum teleportation from a practical point of view,

where we investigate how realistic imperfections affect the performance of the protocol.

Such imperfections include the availability of a finite experimental codebook of teleported

states as well as the effect of realistic losses and noise. The 1 dB compression point of a

JPA limits the maximum input power that the JPA can amplify [18], which constrains

the state displacements that can be teleported. We then analyze the influence of a finite

codebook on the communication security of quantum teleportation. Due to the low photon

energy of microwave photons in the gigahertz regime, microwave quantum teleportation

requires cryogenic temperatures of tens of millikelvin to avoid excessive ambient thermal

noise. However, in realistic application scenarios, the classical signal can be susceptible

to significant losses and environmental noise. Thus, we systematically investigate the

performance of microwave quantum teleportation under realistic conditions and especially

focus on the resilience towards induced thermal noise.

First, we introduce the truncated Gaussian codebook as a realistic set of input states

and derive the corresponding no-cloning limit for the teleportation fidelity. In the next

step, we consider the scenario of microwave quantum teleportation over a thermal noise

channel. In particular, we investigate the effect of environmental thermal noise photons,

coupled to the analog feedforward, as well as to the entanglement distribution channel.
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We perform a simulation of analog microwave quantum teleportation which takes all

realistic loss and noise contributions into account and analyze under which conditions we

reach fidelities beyond the no-cloning threshold. Furthermore, we analyze the temperature

dependence of the maximally achievable communication bit rate. We thereby show that

the performance of the protocol is asymptotically robust against feedforward losses and

noise and find that the relevant experimental constraint is given by the finite coupling of

the feedforward signal to the receiving communication party. Our study reveals that by

making this coupling sufficiently small, we can achieve unconditionally secure quantum

microwave teleportation for the case where the feedforward is transmitted as an analog

microwave signal at room temperature. We thereby demonstrate that analog Gaussian

quantum teleportation realizes an error-correction scheme for losses and noise in the

feedforward channel.

The thesis is structured as follows. In Chapter 2, we present the theory for propa-

gating quantum microwaves and introduce relevant Gaussian states. We also describe

the Josephson parametric amplifier and the mechanism for generating squeezing. In

Chapter 3, we present the theory for analog continuous-variable quantum teleportation.

We also analyze the effects of a finite-energy codebook and thermal channels on the

performance of quantum teleportation. In Chapter 4, we describe the experimental setup

and measurement techniques used in our experiment. In Chapter 5, we describe our

microwave quantum cryogenic link and its assembly procedure. We also present mea-

surement results for entanglement distribution over the cryogenic link. In Chapter 6,

we present measurement results for microwave quantum teleportation over the cryogenic

link. We also discuss implementations for microwave quantum teleportation over a room

temperature feedforward channel. In Chapter 7, we give a summary of the thesis and

provide an outlook.





Chapter 2

Theory

In this chapter, we introduce the theoretical concepts relevant to our work. In Section 2.1,

we discuss propagating quantum microwaves and continuous-variable quantum information.

We describe the quantum mechanical representation of quantum microwaves and present

important classes of Gaussian states. In Section 2.2, we discuss the Josephson effects

and introduce the Josephson parametric amplifier. We describe the theory of Josephson

junctions and present the direct current superconducting quantum interference device

(DC-SQUID).

2.1 Propagating quantum microwaves

For our work, we use propagating quantum microwaves that are Gaussian quantum

states [11]. In this section, we introduce the theory to understand and utilize propagating

quantum microwaves. We give a theoretical description of quantum microwaves and explain

different Gaussian states. We introduce the concept of continuous-variable quantum

information, in particular with respect to quantum communication.

2.1.1 Representation of quantum microwaves

In this work, we investigate electromagnetic fields with frequency 5-6 GHz that propagate

along coaxial cables or coplanar waveguides. These signals A(r, t) can be classically

described by their in-phase quadrature component I(t) and out-of-phase quadrature

component Q(t), according to

A(r, t) = I(t) cos(ωt− kr) +Q(t) sin(ωt− kr), (2.1)

where f = ω/2π is the frequency, k is the wave vector, r is the position, and t is the

time. Given the frequency f and wave vector k, the quadrature components allow

us to fully describe the propagating signal. Propagating electromagnetic fields can be

decomposed into orthogonal modes, which describe the field patterns corresponding to

different eigenfunctions of the electromagnetic field equation at a given frequency. In

5



6 Chapter 2 Theory

the next step, we quantize the electromagnetic field in the framework of the second

quantization. The amplitude operator for the quantized single-mode electric field is

written as [19]

Â(r, t) = C
[
âei(ωt−kr) + â†e−i(ωt−kr)

]
= 2C [q̂ cos(ωt− kr) + p̂ sin(ωt− kr)] , (2.2)

where C is a normalization constant, chosen such that the annihilation and creation

operators of the field, â and â†, obey the bosonic commutation relation [â, â†] = 1
and define the photon number operator 〈n̂〉 ≡ â†â. These operators are related to the

quadrature operators by

q̂ = â+ â†

2 , p̂ = â− â†

2i . (2.3)

The quadrature operators obey the commutation relation [q̂, p̂] = i/2 and their eigenvalues

correspond to the classical quadratures I(t) and Q(t). Since the quadrature operators do

not commute, they satisfy the Heisenberg uncertainty relation [20]

∆q∆p ≥ 1
4 , (2.4)

where standard deviation ∆O of the observable Ô is defined as (∆O)2 ≡ 〈O2〉 − 〈O〉2. Eq.

2.4 implies that q̂ and p̂ cannot be simultaneously measured with absolute accuracy, which

means that the quantum state can only be described in a probabilistic manner. Thus, we

introduce quantum mechanical representations for propagating quantum microwaves.

Density matrix

One general method to describe quantum systems is by using the density matrix formalism.

The density matrix can be expressed as

ρ̂ =
N∑
i

pi=1 |ψi〉 〈ψi| , (2.5)

where pi is the classical probability to find the system in eigenstate |ψi〉 and N is the Hilbert-

space dimension. Pure states satisfy tr(ρ̂2) = 1, while mixed states satisfy tr(ρ̂2) < 1.

The expectation value of an observable Ô is found by 〈Ô〉 = tr(Ôρ̂). Furthermore, ρ̂ is

normalization as tr(ρ̂) = 1. We can determine the closeness of two quantum states ρ̂1 and

ρ̂2 using the fidelity

F (ρ̂1, ρ̂2) =
(

tr
√√

ρ̂1ρ̂2

√
ρ̂1

)2

. (2.6)

The states coincide if F (ρ̂1, ρ̂2) = 1 and the states are orthogonal if F (ρ̂1, ρ̂2) = 0.

The density operator contains all information about a quantum state and are practical for

the description of finite-dimensional quantum systems. However, in the case of propagating
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quantum microwaves, which are described by a continuous spectrum of eigenvalues, the

exact treatment in terms of density operators becomes tedious since the Hilbert-space

dimension is infinity. A more practical description of such a continuous-variable system

is possible in terms of phase-space quasiprobability distributions such as the Wigner

function, which we introduce in the next section.

Wigner function

Wigner functions was proposed by Eugene Wigner [21] to relate density matrices to phase

space functions. In a classical description, a probability distribution can be assigned to

each quadrature in phase space. Since the Heisenberg uncertainty prohibits simultaneous

knowledge about both quadratures, a quasiprobability distribution is needed to describe

the measurement outcomes of a quantum system in an ensemble. One conventionally used

quasiprobability distribution for continuous variable states is the Wigner function [21, 22]

W (q, p) = 1
π~

∫
〈q − y|ρ̂|q + y〉 e2ipy/~dy, (2.7)

which corresponds to a density matrix ρ̂. The Wigner function satisfies the normalization

condition
s
W (q, p)dqdp = 1. The observable probability distribution of a certain

quadrature is computed by integrating the Wigner function over the other quadratures,

which gives the marginal distribution

w(q) =
∫ ∞
−∞

W (q, p)dp = 〈q|ρ̂|q〉 , (2.8)

w(p) =
∫ ∞
−∞

W (q, p)dq = 〈p|ρ̂|p〉 . (2.9)

This marginal distribution corresponds to the projective phase-space measurement of the

selected quadrature. Gaussian states have Wigner functions that are normalized Gaussian

distributions, which allows a practical representation of Gaussian states while preserving

its quantum properties. The Wigner function for single-mode Gaussian states can be

expressed as

W (q, p) = 1
π
√

(ν + 1/2)2 − |µ|2

× exp
[
−(ν + 1/2)|ζ − 〈â〉 |2 − (µ∗/2)(ζ − 〈â〉)2 − (µ/2)(ζ∗ − 〈â†〉)2

(ν + 1/2)2 − |µ|2

]
,

(2.10)

where ζ = q + ip, µ = 〈â2〉 − 〈â〉2, and ν = 〈â†â〉 − | 〈â〉 |2.
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Statistical moments

Another representation of propagating quantum microwaves is through the statistical

moments of quadratures. Statistical moments 〈(â†)mân〉 with m,n ∈ N0 contain the same

information as density matrices and fully define a quantum state [23]. Since statistical

moments can be directly detected, this representation is used extensively in this work

to calculate the properties of our states. We consider a N -mode Gaussian state. The

first-order statistical moment is the mean

r̂ = 〈r〉 , (2.11)

where r = (q1, p1, . . . , qN , pN) is a vector containing all quadratures of the N modes. The

second-order statistical moment defines the 2N × 2N covariance matrix V with elements

Vij = 〈r̂ir̂j + r̂j r̂i〉
2 − 〈r̂i〉 〈r̂j〉 . (2.12)

Gaussian states are fully defined by statistical moments up to the second order m+ n ≤ 2
[24, 25], and thus by r̄ and V. In general, the Wigner function for a N -mode Gaussian

state is written as [12]

W (r) =
exp

[
−1

2(r− r̄)V−1(r− r̄)T
]

(2π)N
√

det V
. (2.13)

Furthermore, the purity of a Gaussian state is given by [26, 27]

µ = 1
4N
√

det V
. (2.14)

Hence, a Gaussian state is pure when the covariance matrix satisfies det V = (1/4)2N and

therefore saturates the Heisenberg uncertainty relation.

For two-mode Gaussian states, the covariance matrix can be written as

V =
(

A C
CT B

)
, (2.15)

where A, B, and C are 2×2 matrices that describe the local state A in the first mode, the

local state B in the second mode, and the correlations between the modes, respectively.

We can define the symplectic invariants of the covariance matrix [26]

I1 = det A, I2 = det B, I3 = det C, I4 = det V, (2.16)

which are invariant under local unitary Gaussian transformations. We can then define the
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two symplectic eigenvalues of the bipartite Gaussian state

ν± =
√

∆±
√

∆2 − 4I4

2 , (2.17)

where ∆ = I1 + I2 + 2I3. The symplectic eigenvalues are used in this work to calculate

various measures of the bipartite state. For instance, the Heisenberg uncertainty can be

written as [28]

ν− ≥
1
4 , (2.18)

which allows us to check if an experimentally reconstructed Gaussian state is physical.

2.1.2 Relevant Gaussian states

Gaussian states are of high relevance since many fundamental quantum states fall into

this category. In this section, we present the fundamental Gaussian states and their

properties. In particular, we introduce the thermal state, the coherent (or displaced) state,

and the squeezed state. Any Gaussian state can be constructed as a combination of these

fundamental states. We also introduce the two-mode squeezed state, which we use as an

entangled resource state in our quantum communication experiments.

Vacuum and thermal state

Even at the lowest possible energy state, fluctuations in the electromagnetic field exist

due to the bosonic commutation relation. This lowest energy state is called the vacuum

state |0〉 and emergs from the Heisenberg uncertainty relation in both quadratures

(∆q)2 = (∆p)2 = 1/4. Since the vacuum state is the lowest possible energy state, it is

assigned a temperature T = 0. While it is impossible to realize T = 0 in experiment,

we can approximate low energy states as vacuum states if kBT � hf is fulfilled. This

approximation is valid for our experimental frequencies of 5-6 GHz and temperatures

around 50 mK.

For a finite temperature T > 0, the mean photon number at a frequency mode f follows

the Bose-Einstein statistics [29]

nth ≡ tr(â†âρ̂th) = 1
exp

(
hf
kBT

)
− 1

, (2.19)

where kB is the Boltzmann constant and h is the Planck constant. The density matrix of

a thermal state is given by [20]

ρ̂th =
∑
n

〈n̂〉n

(1 + 〈n̂〉)n+1 |n〉 〈n| , (2.20)



10 Chapter 2 Theory

-5 -3 -1 1 3 5
p

-5
-3
-1
1
3
5

q

0.02

0.04

0.06

0.08

-5 -3 -1 1 3 5
p

-5
-3
-1
1
3
5

q

0.2

0.4

0.6

-5 -3 -1 1 3 5
p

-5
-3
-1
1
3
5

q

0.02
0.04
0.06
0.08
0.1

-5 -3 -1 1 3 5
p

-5
-3
-1
1
3
5

q

0.02
0.04
0.06
0.08
0.1

-5 -3 -1 1 3 5
-5
-3
-1
1
3
5

q

0

0.2

0.4

0.6

(a) (b)W(q,p) W(q,p)

Figure 2.1: (a) Wigner function of a vacuum state. (b) Wigner function of a thermal state with nth = 3.

where 〈n̂〉 = 〈â†â〉 = nth is the mean photon number. The mean and covariance matrix of

a single-mode thermal state is given by

r̄th = 0 (2.21)

Vth = (1 + 2nth)I2

4 , (2.22)

where I2 is the 2× 2 identity matrix. Fig. 2.1 shows the Wigner functions of the vacuum

state where nth = 0 and a thermal state with nth = 3.

Coherent state

Coherent states |α〉, also called displaced states, are defined as eigenstates of the annihila-

tion operator â |α〉 = α |α〉. They can be formally described by displacing the vacuum

state in phase space |α〉 = D̂(α) |0〉 using the displacement operator

D̂(α) = exp
(
αâ† − α∗â

)
, (2.23)

where α = |α|ei(π/2−θ) = Q+ iP is the complex displacement amplitude. The displacement

angle θ is defined as the angle between the displacement direction and the p-axis. Fig.

2.2 shows the Wigner function of a coherent state. The mean and covariance matrix of a

single-mode coherent state is given by

r̄coh = (Q,P ) = (Re(α), Im(α)) (2.24)

Vcoh = I2

4 . (2.25)

We see that the displacement operator shifts the maximum of the Wigner function to

(Q,P ) and that coherent states also saturate the Heisenberg uncertainty relation.

We implement the displacement operator in our experiments using a directional coupler,
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Figure 2.2: Wigner function of a coherent state with |α| = 3 and θ = 3π/4.

which functions as a highly asymmetric beam splitter [30]. An input state âin is sent to

the port with high transmissivity τ and a strong coherent signal âcoh is sent to the weakly

coupled port. Then, the output signal âout becomes [31]

âout =
√
τ âin +

√
1− τ âcoh. (2.26)

In the limit of τ → 1 and |αcoh| � 1, such that
√

1− ταcoh = α, we have the form

âout ≈ âin +
√

1− ταcohÎ = âin + αÎ, (2.27)

where Î is the identity operator. This implements a displacement by D̂(α).

Squeezed state

Squeezed states |ξ〉 are described by squeezing the vacuum state |ξ〉 = Ŝ(ξ) |0〉 using the

squeezing operator

Ŝ(ξ) = exp
(1

2ξ
∗â2 − 1

2ξ(â
†)2
)
, (2.28)

where ξ = reiϕ is the complex squeezing amplitude, r is the squeezing factor, and ϕ is the

squeezing angle. We define γ ≡ −ϕ/2 as the angle between the antisqueezed quadrature

direction and the p-axis. Fig. 2.3 shows the Wigner function of a squeezed state. The

mean and covariance matrix of a single-mode squeezed state is given by

r̄sq = 0 (2.29)

Vsq = 1
4

(
e−2r cos2 ϕ

2 + e2r sin2 ϕ
2 − sinh 2r sinϕ

− sinh 2r sinϕ e2r cos2 ϕ
2 + e−2r sin2 ϕ

2

)
. (2.30)

The squeezing factor r determines the amount of squeezing, which is characterized by the

squeezed variance σ2
s = e−2r/4 and the antisqueezed variance σ2

a = e2r/4. Conventionally,
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Figure 2.3: Wigner function of a squeezed state with γ = π/2 and r = 0.7, corresponding to a squeezing

level of S = 6.1 dB.

we quantify the squeezing level S and antisqueezing level A in decibels as

S = −10 log10

(
σ2

s
0.25

)
, (2.31)

A = −10 log10

(
σ2

a
0.25

)
, (2.32)

where 0.25 is the quadrature variance of the vacuum. After applying the squeezing

operator, we see that the fluctuations in the squeezed quadrature are suppressed below

the vacuum limit. The orthogonal quadrature is simultaneously amplified in accordance

with the Heisenberg uncertainty relation. Positive levels of S imply squeezing below the

vacuum level, and we get S = 20r log10(e) for a pure squeezed state. In our experiment, we

generate squeezed states with Josephson parametric amplifiers, which is further explained

in Section 2.2.4.

Two-mode squeezed state

Two-mode squeezed (TMS) states form an entangled quantum resource. TMS states are

described by the two-mode squeezing operator [19]

Ŝ1,2(ξ) = exp
(
ξ∗â1â2 − ξâ†1â

†
2

)
, (2.33)

where âi is the annihilation operator of the i-th mode and ξ = reiϕ is the complex

squeezing amplitude. The parameter r determines the amount of two-mode squeezing and

the phase ϕ determines the correlated quadratures. The mean and covariance matrix of a
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Figure 2.4: Marginal distributions of the Wigner function of a TMS state with r = 1.2 and ϕ = 0. Panels

(a) and (b) are the local marginal distributions, which look like thermal states. Panels (c-f)

are the marginal distributions of the nonlocal phase spaces, which give correlations in the

quadrature pairs (q1, q2), (q1, p2), (p1, q2), and (p1, p2).

two-mode squeezed state with ϕ = 0 is given by [12]

r̄tms = 0 (2.34)

Vtms = 1
4


cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r
sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r

 . (2.35)

We see that the modes locally look like thermal states with a mean photon number

nth = sinh2 r, such that there is no local squeezing in an ideal TMS state. Fig. 2.4 shows

the Wigner functions of a TMS state. The correlation between modes are encoded in the

off-diagonal block matrices in Vtms, which can also be seen from the Wigner function [12]

W (rtms) = 4
π

exp
[
−(q1 + q2)2 + (p1 − p2)2

e2r − (q1 − q2)2 + (p1 + p2)2

e−2r

]
, (2.36)

where rtms = (q1, p1, q2, p2). For ideal two-mode squeezing with r → ∞, we have

W (rtms) → δ(q1 − q2)δ(p1 + p2). This means that the pair (q1, q2) is perfectly corre-

lated and the pair (p1, p2) is perfectly anticorrelated. In our experiment, we generate TMS
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states by mixing two orthogonally squeezed states via a symmetric hybrid ring, which is

further explained in Section 4.1.2.

2.1.3 Continuous-variable quantum information

Continuous-variable quantum information employs physical observables with a continuous

spectrum. CV quantum information has various applications in quantum communication

[32], quantum computing [11, 12], and quantum sensing [33, 34]. In this section, we

discuss quantum entanglement in Gaussian states and their application in quantum

communication.

Quantum entanglement

Quantum entanglement is a signature property of quantum systems. By definition, a

quantum system is entangled if its density operator ρ̂AB is inseparable. For a bipartite

quantum state, the density operator is separable if it can be expressed as a convex sum of

product states [35]

ρ̂AB =
∑
i

piρ̂i,A ⊗ ρ̂i,B, (2.37)

where pi is the probability to be in product state ρ̂i,A⊗ ρ̂i,B, with ρ̂i,A and ρ̂i,B the density

matrices of the local systems. There are several measures to quantify the entanglement of

two-mode Gaussian states [28]. For our work, we use the negativity N given by [28]

N = max
[
0, 1− 4ν̃−

8ν̃−

]
. (2.38)

The negativity is based on the positivitiy of the partial transpose of the density matrix [36],

which is necessary and sufficient to determine the separability of two-mode Gaussian states

[37]. The quantity ν̃− is the smallest symplectic eigenvalue of the partially transposed

density matrix [38]

ν̃± =

√√√√∆̃±
√

∆̃2 − 4I4

2 , (2.39)

where ∆̃ = I1 + I2 − 2I3 with reference to Eq. 2.16. The two-mode Gaussian state is

separable if ν̃− ≥ 1/4 and is entangled otherwise. As a result, a positive negativity N

implies entanglement and N →∞ for maximally entangled states.

Quantum communication

Quantum communication is used to transfer quantum states or to improve classical

communications. Quantum resources can be exploited to achieve advantages over classical

communication in terms of efficiency and security. For example, entanglement can be

used to implement superdense coding and the no-cloning theorem can guarantee secure
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communication via quantum key distribution [11, 12]. In particular, our work focuses on

the quantum teleportation protocol, which allows the disembodied transfer of unknown

quantum states and unconditionally secure communication of classical information. Details

about the theory and implementation of quantum teleportation are presented in Chapter

3.

2.2 Josephson parametric amplifier

One of the central building blocks for our experiments conducted throughout this work is

the Josephson parametric amplifier [16, 39, 40]. A flux-driven JPA [41] is a superconducting

resonator that consists of a coplanar waveguide (CPW) short-circuited to ground via a

direct current superconducting quantum interference device. The JPA can be used to

achieve parametric amplification of microwave signals and to generate squeezed states.

2.2.1 Josephson junctions

The Josephson effect [42] occurs when two superconductors are weakly coupled to each

other, often by introducing a thin insulating barrier and forming a Josephson junction.

This macroscopic quantum phenomenon is described by the first and second Josephson

equations [43]

Is(ϕ) = Ic sin(ϕ), (2.40)

∂ϕ

∂t
= 2π

Φ0
V (t), (2.41)

where ϕ is the gauge-invariant phase difference across the junction, Is is the supercurrent

through the junction, Ic is the Josephson critical current, V (t) is the voltage across the

junction, and Φ0 = h/(2e) is the magnetic flux quantum. We see that a constant voltage

V applied across the Josephson junction causes a sinusoidal oscillation in the supercurrent

Is. We can then use the definition of inductance V = LdI/dt to obtain the nonlinear

inductance of the Josephson junction [43]

Ls(ϕ) = Φ0

2πIc cos(ϕ) = Lc
1

cos(ϕ) , (2.42)

where Lc = Φ0/(2πIc) is the minimum junction inductance. The Josephson junction is a

crucial component in superconducting circuits, since it is often used as a nonlinear and

lossless inductance.
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2.2.2 DC-SQUID

The direct current superconducting quantum interference devices is a powerful quantum

device and consists of two Josephson junctions in a superconducting loop. For simplicity,

we assume that the two Josephson junctions have the same critical current Ic. Then, the

phase difference between the Josephson junctions is given by

ϕ1 − ϕ2 = 2πΦ
Φ0

+ 2πn. (2.43)

where n ∈ Z0 and Φ is the total magnetic flux through the loop. The total magnetic

flux Φ = Φext + LloopIcirc can be decomposed into the externally applied flux Φext and the

self-induced flux LloopIcirc, where Lloop is the self-inductance of the superconducting loop

and Icirc is the circulating current. The total flux through the DC-SQUID loop is given by

Φ
Φ0

= Φext

Φ0
− βL

2 cos
(
ϕ1 + ϕ2

2

)
sin

(
ϕ1 − ϕ2

2

)
, (2.44)

where βL ≡ 2LloopIc/Φ0 is the screening parameter [44]. In the case βL ' 0, the self-

induced flux can be neglected and we have Φ ≈ Φext. We can express a maximum transport

current of the DC-SQUID [43]

Imax
s (Φext) = 2Ic

∣∣∣∣∣cos
(
π

Φext

Φ0

)∣∣∣∣∣ . (2.45)

In this regime, the DC-SQUID can be viewed as a single Josephson junction with maximum

supercurrent modulated by an external flux. We can then express a flux-tunable inductance

of the DC-SQUID [45]

Ls(Φext) = Φ0

4πIc

∣∣∣cos
(
πΦext

Φ0

)∣∣∣ . (2.46)

This implies that the DC-SQUID can be regarded as a flux-tunable inductance, and we

can exploit it as a nonlinear building block in superconducting circuits.

2.2.3 Coplanar waveguide resonators

The coplanar waveguide is a central element of the JPA and acts as a quasi-one-dimensional

transmission line. Since the physical dimensions of the CPW is comparable to microwave

wavelengths, we should describe the CPW with a distributed-element model as shown

by the schematic in Fig. 2.5. Furthermore, we can neglect losses in the superconducting

CPW and use the telegrapher’s equations to derive its characteristic impedance [18]

Z =
√
L0

C0
(2.47)
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Figure 2.5: Circuit diagram of a JPA that consists of a CPW resonator short-circuited to ground via a

DC-SQUID. The crosses denote Josephson junctions. The DC-SQUID inductively couples to

the external magnetic flux ΦDC + Φrf . The alternating flux Φrf is generated by the adjacent

pump line.

where L0 and C0 denote the respective inductance and capacitance per unit length of the

transmission line. We apply boundary conditions on the waves propagating through the

transmission line to create a resonator. At one end, the CPW is capacitively coupled

with capacitance Cc, which defines the external quality factor and hence the coupling to

external fields. At the other end, the CPW is short-circuited to ground. This creates

a quarter-wavelength resonator with electrical length d. The fundamental resonance

frequency is given by [18]

fres = 1
4d
√
L0C0

= 1
4
√
LresCres

, (2.48)

where Lres = dL0 is the resonator inductance and Cres = dC0 is the resonator capacitance.

We observe that changing the inductance Lres with the flux-dependent DC-SQUID by

Eq. 2.46 would change the resonance frequency fres. Therefore, the resonance frequency

becomes tunable with an external flux.

The resonator can be characterized by its quality factor, defined as [18]

Q = 2πaverage energy stored

energy loss/cycle
= ωres

κint + κext
, (2.49)

where ωres = 2πfres is the angular resonance frequency, κint is the internal loss rate, and κint

is the external loss rate. The internal quality factor Qint = κint/ωres provides information

about internal losses of the resonator, where κint is determined by the sum of various
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loss mechanisms. The external quality factor Qext = κext/ωres determines the coupling

strength to the signal port, where the κext is mainly defined by the coupling capacitance.

The internal and external quality factors can be experimentally measured.

2.2.4 Flux-driven parametric amplification

In our experiments, we use flux-driven JPAs [41] to generate squeezed states and to produce

signal gain. The flux-driven JPA can be described using the input-output formalism

developed by Yamamoto et al. [46]. We begin with an unperturbed harmonic oscillator

that has resonance frequency ω0 and then introduce a periodic modulation such that

ω0 → ω0[1 + ε/2 cos(αω0t)], where ε/2 is the amplitude of modulation and αω0 is the

frequency of modulation. We consider only small modulation amplitudes and can write

the JPA Hamiltonian as

Ĥ(t) = ~ω0

[
â†â+ 1

2 + ε cos(αω0t)(â+ â†)2
]
. (2.50)

By introducing a signal and loss port to the oscillator, we can solve for the output field of

the JPA in the rotating frame with frequency αω0. More details on the derivation can be

found in Ref. [46]. Ideal parametric amplification occurs when we have pump frequency

ωpump = 2ω0. The resonance frequency f0 can be chosen by applying a direct current flux

ΦDC through the DC-SQUID loop.

The parametric amplification process can be described as a three-wave mixing process

characterized by [16]

ωpump = ωsignal + ωidler, (2.51)

where ωpump is the pump mode frequency, ωsignal is the signal mode frequency, and ωidler

is the idler mode frequency. The pump photon splits into one signal photon and one

idler mode such that energy is conserved. When ωpump 6= 2ωsignal, we have nondegenerate

or phase insensitive amplification. When ωpump = 2ωsignal, we have degenerate or phase

sensitive amplification. Due to strong quantum correlations between the signal and idler

modes, interference between these modes in the degenerate regime causes squeezing.

Amplification processes can be characterized by their power gain. In any amplification

procedure, it is important to consider the amplification noise added to the signal. For

phase insensitive amplification, the minimum number of added noise photons is bounded

by [47]

namp ≥
1
2

∣∣∣∣1− 1
Gs

∣∣∣∣ , (2.52)

where Gs is the gain in the signal mode. We see that in the limit of large gain, at least half

a noise photon is added to the signal. For phase sensitive amplification, one quadrature is

amplified, while the orthogonal is deamplified. In this case, the number of added noise
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photons is given by [47]

n1n2 ≥
1
16

∣∣∣∣∣1− 1√
G1G2

∣∣∣∣∣
2

, (2.53)

where η1, η2 are the added noise photons for each quadrature and G1, G2 are the gains for

each quadrature. We observe that we can obtain noiseless amplification when G1G2 = 1.

This implies the possibility of noiseless amplification of one quadrature if the conjugate

quadrature is simultaneously deamplified by the inverse gain, which corresponds to the

squeezing operation. When using a flux-driven JPA in the phase sensitive regime, the JPA

Hamiltonian generates a unitary evolution that corresponds to the squeezing operator [12]

Û(t) = exp
[
− i
~
Ĥintt

]
= exp

[
λ

2
(
â2e−iϕ − (â†)2eiϕ

)
t

]
, (2.54)

where Ĥint is the JPA Hamiltonian in the interaction picture, λ is the effective frequency

modulation, and ϕ is the pump tone phase. We can identify the squeezing factor r = λt

to recover the original squeezing operator in Eq. 2.28.

Furthermore, the JPA degenerate gain can be parameterized as [46]

Gd(θ) =

(
κ2

ext−κ2
int

4 − 4χ2ω2
0

)2
+ 4χ2κ2

extω
2
0 − 4χκextω0

(
κ2

ext−κ2
int

4 − 4χ2ω2
0

)
sin(2θ)(

(κext+κint)2

4 − 4χ2ω2
0

)2 , (2.55)

where θ is the phase difference between the signal mode and pump tone and χ is the

pump tone amplitude. The maximum and minimum gains, describing amplification and

deamplification, can be written as [46]

Gmax
d =

(
2χω0 − (κext − κint)/2
2χω0 + (κext + κint)/2

)2

, for θ ≡ π

4 (mod π) (2.56)

Gmin
d =

(
2χω0 + (κext − κint)/2
2χω0 − (κext + κint)/2

)2

, for θ ≡ 3π
4 (mod π) (2.57)

where we assume κext > κint. If we have κint = 0, then we obtain the condition Gmax
d Gmin

d
for noiseless amplification.
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Quantum teleportation

Quantum communication utilizes the fundamental laws of quantum physics to exceed

the performance of classical communication protocols regarding efficiency and security.

One of the most famous quantum communication protocols is quantum teleportation,

where an unknown quantum state is transferred between two distant communication

parties using a shared entanglement resource and a classical feedforward channel [48, 49].

Quantum teleportation has been implemented in both discrete variable systems [50]

and continuous variable systems [32]. Continuous variable quantum communication is

especially advantageous due to its high bit rates [51], and has ongoing research in quantum

key distribution [52], quantum teleportation [14], and open-air quantum communication

[53].

In this chapter, we explain the analog quantum teleportation protocol realized in

our experiment. In Section 3.1, we discuss the principles of quantum teleportation.

We describe the general teleportation protocol and the criteria for successful quantum

teleportation. In Section 3.2, we present continuous-variable (CV) quantum teleportation

with Gaussian states. We discuss the security of this teleportation protocol and the

practical requirement of using finite-energy codebooks. In Section 3.3, we introduce

teleportation over thermal channels. We describe the effect of thermal noise on the

performance of quantum teleportation and demonstrate that the protocol realizes an error

correction scheme for Gaussian imperfections.

3.1 Principles of quantum teleportation

Quantum teleportation is a quantum communication protocol that enables the transfer

of quantum states without directly sending them. In order to accomplish this protocol,

a quantum entanglement resource is shared between the communication parties and

consumed during communication. In general, the quantum teleportation protocol can

be used to transfer unknown quantum states, which is useful for quantum information

processing procedures such as quantum gate teleportation and entanglement swapping [54].

Also, the quantum nature of this protocol implies that it cannot be perfectly eavesdropped

and can enable unconditionally secure classical communication.

21
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3.1.1 General framework for quantum teleportation

Quantum teleportation enables the disembodied transfer of unknown quantum states

between two spatially separated communication parties, conventionally named as Alice

and Bob. In a general quantum teleportation experiment, Alice utilizes a predistributed

entanglement resource and a classical feedforward channel to transmit an unknown input

state to Bob. Alice begins by entangling the input state with her part of the shared

entangled state and then performs a Bell measurement on the resulting bipartite state.

The measurement outcome is sent to Bob as a classical signal through the feedforward

channel. Depending on Alice’s measurement outcome, Bob then performs a local unitary

operation on his part of the shared entangled state, which lets him recreate the input

state. For a continuous-variable teleportation protocol, the entanglement resource is a

TMS state, the Bell measurement is a joint quadrature measurement by Alice, and the

local unitary is a phase-space displacement by Bob [12].

In the teleportation protocol, the input state can be unknown to Alice and Bob,

otherwise Alice could just provide classical instructions for Bob to prepare the state.

The no-cloning theorem is not violated, since the input state is altered due to the Bell

measurement [12]. Furthermore, special relativity is not violated, since a classical signal

is required, which excludes faster-than-light communication.

3.1.2 Fidelity criteria for quantum teleportation

After performing the teleportation protocol, it is necessary to verify whether quantum

teleportation has worked successfully. Successful teleportation can be determined by

measuring the statistical overlap of input and output states, with the general formula

for fidelity in Eq. 2.6. For single-mode Gaussian states, we can calculate the Uhlmann

fidelity by

F (r̄in,Vin, r̄out,Vout) = 1
2

exp(−1
2δ

ᵀ(Vin + Vout)−1δ)
√

Λ + ∆−
√

Λ
, (3.1)

where we write

δ = r̄in − r̄out (3.2)

Λ = det(Vin + Vout) (3.3)

∆ = 16
(

det Vin −
1
16

)(
det Vout −

1
16

)
, (3.4)

and where r̄in and Vin are the input state displacement and covariance, and r̄out and Vout

are the output state displacement and covariance. The fidelity equals one if the input and

output states coincide, and equals zero if the they are orthogonal. The input state can be

drawn from a codebook with probability distribution P (r̄in), but the particular state of
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each teleportation event is unknown. Thus, we use the average fidelity

F̄ =
∫
P (r̄in)F (r̄in,Vin, r̄out,Vout)dr̄in. (3.5)

If the codebook of input states includes all possible coherent states, the best attainable

classical teleportation average fidelity is bounded by [55]

F̄classical ≤
1
2 . (3.6)

Here, we define “classical teleportation” as the teleportation protocol without having

entanglement. In order to verify quantum teleportation, we need F̄ > max F̄classical = 1/2,

which is obtained for any finite entanglement in an idealistic scenario.

The unconditional security of quantum teleportation can also be verified by the fidelity.

For an infinitely large codebook of coherent input states, this is achieved when the fidelity

exceeds the asymptotic no-cloning threshold F̄ > F̄no−cloning = 2/3 [56]. However, in

realistic application scenarios, infinitely large codebooks cannot be implemented, which

leads to no-cloning thresholds larger than 2/3. The influence of finite-energy codebooks is

further discussed in 3.2.3.

3.2 Gaussian quantum teleportation with analog

feedforward

In our experiment, we realize the continuous-variable quantum teleportation protocol with

an analog classical feedforward signal. In this section, we describe the CV teleportation

protocol and present the formalism for Gaussian quantum teleportation. We also discuss

the security of quantum teleportation and analyze the influence of a finite-energy codebook.

The analog CV quantum teleportation of coherent quantum states is schematically depicted

in Fig. 3.1.

3.2.1 Continuous-variable teleportation

In the CV quantum teleportation protocol, the entanglement resource is a TMS state

with squeezing level S, the Bell measurement by Alice is a joint quadrature measurement,

and the unitary operation by Bob is a displacement in phase-space. In experiment, the

Bell measurement is performed with a heterodyne detection setup, consisting of two

phase-sensitive amplifiers which amplify orthogonal quadratures with a gain G � 1.

The resulting analog classical signal is then directly transmitted to Bob, who performs

his displacement operation by employing an asymmetric beam splitter that couples the

feedforward signal to his part of the resource state with coupling β � 1. As demonstrated

in Ref. [14], the joint action of the analog detector and the asymmetric beam splitter
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Figure 3.1: Schematic of a realistic quantum teleportation protocol. A two-mode squeezed state is shared

between Alice and Bob through a low-loss quantum channel. Alice performs a Bell operation

on a codeword and her entangled state and the measurement result is sent to Bob through

a high-loss feedforward channel. Bob performs a local operation on his entangled state

according to the feedforward signal and obtains the teleported codeword. An ensemble of

codewords constructs the codebook, which follows a truncated Gaussian distribution.
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Figure 3.2: Schematic for realistic continuous-variable quantum teleportation. Ambient thermal noise is

coupled to the quantum states through losses εi via the loss operators L̂k. Gain-depended

noise nj(Gj) is considered for each JPA.

realizes a projective measurement if we meet the criterion Gβ = 4. This is the case

where the feedforward gain exactly compensates the two beam splitters in the heterodyne

detection scheme as well as the coupling β [49]. In the following, we present the formalism

for the analog CV teleportation protocol [14], which is schematically depicted in Fig. 3.2.

We need three propagating microwave channels to describe the teleportation protocol:

channel 1 for the resource state at Bob, channel 2 for the resource state at Alice, and

channel 3 for the input state. We introduce a unitary operator for each of the microwave

components involved in the quantum teleportation protocol. We also introduce loss

matrices Li and noise matrices Ai, Ni to model the experimental imperfections of the
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protocol. For ease of notation, we define the amplification and rotation matrices

Amp(G) ≡
(
G−

1
2 0

0 G
1
2

)
, Rot(γ) ≡

(
cos γ sin γ
− sin γ cos γ

)
. (3.7)

Since we consider only Gaussian states, quadrature moments up to the second order

are sufficient to fully describe the quantum states. Thus, it is sufficient to analyze the

teleportation protocol on the displacement vector d and covariance matrix V . We begin

with the initial displacement vector and covariance matrix

d0 = (0, 0, 0, 0,√nd cosφd,
√
nd sinφd)ᵀ, (3.8)

V0 = 1
4


(1 + 2n1)I2 02 02

02 (1 + 2n2)I2 02

02 02 (1 + 2n3)I2

 , (3.9)

where nd is the initial displacement photon number, φd is the initial displacement angle,

n1, n2, n3 are the initial noise photons in the respective channels, I2 is the 2× 2 identity

matrix, and 02 is the 2× 2 zero matrix. JPA1 and JPA2 are used to generate the squeezed

states for the TMS entanglement resource. This squeezing operation J12 is given by

S12 =


Amp(e2r1) 02 02

02 Amp(e2r2) 02

02 02 I2

 , R12 =


Rot(γ1) 02 02

02 Rot(γ2) 02

02 02 I2

 , (3.10)

J12 = R12S12R
†
12, (3.11)

where r1, r2 are the squeezing factors for the respective JPAs and γ1, γ2 are the squeezing

angles for the respective JPAs. The symmetric beam splitter operations B1, B2 used to

superimpose the channels are given by

B1 = 1√
2


I2 I2 02

−I2 I2 02

02 02
√

2I2

 , B2 = 1√
2


√

2I2 02 02

02 I2 I2

02 −I2 I2

 . (3.12)

JPA3 and JPA4 are used for the phase-sensitive amplification to implement the Bell
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measurement. This amplification operation J34 is given by

S3 =


I2 02 02

02 Amp(G3) 02

02 02 I2

 , R3 =


I2 02 02

02 Rot(γ3) 02

02 02 I2

 , (3.13)

S4 =


I2 02 02

02 I2 02

02 02 Amp(G4)

 , R4 =


I2 02 02

02 I2 02

02 02 Rot(γ4)

 , (3.14)

J34 = R3S3R
†
3R4S4R

†
4, (3.15)

where G3, G4 are the gain factors for the respective JPAs and γ3, γ4 are the measurement

angles for the respective JPAs. The directional coupler is used to perform the state

displacement by Bob. This displacement operation C is given by

C =


√

1− βI2
√
βI2 02

−
√
βI2

√
1− βI2 02

02 02 I2

 , (3.16)

where β is the coupling strength. The losses Li and noise Ai, Ni incurred between

microwave components are modelled by

Li =


√

1− ε3(i−1)+1I2 02 02

02
√

1− ε3(i−1)+2I2 02

02 02
√

1− ε3(i−1)+3I2

 , (3.17)

Ai = 1
4(1 + 2nth)


ε3(i−1)+1I2 02 02

02 ε3(i−1)+2I2 02

02 02 ε3(i−1)+3I2

 (3.18)

where i ∈ {1, 2, 3, 4, 5}, εj are the local losses, and nth is the ambient thermal photon

number. The noise added by JPA3 and JPA4 is modelled by

N3 = nJPA(G3)
2


02 02 02

02 I2 02

02 02 02

 , N4 = nJPA(G4)
2


02 02 02

02 02 02

02 02 I2

 , (3.19)

where nJPA(G3), nJPA(G4) are the gain-dependent noise photon numbers. We model

the gain-dependent noise by nJPA = χ1(Gi − 1)χ2 , where Gi is the degenerate gain for

JPA i, and χ1 and χ1 are parameters fit to measurement data. We can then write the

teleportation protocol as

T = CL5B2L4J34L3B2L2B1L1J12. (3.20)
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The input state displacement vector di, final state displacement vector df , and final state

covariance matrix Vf can be found by

di = L2B1L1S12d0 ≡ (di,1, di,2, di,3)ᵀ, (3.21)

df = Td0 ≡ (df,1, df,2, df,3)ᵀ, (3.22)

Vf = TV0T
† + A, (3.23)

where the noise term is given by

A = CL5B2L4J34L3B2L2B1A1B
†
1L
†
2B
†
2L
†
3J
†
34L
†
4B
†
2L
†
5C
†

+ CL5B2L4J34L3B2A2B
†
2L
†
3J
†
34L
†
4B
†
2L
†
5C
†

+ CL5B2L4J34(A3 +N3 +N4)J†34L
†
4B
†
2L
†
5C
†

+ CL5B2A4B
†
2L
†
5C
†

+ CA5C
†.

(3.24)

The Uhlmann fidelity can then be calculated from the displacement vectors and covariance

matrices. A detailed description of the theory model can be found in the supplementary

material of Ref. [14].

For the output state to match the input state, we require df,1 = di,3. Assuming that

there are no losses in the protocol, this condition is achieved when Gβ = 4. We further

assume that there is no JPA amplification noise and take G → ∞ for an ideal Bell

measurement. The Ulhmann fidelity is then given by

F = 1
1 + e−2r , (3.25)

where r is the common squeezing factor of JPA1 and JPA2. As expected, in such an ideal

teleportation protocol, the maximum fidelity is obtained when r → ∞, corresponding

to perfect quantum correlations in the TMS state. In the ideal protocol, the asymptotic

classical limit F = 1/2 is recovered when r = 0, and the asymptotic no-cloning threshold

F = 2/3 is exceeded when r ≈ 0.35. In experiment, a quantum advantage is achieved

when the teleportation fidelity exceeds the classical limit, and unconditionally secure

communication is guaranteed when the teleportation fidelity exceeds the no-cloning

threshold.

3.2.2 Security of teleportation protocol

Quantum teleportation promises secure exchange of information between remote parties

[57]. As a result of the no-cloning theorem, unconditional security is provided when

teleportation fidelities beyond the no-cloning threshold are reached. For continuous

variable quantum teleportation with Gaussian states, the optimal attack of an eavesdropper
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Eve to intercept the message from Alice is to clone the quantum state that is sent, such

that one copy is kept and the other one is transmitted to Bob. This optimal cloning

scheme for Gaussian codebooks is described in Refs. [58–60] and requires Eve to have a

priori knowledge about the codebook of transmitted states. For coherent state quantum

teleportation, this codebook can be described by a probability distribution P (α). In the

case that P (α) covers the whole phase-space, it can be shown that Eve’s attack results in

a no-cloning threshold for the average teleportation fidelity of F̄nc = 2/3. Hence, if Bob

measures an average teleportation fidelity beyond 2/3, he knows with certainty that the

state has not been cloned.

We review the results for a codebook in a Gaussian distribution [59], where an optimal

cloning scheme is known. A Gaussian codebook has a probability distribution

Pσ(α) = 1
2πσ2 e

−|α|2/2σ2
, (3.26)

where α is a particular state amplitude and σ is the codebook variance. The optimal

average cloning fidelity is given by

Fσ ≤


4σ2+2
6σ2+1 σ2 ≥ 1

2 + 1√
2

1
(3−2

√
2)σ2+1 σ2 ≤ 1

2 + 1√
2 .

(3.27)

This fidelity defines the no-cloning threshold for a Gaussian codebook, and quantum

teleportation is unconditionally secure if the measured average fidelity exceeds this

threshold. We see that in the limit of a infinitely large and uniformly distributed codebook

as σ →∞, the no-cloning fidelity approaches the asymptotic value Fσ → 2/3.

Nevertheless, in a realistic application scenario, it is not possible to teleport coherent

states with arbitrarily large displacement photon numbers due to finite energy capacities

and limiting effects such as amplifier compression in the Bell measurement setup. These

restrictions limit the codebook size and eventually lead to higher no-cloning thresholds

F̄nc > 2/3. Lastly, we note that the optimal cloning machine for coherent states is non-

Gaussian and leads to an optimal cloning fidelity 0.68 [60]. In a quantum teleportation

experiment, such a non-Gaussian cloner can be ruled-out by checking the statistics of the

Bell-like measurements, which should be Gaussian for a Gaussian state input.

3.2.3 Finite-energy codebook

In the following, we consider the influence of employing a finite realistic codebook on

the no-cloning limit and thereby on the unconditional security of Gaussian quantum

teleportation1. Such a practical codebook should show polar symmetry in phase-space to

1We acknowledge that the work related to the finite-energy codebook has been done in close collaboration
with Dr. Roberto Di Candia. In particular, the calculations for finding an upper bound on the
no-cloning threshold emerge from the ideas of Di Candia.
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have no constraint on the signal phase, which can contain the information in teleportation-

based application scenarios such as quantum key distribution. For these purposes, we

choose a truncated Gaussian codebook, constructed by truncating a Gaussian codebook

with variance σ2 at a cutoff photon number NS and then rescaling for normalization. The

probability distribution for a truncated Gaussian codebook is

Pσ,NS(α) = e−
|α|2

2σ2

2πσ2(1− eNS/2σ2)Θ(NS − |α|2), (3.28)

where Θ is the Heaviside step function. This is a suitable codebook for our purposes

because the truncation provides an upper energetical bound and the Gaussian shape

allows a no-cloning threshold to be derived from the well-known theory for Gaussian

codebooks.

Since we do not know the optimal cloning attack for the truncated Gaussian codebook,

we instead determine a bound on its optimal cloning fidelity. This can be done by

comparing the truncated Gaussian codebook Pσ,NS(α) with the Gaussian codebook Pσ(α),
for which the optimal cloning fidelity is known. We first consider the cloning machine as

an arbitrary Gaussian process N , and write the average cloning fidelity

F̄ (N ) =
∫
F (N , α)Pσ,NS(α)d2α. (3.29)

We then have

F̄ (N ) =
∫
F (N , α)[Pσ,NS(α)− Pσ(α)]d2α +

∫
F (N , α)Pσ(α)d2α

≤ ||Pσ,NS(α)− Pσ(α)||1 + F̄σ(N ),
(3.30)

where ||f(α)||1 =
∫
|f(α)|d2α is the 1-norm and F̄σ(N ) is the average cloning fidelity with

respect to Pσ(α). The optimal cloning fidelity is found by maximizing this quantity over

N with

FTG = max
N

F̄ (N ) ≤ ||Pσ,NS(α)− Pσ(α)||1 + Fσ, (3.31)

where we use the known result maxN F̄σ(N ) = Fσ. We can calculate the 1-norm

||Pσ,NS(α)− Pσ(α)||1 = 2π
∫ ∞

0

∣∣∣∣∣∣∣
αe−

|α|2

2σ2

2πσ

∣∣∣∣∣∣∣
∣∣∣∣∣Θ(NS − |α|2)

1− e−
NS
2σ2

− 1
∣∣∣∣∣ d|α| = 2e−

NS
2σ2 . (3.32)

Thus, we find that an upper bound for the no-cloning threshold FTG of a truncated

Gaussian codebook is given by

FTG ≤


4σ2+2
6σ2+1 + 2e−NS/2σ2

σ2 ≥ 1
2 + 1√

2
1

(3−2
√

2)σ2+1 + 2e−NS/2σ2
σ2 ≤ 1

2 + 1√
2 .

(3.33)
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Figure 3.3: (a) Probability distribution function for a truncated Gaussian distribution with truncation

limit
√
NS, constructed from a Gaussian distribution with variance σ2. (b) The truncated

Gaussian codebook is constructed by truncating the a Gaussian codebook with variance

σ2 at a certain photon displacement NS, and renormalizing the remaining region such that

total probability remains 1. (c) Dependence of the no-cloning threshold for the truncated

Gaussian codebook on truncation photon number NS and distribution variance σ2. The gray

region represents FTG > 1, where this upper bound for no-cloning fidelity is a physically

unattainable value.

We see that this bound adds the deviation between the truncated Gaussian codebook

and its corresponding Gaussian codebook to the exactly known no-cloning threshold for

a Gaussian codebook. We note that comparing the truncated Gaussian codebook to a

Gaussian codebook with the same variance σ2 is optimal, because a different variance would

cause additional deviations between the distributions. Fig. 3.3 shows FTG as a function

of σ2 and NS. The no-cloning bound approaches the optimal Gaussian case for NS →∞
and σ � NS. This is because the truncated Gaussian codebook approaches a Gaussian

at large cutoff photon number and exponentially small error in its tail distribution. In

the gray region of Fig. 3.3, we have FTG > 1, implying that the upper bound FTG for
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no-cloning fidelity is a physically unattainable value. We remark that from a practical

point of view, a truncated uniform codebook might be more convenient. Nevertheless, in

this case, a sufficiently tight no-cloning threshold is hard to derive as it would require an

accurate approximation of an arbitrary uniform distribution with a Gaussian, which is

not possible in general.

3.3 Teleportation over thermal channels

For a realistic teleportation scenario, finite coupling to the ambient thermal environment

must be considered. In this section, we examine the nature of thermal noise and calculate

the influence of experimental imperfections in the communication channels. We present

quantum teleportation as an error correction scheme for Gaussian imperfections. We

also insert realistic experimental parameters to predict the performance of quantum

teleportation.

3.3.1 Thermal noise

The analog quantum teleportation protocol transfers the quantum entanglement resource

and classical feedforward as analog signals from Alice to Bob. In general, the channels

that transport these analog signals can be affected by finite losses and temperatures. It

is then important to determine how the teleportation protocol is influenced by these

imperfections. For example, it is practically useful to consider quantum teleportation over

long distance and at room temperature (RT) conditions, which consist of large losses and

large thermal noise.

We consider the ambient thermal environment by coupling the thermal modes to our

quantum system via a beam splitter model. The coupling strength is determined by the

losses of the transport channels. This is procedure formally written as Eq. 3.17 and Eq.

3.18. The number of ambient thermal photons is given by the Planck distribution as in Eq.

2.19. At a frequency of 5 GHz, this photon number is 0.0083 at 50 mK and 208 at 297 K.

We observe that quantum microwave signals, which are on the order of a few photons, are

sensitive to thermal noise. While the ambient photon number is still negligible at 50 mK,

the thermal noise becomes overwhelming when examining room temperature applications.

3.3.2 Imperfect entanglement distribution and feedforward channels

We consider analog CV quantum teleportation in the presence of realistic imperfections

such as finite losses and interaction of the quantum system with a thermal bath. In

particular, we investigate the influence of thermal noise in the analog feedforward as well as

in the TMS distribution channel. In a realistic application scenario, these paths potentially

pass a thermal environment, either via a cryogenic link or by free-space propagation.
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In the first step, we consider power losses in the entanglement distribution channel εent

(denoted as ε13 in Fig. 3.2) and the feedforward channel εff (denoted as ε14 in Fig. 3.2),

which couple to an environmental bosonic bath with temperature T . Apart from these

imperfections, we treat the quantum teleportation as lossless and noiseless. We find that

in the limit of G� 1 and β � 1, the feedforward losses εff simply act as a renormalization

of the projection condition, which is then given by Gβ(1 − εff) = 4. Under the latter

assumption, the fidelity for coherent state quantum teleportation can then be expressed as

F = 2
f(r, εent, Tent, ω) + βεff coth

(
~ω

2kBTff

) , (3.34)

f(r, εent, Tent, ω) = (2− εent) cosh 2r − 2
√

1− εent sinh 2r + 2 + εent coth
(

~ω
2kBTent

)
,

(3.35)

where Tent is the ambient temperature in the entanglement distribution channel and

Tff is the ambient temperature in the feedforward channel. We see from Eq. 3.35 that

εent introduces thermal noise from the channel environment and alters the interference

mechanism of the teleportation protocol. Unlike the εff term that is modulated by the

coupling β, the influence of εent cannot be suppressed. This implies that losses and noise

in the entanglement distribution channel should be reduced as much as possible without

alternative.

In the next step, we set εent = 0 to investigate the influence of losses and noise in the

feedforward channel. Under this assumption, we obtain the teleportation fidelity

F = 2
2 + 2e−2r + βεff coth

(
~ω

2kBTff

) = 1
1 + e−2r + βεffS(ω, Tff) , (3.36)

where S(ω, T ) is the coupled thermal noise power spectral density at mode frequency ω.

In the limit of a perfect entanglement resource r →∞, we get

F = 1
1 + βεffS(ω, Tff) . (3.37)

We observe that we achieve resilience against thermal noise in the feedforward channel if we

let βεffS(ω, T )→ 0, which is possible by making the coupling β sufficiently small. From an

intuitive point of view, this result reflects that the feedforward signal is classical, for which

an attenuating channel can be fully compensated by amplification. This property is also

fulfilled for a digital feedforward, corresponding to strict β = 0 and G→∞. Nevertheless,

Eq. 3.37 implies that for an analog feedforward signal, the asymptotically finite positive

values of β and G eventually set an upper limit to the tolerable environmental temperature.

In the high loss limit, εff → 1, fidelities beyond the classical limit of 1/2 can be reached
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up to a maximal temperature

Tc = ~ω
2kBarcoth (2/β) '

~ω
kBβ

. (3.38)

Furthermore, Eq. 3.37 can be used to obtain the bath temperature Tnc corresponding

to the no-cloning fidelity. In the case Fnc = 2/3, we obtain Tnc ' Tc/2. For realistic

experimental parameters β = −15 dB and ω/2π = 5 GHz, we find that Tc ' 7.6 K. Thus,

even in the high loss limit, it is possible to transmit the feedforward signal though a

liquid Helium bath in a state of the art experiment. As can be seen in Eq. 3.38, the

temperature Tc can be raised to arbitrarily high values by decreasing β. In practice, it is

hard to reach this asymptotic value since reducing coupling β → 0 requires a large gain

G→∞, and we are eventually limited by compression effects. The technical challenge

in this regard is the balance between maximizing degenerate gain G of the measurement

JPAs and simultaneously minimizing noise from compression effects.

3.3.3 Teleportation as error correction

Fig. 3.4 shows the results from a simulation of our quantum teleportation protocol

with losses and thermal noise only in the feedforward channel. Components apart from

the feedforward channel are so far assumed to be noiseless. In Fig. 3.4(a), we choose

experimentally attainable parameters of β = −15 dB and S = 6 dB, where the feedforward

gain is set to the optimal point, G = 4/[β(1 − εff)], to compensate for the coupling β,

the two hybrid rings in the detection setup, and the feedforward losses. Under these

conditions, we observe that teleportation fidelity can exceed our previously derived

truncated Gaussian no-cloning threshold, where we choose NS = 100, up to liquid helium

(4.2 K) and liquid nitrogen (77 K) temperatures for sufficiently small feedforward losses.

Even in the high loss limit, the no-cloning threshold can be surpassed for temperatures

. 1 K, well achievable with conventional dilution refrigerators. Figure 3.4(b) shows the

same simulation as Fig. 3.4(a), but for a smaller coupling, β = −35 dB. Indeed, the

high-fidelity region is extended to significantly higher temperatures and feedforward losses,

though the maximally achievable fidelity remains approximately the same. Finally, we

increase the resource squeezing to S = 20 dB in Fig. 3.4(c) and find that the overall fidelity

increases. This is the case because higher squeezing implies that we increase the strength

of the quantum correlations, responsible for destructive interference of the quantum noise

at the directional coupler, in a more efficient way. We note that at a non-ideally chosen

gain, G 6= 4/[β(1− εff)], higher squeezing level may actually decrease the fidelity because

of imperfect interference effects. We observe that quantum teleportation implements an

error correction scheme on the feedforward channel, as thermal noise S(ω, Tff) can be

suppressed by the coupling β and feedforward losses εff can be fully compensated by the

gain G. Note that in experimental implementations, a lower bound of β is determined by
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Figure 3.4: Teleportation fidelity as a function of feedforward temperature and loss. All other components

in the teleportation protocol are assumed to have no noise and losses. Finite coupling and

squeezing values are chosen, and gain is set to exactly compensate for coupling and feedforward

attenuation. Solid lines represent the asymptotic classical limit of F = 1/2, dashed lines

represent the asymptotic no-cloning limit of F = 2/3, and dash-dotted lines represent the

truncated Gaussian no-cloning limit of FTG when NS = 100. (a) Coupling of −15 dB and

squeezing of 6 dB gives intermediate fidelity values. (b) Reducing the coupling to −30 dB
extends the desired temperature and loss region. (c) Strengthening the squeezing to 20 dB
increases the overall fidelity values.

the maximally achievable measurement gain G, and the maximum resource squeezing is

determined by the quantum efficiency of the phase-sensitive amplifiers that generate the

TMS state.

The previous results indicate that the asymptotic robustness of analog CV quantum

teleportation crucially depends on minimizing the coupling β. However, Eq. 3.37 and Eq.

3.38 are derived under the idealistic assumption that the projection condition is exactly

fulfilled and that we use noiseless cryogenic microwave components. We generalize our

analysis in the following by employing a realistic theory model that takes into account
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experimental imperfections according to Fig. 3.2, which is evaluated in a method based

on that in Ref. [14].

3.3.4 Realistic teleportation with experimental imperfections

Except for the feedforward channel, we have so far considered the quantum teleportation

setup as ideal. However, the passive components as well as the amplifiers also contribute

to losses and noise in a realistic experimental teleportation protocol. Most of these sources

of noise cannot be suppressed by decreasing the coupling β because they mainly occur

before the Bell measurement step or in the entanglement distribution setup. Thus, the

teleportation protocol does not act as an error-correcting scheme for these imperfections.

In this section, we include all of these imperfections and study their implications for

teleportation fidelity. Our study about the impact of realistic imperfections in the analog

CV quantum teleportation of coherent microwave states is based on the theory model

developed in Ref. [14].

Figure 3.5(a) shows the teleportation fidelity for the realistic protocol as a function

of εff and ambient temperature T in the feedforward channel. In contrast to the ideal

scenario in Fig. 3.4(a), we fix the gain to G = 21 dB, causing non-ideal projectivity. In

practice, the feedforward losses are not exactly known and it is not possible to exactly

meet the projection condition. The value of 21 dB is chosen according to the prediction

from ideal theory and compensates for the 6 dB of loss due to the beam splitters in the

detection setup and for the coupling β = −15 dB. We observe that fidelity as a function

of feedforward noise behaves similarly as for the ideal case in Fig. 3.4(a), but with overall

lower values. As expected, the feedforward channel is robust against noise, since fidelities

with quantum advantage can still be attained at 7 dB losses and up to liquid helium

temperatures, which is already much higher than operating temperatures of 50 mK inside

dilution refrigerators. Note that we do not observe the asymptotic robustness in the high

loss limit εff → 1 as seen in the idealistic scenario of Fig. 3.4(a). This is due to the fact

that we set the feedforward gain to a constant, hence it cannot compensate for varying

feedforward losses.

In order to suppress feedforward noise with a sufficiently weak coupling β, the gain G

needs to be increased to compensate for the total attenuation in the feedforward channel.

In the ideal protocol, this fact is reflected by the projection condition. The situation

becomes more subtle in the realistic case. The fidelity dependence on β and G is shown in

Figure 3.5(b) for a feedforward loss of εff = 0.5 dB and squeezing S = 6 dB. We observe

that, also in the realistic scenario, the fidelity maxima are close to the projection criterion

Gβ(1− εff) = 4. The linear relationship is especially evident in the limit of G� 1, but

there is asymmetry in the low gain regime, which is a result from noise and loss in the

experimental setup.

By using sufficiently weak coupling, analog CV quantum teleportation becomes robust
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Figure 3.5: Teleportation fidelity as a function of various parameters. All experimental noise and losses

are considered. Solid lines represent the asymptotic classical limit of F = 1/2, dashed lines

represent the asymptotic no-cloning limit of F = 2/3, and dash-dotted lines represent the

truncated Gaussian no-cloning limit of FTG when NS = 100. (a) Dependence on feedforward

temperature and loss εff . Fidelity maintains quantum advantage at 7 dB losses up to liquid

helium temperatures. (b) Dependence on gain and coupling β. Fidelity maxima are close to

the projection criterion and converge onto the projection criterion as squeezing S increases.

(c) Dependence on temperature and coupling β. Fidelity maintains quantum advantage up

to room temperature at β = −30 dB.

against arbitrary feedforward noise. In agreement with our analytical calculations in Eq.

3.37, Fig. 3.5(c) shows that teleportation fidelities attain a quantum advantage up to room

temperature at coupling β = −30 dB. Although the effective value of β can in principle

be arbitrarily reduced by adding a sufficiently large cold attenuation to the coupled port

[49], the crucial constraint for implementing this weak coupling limit is the maximally

achievable gain and compression of cold amplifiers. As an example, Josephson parametric

amplifiers can reach up to 50 dB degenerate gain but eventually decrease the overall state

purity due to gain-dependent noise [61]. Even though chaining multiple cold amplifiers
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might lead to a reduction of the amplification noise, the overall performance is limited by

the quantum efficiency of the Bell measurement, according to the Friis formula.





Chapter 4

Experimental techniques

In this chapter, we present the experimental methods and techniques used to generate

and measure quantum microwave states. This requires advanced cryogenic and room

temperature setups, in combination with various signal reconstruction methods. In

particular, we focus on the techniques and characterization measurements that are relevant

for implementing the quantum teleportation protocol in this work. For our experiments,

we use a setup similar to Ref. [62]. In Section 4.1, we describe the cryogenic components of

our experimental setup, which include the cryostat and microwave components. In Section

4.2, we explain the data acquisition process in our quantum teleportation experiment,

which include the room temperature setup, the PID temperature control, and the reference

state reconstruction. In Section 4.3, we describe the JPA parameter measurements that

include finding a suitable JPA working point, determining the JPA degenerate gain, and

balancing the two-mode squeezed state.

4.1 Cryogenic setup

The cryogenic setup is crucial for this work, since temperatures of around 50 mK are

required to successfully generate quantum microwave states. In this section, we describe

the experimental devices used in our cryogenic setup. The main instrument is a dilution

cryostat that maintains the low temperatures needed in our experiment. We also detail

the main cryogenic microwave components used to generate and control our quantum

microwave states.

4.1.1 Cryostat

Dilution cryostat are used to maintain the cryogenic environment needed for our experi-

ments. We use dry cryostats that hold high vacuum, which insulates the experimental

setup from room temperature. Cooling units in the cryostat then generate the cooling

power needed to lower the temperature of inner stages to their desired levels. The experi-

mental setup is placed in the innermost and coldest stage of the cryostat. Control of the

experimental setup is done through input and output lines that run through the cryostat.

39
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Dilution refrigerator

The dilution refrigerators used in this experiment consist of five stages, namely pulse tube

1 (PT1) stage, pulse tube 2 (PT2) stage, 1K stage, distillation (still) stage, and mixing

chamber stage (MC). With the exception of the 1K stage, each of the mentioned stages

are connected with cylindrical radiation shields that prevent radiation from other layers

from reaching the inner setup. In addition, there is an outer vacuum (OVC) shield as

the outermost layer of the cryostat which holds up to 10−6 mbar of high vacuum. This

vacuum is especially important to minimize thermal coupling between respective layers.

The dilution refrigerator is designed such that the temperature becomes lower as we go

down the stages. The approximate achievable temperatures for each stage are shown in

Fig. 4.1(a). At the first two stages, a pulse tube refrigerator (PTR) is used to generate

cooling power. The PTR is suitable for a cryostat since it does not have moving parts in

the lower temperature part of the device. Furthermore, using a PTR allows the cryostat

to remain “dry”. Wet cryostats require the stages to be submerged in a liquid helium bath

to maintain a temperature of 4.2 K. Current PTR cryocoolers can achieve around 50 K at

the first PT1 stage, and around 4 K at the second PT2 stage.

Below the PTR is the 1K stage, which has a temperature of around 1.2 K. This

temperature can be achieved in different ways. Rather directly, it can be achieved by

evaporative cooling of liquid helium from a 1K pot. Another method is by using a

Joule-Thomson cooler, which exploits the Joule-Thomson effect whereby real gases cool

upon expansion when throttled through an orifice.

The lowest temperatures in the cryostat is achieved by dilution cooling, which exploits

evaporative cooling between the concentrated and dilute phases of helium-3/helium-4

mixture. At low temperatures, the concentrated phase contains almost 100% helium-3,

while the dilute phase contains about 6.6% helium-3. In the mixing chamber, these two

phases are in equilibrium and separated by a phase boundary. A turbomolecular pump in

the distillation chamber removes helium-3 from the dilute phase, causing helium-3 from

the concentrated phase to cross the phase boundary into the dilute phase. Since this

process is endothermic, heat is removed from the mixing chamber stage. This cooling

results in a temperature of below 50 mK at the mixing chamber stage.

In our experiment, we use one home-made dry dilution refrigerator from the Walther-

Meißner-Institute and one commercial dry dilution refrigerator Triton from Oxford Instru-

ments. More details about the operating principles of dilution refrigerators can be found

in Ref. [63].

Sample stage

The sample stage is attached to the mixing chamber stage and holds the experiment

setup. Being thermalized to the mixing chamber stage, the sample stage also has a base

temperature below 50 mK. Fig. 4.1(b) shows the sample stage in the Alice cryostat of
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Figure 4.1: (a) Photograph of Alice dilution refrigerator with respective temperature stages. (b) Pho-

tograph of Alice sample stage with cryogenic devices. (c) Photograph of JPA sample box

and superconducting coil. (d) Photograph of a JPA sample holder with a JPA installed. (e)

Photograph of a JPA chip. (f) Photograph of the coupling capacitor and DC-SQUID inside a

JPA.

our experiment. The quantum resources for our experiments are generated at the sample

stage. The microwave components used are detailed in Section 4.1.2. Due to the unique

setup of our quantum teleportation experiment, which connects two separate dilution

refrigerators, the two sample stages in the cryostats are actually connected by a cryogenic

link. The setup of the cryogenic link is described in Chapter 5. It is important to consider

that the microwave components on the sample stage are controlled via lines that extend

to the RT devices. Signals from the input lines and operation of the devices cause heating,

which can raise the sample stage temperature during experiment.
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Input and output lines

Input lines are used to apply signals to the experimental setup and output lines are used

to measure the results of the experiment. It is important to consider these lines so that

the desired quantum states can be created and that the results can be properly measured.

The input states are first generated at room temperature by a vector network analyzer

(VNA) or microwave source. The signals are fed into the cryostat using flexible microwave

lines, since they are more convenient to position and losses are not crucial for classical

microwave signals. Inside the cryostat, stainless steel microwave coaxial cables (SC-219/50-

SS-SS, Coax Co., Ltd) are used until the 4K stage. This is because stainless steel cables

provide good thermal isolation between the temperature stages, though have significant

losses of 5.9 dB/m at 5.0 GHz frequency and 4 K temperature. NbTi microwave coaxial

cables (SC-219/50-NbTi-NbTi, Coax Co., Ltd) are used until the sample stage. This

is because, below the critical temperature of NbTi (around 9.7 K), the cables become

superconducting and the losses are less than 0.3 dB/m.

Furthermore, at each temperature stage in the cryostat, attenuators are inserted to

the input lines such that the thermal radiation from room temperature is attenuated. To

achieve a good signal-to-noise ratio at room temperature, a −55 dBm signal is generated

with room-temperature Johnson-Nyquist noise. This Johnson-Nyquist noise is then

attenuated at each stage to match the ambient temperature. As a result, the signal-to-

noise ratio remains constant until the sample stage, and heat load is optimally distributed

among the different cryostat stages. This procedure is important for our experiments,

since we want quantum signals at the single photon level and otherwise the quantum

states would be covered by noise.

The lines used for output are similar as the input, with superconducting cables (SC-

219/50-NbTi-NbTi, Coax Co., Ltd) below the 4K stage and normal-conducting cables

(SC-219/50-SSS-SS, Coax Co., Ltd) above the 4K stage. In contrast to the input, the

output lines do not require attenuators because the thermal noise at the sample stage

is already much lower than the upper stages. Instead, the output lines require chained

amplifiers, so that the weak quantum signals can be detected by room temperature

electronics. For this purpose, we use cryogenic high-electron-mobility transistor (HEMT)

amplifiers (LNF-LNC4 8A, Low Noise Factory) and RT amplifiers (AMT-A0033, Agile

MwT). We note that the HEMT is the dominant noise source in the output line. We

also insert circulators (CTH1184-KS18, Quinstar and RADC-4-8-Cryo, Raditek) between

stages, so that signals can propagate from the lower temperature stages to the higher

temperature stages, but noise propagating in the opposite direction is suppressed. Finally,

the output signals are transmitted into a VNA or a field programmable gate array (FPGA)

for readout. The RT devices are described with more detail in Section 4.2.1.
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4.1.2 Cryogenic microwave components

Cryogenic microwave components, including JPAs, microwave cables, and couplers, are

needed to accomplish quantum optical experiments in the microwave regime. Since the

energy scale of microwave photons is much lower than that of optical photons, these

microwave devices must operate with low noise and at cryogenic temperatures. We

describe here some of the main microwave components, which are shown in Fig. 4.1(b-d).

Perhaps the most important component in our experimental setup is the Josephson

parametric amplifier, which is used to squeeze vacuum states and to perform the Bell-type

measurement. For our experiments, we use JPA chips designed and fabricated at NEC

Smart Energy Research Laboratories Japan and RIKEN, Japan. The resonator and

pump lines of the JPA are written into a 50-nm thick Nb film and then deposited onto a

300-µm thick silicon substrate. The DC-SQUID is fabricated by using aluminum shadow

evaporation. We also use JPA chips from VTT Technical Research Centre of Finland. The

VTT design coincides with that of NEC, with the difference that a 525-µm chip is used and

the DC-SQUIDs are fabricated from niobium. We prepare the JPA chip by gluing it into

a copper sample box and then galvanically coupling it to the box ground via aluminum

bonds. The sample box allows the JPA to be connected to the microwave signal and

pump lines. Then, a large coil made from superconducting wire (C510/NbTi, Supercon)

is place on top of the sample box. This coil is used to generate the magnetic field for

choosing the flux point of the JPA. Temperature sensors and heaters are also attached to

the sample box to monitor the JPA temperature and implement PID temperature control.

Finally, the entire configuration is mounted into an aluminum box, which protects the

JPA from outside magnetic fields and confines the coil magnetic field inside the box. The

sample JPA and its circuit components are shown in Fig. 4.1(d-f).

Another important component is the microwave cable used to carry the microwave

signals between devices. For our experiment, we use stainless steel and NbTi coaxial

cables manufactured by Coax Co., Ltd. In order to adapt the cables into our experiment

setup, we manually cut and bend the cables. It is important to ensure that the cables

maintain the 50 Ω impedance matching with the other microwave components, otherwise

significant reflection may occur as signals enter the cable. We typically have an impedance

mismatch of ±2 Ω and can check for this mismatch using a time-domain reflectometer

(TDR).

Other components used to manipulate the quantum microwave signals include circulators,

hybrid ring couplers, and directional couplers. Circulators (CTH1184-KS18, Quinstar and

RADC-4-8-Cryo, Raditek) are nonreciprocal devices that contain ferromagnets to break

time-reversal symmetry, making the transmission dependent on the respective direction.

This allows the microwave signal to travel in the desired direction, while suppressing

the effects of reflection and back-propagating noise. Hybrid ring couplers (CPL-5850-

100B, Miteq) are four-port microwave devices that act analogously to a beamsplitter.

This is used for the entanglement sharing and Bell-type measurement in our experiment.
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Figure 4.2: Photograph of the room temperature dual-path receiver.

Directional couplers (CPL-4000-8000-15-C, Sirius Microwave) are devices that realize

highly asymmetric beam splitter operations. This is used for the state displacement in

our experiment.

4.2 Data acquisition

Proper data acquisition is crucial to accurately perform tomography of quantum microwave

states. In this section, we describe our setup and methods for data acquisition. We first

describe the main components of our room temperature setup. We also briefly discuss

the PID control loop used to stabilize the experiment temperature. We then explain the

reference state reconstruction method, which is used to reconstruct quantum states from

measurement readings.

4.2.1 Room temperature setup

In our experiment, the bulk of the data acquisition process happens in the room tempera-

ture setup. The microwave signals are generated at room temperature, with pump signals

being high-pass filtered (VHF-8400+, Mini-Circuits) above 9 GHz, before entering cryostat.

The output signals are received and measured by the room temperature setup. Fig. 4.2

shows the dual-path receiver used in our setup. One procedure for data acquisition is using

a vector network analyzer (VNA), which is especially useful for testing and characterizing
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the experimental setup. Another procedure for data acquisition is by generating a input

microwave signals and measuring the output signal moments with a field-programmable

gate array (FPGA).

Vector network analyzer

Vector network analyzers are instruments that measure the network parameters of electrical

networks. It sends a signal through one port and measures this signal as it returns at

another port. We can measure the S-parameters to observe the reflection and transmission

of this signal through our experiment system. For our experiment, we use the Rohde

& Schwarz ZVA24 vector network analyzer for calibration purposes. For instance, we

can characterize the flux response of our JPAs by measuring the phase shift induced at

different frequencies. Also, we can characterize the compression point of our JPAs by

measuring the maximum gain produced at different input powers. More details about

these parameter measurements are discussed in Section 4.3. Furthermore, we can use the

VNA to check for problems in the experiment setup. For example, defects in a microwave

line would show up as anomalous attentions on the VNA measurement.

Microwave sources

Microwave sources can be used to generate signals at the desired frequency and phase.

For our experiment, we use the Rhode & Schwarz SGS100A SGMA RF Source, which has

an output frequency up to 12.75 GHz and output power up to 25 dBm. This frequency

range is sufficient for our signal frequency of 5-6 GHz and hence pump frequency of

10-12 GHz. The allowed power range is also useful to compensate for setup losses. Since

we utilize several microwave sources, they are synchronized with a 10 MHz reference

source in a cascaded manner. When making measurements, we want to compare different

experimental configurations, such as when the Bell measurement JPAs are not pumped

and when they are pumped. We do this measurement by letting the microwave sources

output signals in a pulsed sequence, so that each pulse takes a different configuration,

which is implemented using a data timing generator (DTG).

Field-programmable gate array

Field-programmable gate arrays can be used to digitize the input signals. For our

experiment, we use the a National Instruments PXIe-7975R FPGA for data processing

and a National Instruments NI-5782 transceiver module as an analog-to-digital converter

(ADC), and operate the signal at a sampling rate of fS = 125 MHz. Since the signal

frequency fRF lies around 5-6 GHz, which is much higher than fS, we downconvert to an

intermediate frequency fIF = 11 MHz. This is done by mixing a strong local oscillator

(LO) signal at frequency fRF + fIF with the incoming signals via an image rejection mixer

(IRM4080B, Polyphase). We choose fIF = 11 MHz to avoid interference with the 10 MHz
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reference source. After downconverting, we can adjust the signal amplitude with step

attenuators (ESA2-1-10/8-SFSF, EPX microwave Inc.), which is used to balance the two

signal paths and avoid compression effects. We also adjust the relative phase difference

between the two signal paths to 180◦ using a manual phase shifter. The signal then goes

through a band-pass filter (SBP-10.7+, Mini-Circuits) with bandwidth 9.5-11.5 MHz, and

further amplified by IF-amplifiers (AU-1447-R, Miteq). Finally, the signal goes through a

low-pass filter and a DC block before being sent to the analog-to-digital converters in the

FPGA.

4.2.2 PID temperature control

A proportional-integral-derivative (PID) controller is a control loop mechanism that uses

feedback to continuously control a system. The PID controller continuously calculates an

error value as the difference between the desired setpoint and the current measured value,

and applies a correction based on its proportional, integral, and derivative parameters.

For our experiment, PID control is employed to stabilize the temperatures of various

devices in our setup. We accomplish this by using rubidium oxide temperature sensors to

monitor the current value and using resistance heaters to apply corrections. On the Alice

cryostat, we can measure up to 16 temperature lines with a resistance bridge (Model 370,

LakeShore) in the four-wire measurement scheme. Furthermore, two temperature lines

can be used as PID controllers by employing two additional resistance bridges (AVS-47B,

Picowatt) and two temperature controllers (TS-530A, Picowatt). On the Bob cryostat, we

set up a resistance bridge (AVS-48SI, Picowatt) in the four-wire scheme for temperature

measurement and PID control. Additionally, a PID controller to set mixing chamber

temperature is integrated in the commercial software provided with Bob.

4.2.3 Quantum state reconstruction

Several methods can be used to reconstruct quantum microwave states. One possibility

is to use single photon detectors a cryogenic temperatures [64, 65], but they are limit in

their usability to detect quantum microwaves due various drawbacks such as high dark

count rates and long reset times. Alternatively, the weak quantum signals can be linearly

amplified and measured at room temperature with heterodyne detection [66]. In realistic

scenarios, the best available commercial HEMT amplifiers add around 6-7 noise photons

at 5 GHz, which cover the quantum signals with noise. In order to reconstruct quantum

states with such significant noise contribution, we use the reference state reconstruction

method, which we introduce in the following.
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Photon number conversion factor

The photon number conversion factor (PNCF) is a method to calibrate amplification

chains, such that we can convert the measured voltages at the FPGA to photon numbers

at desired locations in our cryogenic setup. The photon number is calibrated by using a

photon source that emits a known photon number as reference. In our experiment, we use

a 30 dB attentuator as the photon source. The reason for this is because it approximates

a black body radiator, where the emitted temperature-dependent power spectrum is

white [67], while not attenuating input coherent signals too much. For our calibration

measurements, we probe temperatures between 50 mK to 400 mK. Since we want to

change the attenuator temperature without heating the mixing chamber, we establish

weak thermal coupling of the attenuator to the cryostat. This is done by using stainless

steel input cables and NbTi output cables. In addition, we use thin silver ribbons to

thermally couple the heatable attenuator to the mixing chamber stage. This allows the

attenuator to reach the 50 mK base temperature in reasonable time, without significantly

heating the mixing chamber when attenuator is set to higher temperatures around 400
mK.

The detected power P1,2 of the amplification chain at the FPGA is given by [67, 68]

P1,2 =
〈I2

1,2〉+ 〈Q2
1,2〉

R
= κ1,2

R

[
1
2 coth

(
hf0

2kBTatt
+ n1,2

)]
, (4.1)

where 〈I2
1,2〉 , 〈Q2

1,2〉 are the second order quadrature moments, R = 50 Ω, h is the Planck

constant, kB is the Boltzmann constant, f0 is the center frequency of detection bandwidth,

and Tatt is the attenuator temperature. The subscripts 1, 2 denote the two signal paths.

The photon number conversion factor (PNCF) is defined as κ = G1,2 ·R ·BW · hf0, where

BW is the full detection bandwidth. Additionally, G1,2 is the amplification gain and n1,2

is the amplification noise of the amplification chains. From Eq. 4.1, we see that changing

the attentuator temperature Tatt leads to different photon numbers and hence different

measured powers. We can then extract κ1,2 and n1,2 by fitting the data from Tatt and

P1,2 measurements. In Fig. 4.3, we show a PNCF calibration measurement at f0 = 5.6
GHz. The fitting results give κ1 = 1.79± 0.12× 10−8 V2 and κ2 = 1.80± 0.12× 10−8 V2,

which are similar due to balancing of the amplification chains. However, we have that

n1 = 20.4± 1.4 and n2 = 99.3± 6.6. The much higher thermal noise in path 2 might be

due to a noisy HEMT amplifier or problematic thermalization.

Reference state reconstruction

In reference state reconstruction, a known signal is used as a reference state to calibrate

the effects of the amplification chain [69, 70]. In our experiments, we use choose the

reference state to be a weak thermal state with about 0.01 photons at 5 GHz at 50 mK,

which is well approximated by the vacuum state.
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Figure 4.3: Photon number conversion factor (PNCF) calibration for path 1 (a) and path 2 (b). Markers

represent measured data and the solid lines are fits according to Eq. 4.1. This calibration is

obtained for the working point f0 = 5.6 GHz.

We use the reference state reconstruction method to reconstruct the signal moments

of the quantum state. The quadrature moments 〈În1 Îm2 Q̂k
1Q̂

l
2〉 are related to the complex

envelope functions by

ξ̂1,2 = Î1,2 + iQ̂1,2√
κ

. (4.2)

This allows the complex envelope function moments 〈(ξ̂†1)n(ξ̂†2)mξ̂k1 ξ̂l2〉 to be computed from

the quadrature moments. For the quantum states, the complex envelope functions can be

written as

ξ̂1,2 = â1,2 + V̂1,2, (4.3)

where â1,2 is the annihilation operator of the quantum signal and V̂1,2 is the added noise

of the respective path. For the reference state, the complex envelope functions can be

written as

ξ̂ref;1,2 = v̂1,2 + V̂1,2, (4.4)

where v̂ describes the weak thermal reference state. The reference state reconstruc-

tion computation is as follows. First we use Eq. 4.4 to calculate the noise moments

〈(V̂ †1 )n(V̂ †2 )mV̂ k
1 V̂

l
2 〉 from the known reference state moments 〈(v̂†1)n(v̂†2)mv̂k1 v̂l2〉 and the

complex envelope moments 〈(ξ̂†ref;1)n(ξ̂†ref;2)mξ̂kref;1ξ̂
l
ref;2〉. Then we use Eq. 4.3 to calculate

the signal moments 〈(â†1)n(â†2)mâk1âl2〉 from the obtained noise moments 〈(V̂ †1 )n(V̂ †2 )mV̂ k
1 V̂

l
2 〉

and the complex envelope moments 〈(ξ̂†1)n(ξ̂†2)mξ̂k1 ξ̂l2〉. The complex envelope moments can

be obtained from the measured quadrature moments by Eq. 4.2.
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Reconstruction point

The reference state reconstruction method as given above reconstructs the quantum states

at the noise source, namely the 30 dB attenuator. However, we often want to reconstruct

quantum states at different positions in the experimental setup. For this purpose, we must

carefully estimate the losses from the heatable attenuator to the desired reconstruction

point. These losses affect the PNCF factors κ1,2, which are needed for accurate reference

state reconstruction. Given that there is L dB of losses between the heatable attenuator

and the desired reconstruction point, the amplification chain gains are related by

Gatt;1,2 = Gr;1,2 · 10−L/10, (4.5)

where Gatt is the gain referenced at the attenuator and Gr is the gain referenced at the

reconstruction point. The PNCF factors are then related by

κatt;1,2 = κr;1,2 · 10−L/10. (4.6)

4.3 JPA parameter measurements

The JPA is used extensively throughout our experiments. Thus, it is important to

characterize the properties of the JPAs used. In this section, we present the measurements

to characterize and optimize the performance of our JPAs. First, we probe the DC-flux

response of the JPA resonance frequency and use it to choose a suitable working point.

Then, we measure the JPA nondegenerate gain and determine its 1 dB compression point.

Finally, we characterize the performance of squeezing and entanglement generation, and

balance the generated TMS state.

4.3.1 DC-flux tuning and nondegenerate gain

As explained in Section 2.2, the resonance frequency of a JPA can be tuned by generating

a DC magnetic flux through the DC-SQUID loop. We experimentally apply this magnetic

flux with a superconducting coil placed on top of the JPA sample box, as described in

Section 4.1.2. In order to achieve parametric amplification with a JPA, we need to find

a working regime of frequency and power for the microwave pump tone. For instance,

a JPA with resonance frequency f0, needs to be pumped with frequency 2f0. If we set

a desired working frequency, then we need to perform calibration measurements on the

JPA to determine suitable flux point and pump powers. We utilize a VNA to complete

these calibration measurements. We send coherent input microwave signals to the JPA

from channel 2 and receive output signals at channel 1, which we measure with the

S12-parameter on the VNA.

For a calibration of the JPA flux dependence, we sweep both the frequency of input sig-
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Figure 4.4: JPA resonance frequency as a function of applied magnetic flux. (a) Magnitude response on

the probe signal. (b) Phase response on the probe signal.

nals and the DC current through the superconducting coil. Fig. 4.4 shows a measurement

result for this calibration. We use a frequency span of ∆f = 1 GHz and a coil current

span of ∆I = 200 µA. We see that the signal amplitude and phase response changes

depending on the frequency and coil current. Fig. 4.4 actually shows processed data to

have better clarity. For the amplitude response, an averaged background amplitude is

subtracted from the measured data. For the phase response, a linear phase increase due

to the unwrapped phase measurement is subtracted from the measured data. We see

that indeed changing the coil current shifts the resonance frequency of the JPA. In the

magnitude response, we observe the expected small attenuation due to internal losses of

the JPA. In the phase response, we observe the expected 360◦ phase shift due to crossing

the JPA resonance frequency, which verifies that the JPA is overcoupled Qint � Qext.

With this calibration result, we can choose a desired working frequency by tuning the coil

current to the value that corresponds to its phase shift. Usually, a working point with an

intermediate slope in the flux dependence is desired, because a small slope gives small

amplification gain while a large slope creates large amplification noise.

For a calibration of the pump power dependence of the nondegenerate gain, we first set

the coil current to the desired working point, and then sweep both the frequency of input

signals and the pump power for the microwave pump tone. We note that this measures

the nondegenerate gain of the JPA, where it is a phase insensitive amplifier. Fig 4.5 shows

a measurement result for this calibration. We use a frequency span of ∆f = 80 MHz

and a pump power span of ∆P = 14 dBm. We see an amplification of signal amplitude

near the resonance frequency and is dependent on pump power. Fig. 4.5 actually shows

processed data to show improved contrast, for which an averaged background amplitude

is subtracted from the measured data. We observe the expected increase in amplification

with increasing pump power, until a drop-off occurs due to entering the oscillator regime.
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Figure 4.5: Nondegenerate gain as a function of the JPA pump power. (a) Magnitude response across

different frequencies. (b) Magnitude response at the working point f0 = 5.435 GHz. Pump

powers are referenced to the pump port of the JPA sample holder.

With this calibration result, we can choose a desired gain by tuning the pump power to

its corresponding value.

4.3.2 Degenerate gain and 1 dB compression point

In the degenerate gain regime, a JPA realizes a phase-sensitive amplifier. This is achieved

when the pump frequency is twice the signal frequency, such that the idler mode is created

at the same frequency as the amplified signal mode. This results in interference between

the two modes, which can be constructive or destructive depending on their relative

phase, and is controlled by the phase difference between the signal and the pump tone

[71]. We utilize a microwave source and our FPGA setup to complete these calibration

measurements. Since the signal source and pump source are synchronized, their phase

difference can be controlled by a feedback loop that corrects for any phase mismatch

between respective measurement sweeps.

For a calibration of the degenerate gain, we first choose a desired working point, and

then sweep both the phase of input signals and the power of the pump tone. Fig 4.6

shows the result for this experiment. We use −11 to −1 dBm of pump power and cover

180◦ in phase since the behavior is 180◦-periodic. We see that indeed changing the phase

controls the interference behavior. We also observe the expected increase in maximum

amplification with increasing pump power, until a drop-off occurs when the pump field

exceeds the critical field in the model by Yamamoto et al. [46].

The 1 dB compression point is a figure of merit that denotes the power at which

the signal power gain is 1 dB below the value expected for a linear device [18]. It

characterizes the permitted input powers after which the signal gain starts to decrease due

to nonlinearities of the JPA. For a calibration of the 1 dB compression point, we perform
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in black. (a) The 1 dB compression point as a function of JPA pump power. The JPA is

operating at resonance frequency f0 = 5.55 GHz.

the nondegenerate gain measurement for various input signal powers. Fig 4.7 shows a

measurement result for this calibration. We use −130 to −80 dBm of signal power and

−11 to −1 dBm of pump power. The signal power is referenced at the input of the JPA

by adjusting the signal power from the microwave source with the attenuation in the input

line. We see that indeed for higher signal powers the effective gain of the JPA decreases.

We observe the expected linear amplification with increasing signal power, until a drop-off

occurs due to compression.
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Figure 4.8: Measurement of squeezing levels and entanglement, generated from JPAs. The working point

resonance frequency is f0 = 5.6 GHz. Pump powers are referenced to the pump port of

the JPA sample holder. (a) Squeezing level of JPA1 as a function of the pump power. (b)

Purity of the JPA1 squeezed state as a function of pump power. (b) Squeezing level of JPA2

as a function of the pump power. (d) Purity of the JPA2 squeezed state as a function of

pump power. (e) Negativity of the TMS state generated using the two squeezed states from

JPA1 and JPA2. We see that N > 0 for certain pump powers, which implies entanglement is

generated.

4.3.3 Squeezing and entanglement

Squeezed states are the resources used to generate entanglement in our experiment. In

order to consistently generate squeezed states with our desired squeezing level and purity,
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balanced if σ2
r = 1. We observe that the optimal variance ratios lie along the diagonal.

we characterize the squeezed states produced by the JPA. We utilize a FPGA to complete

these characterization measurements. Instead of sending input microwave signals to the

JPA, we use the weak thermal states emitted by our 30 dB heatable attenuators as input.

By operating the JPA in the degenerate mode, the JPA implements a squeezing operation

for this weak thermal state. If the JPA noise is sufficiently low, this allows us to suppress

the fluctuations in one quadrature below the vacuum limit. The output signals are received

at the FPGA.

For a characterization of the squeezing, we generate squeezed states for various JPA

pump powers. Fig 4.8(a-d) shows a measurement result for this characterization. We

observe that squeezing increases with pump power until a certain point, at which it drops

due to higher-order nonlinear effects. We also observe that purity decreases monotonically

with pump power.

Entanglement can be generated by superimposing two orthogonally squeezed states at a

symmetric hybrid ring, which provides a TMS state at the outputs. The TMS state carries

quantum correlations and is employed as a resource for our quantum communication

experiments. To characterize entanglement, we generate TMS squeezed states at various

JPA pump powers. Fig 4.8(e) shows a measurement result for this characterization. We

observe that negativity increases with pump power until a maximum, and then drops due

to the deteriorating squeezed states. We also observe that purity decreases monotonically

with pump power. In experiment, we want to optimize the entanglement resources for

larger squeezing levels, higher purity, and larger negativity.
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4.3.4 TMS state balancing

TMS states are generated by superimposing two orthogonally squeezed states. It is the

entanglement resource used in our experiments. For an ideal TMS state, the squeezing

level of these two squeezed states should be equivalent, which implies that the TMS

state locally looks like a symmetric thermal state. We accomplish this optimization

by sweeping the pump powers for the two JPAs that produce the squeezed states, and

measure the variance ratio σ2
r = σ2

a,1/σ
2
s,1 · σ2

a,2/σ
2
s,2, where σ2

s,i and σ2
a,i are the squeezed

and antisqueezed variances for path i = 1, 2. The TMS state is balanced if σ2
r = 1. Fig

4.9 shows a measurement result for this optimization. As seen from the measurement, we

only need to sweep the diagonal because we want the two JPAs to generate comparable

squeezing levels. We complete the optimization procedure by selecting pump power

combinations that minimize σ2
r .





Chapter 5

Microwave quantum cryogenic link

In this chapter, we present the microwave quantum cryogenic link (MQCL), which is a

prototype structure that enables a quantum local area network (QLAN) in the microwave

regime. The cryogenic link allows us to perform quantum teleportation between different

labs since it cools down the relevant microwave components. Our MQCL connects two

different dilution cryostats, spatially-separated by 6.5 m. In Section 5.1, we discuss the

construction of the cryogenic link, including the modules, the superconducting channel,

and its assembly. In Section 5.2, we present the experimental entanglement distribution

performed over the cryogenic link.

5.1 Cryolink construction

The MQCL is designed in close collaboration with Oxford Instruments and assembled

at the Walther-Meißner-Institute. Since the cryolink is a prototype, a large part of our

work is devoted to its construction and optimization. In this section, we present the main

modules of the MCQL and their respective functions. We discuss the superconducting

connection that implements our microwave quantum communication network. We also

describe the assembly procedure of the cryolink as well as our modifications to optimize

its performance.

5.1.1 Cryolink modules

The MQCL consists of three main modules. The first module is a WMI home-built cryostat,

which serves as Alice in the quantum teleportation protocol. The second module is a

commercial Triton cryostat from Oxford Instrument, which serves as Bob in the protocol.

The third module is a cryogenic link (cryolink), which serves as the communication channel

between Alice and Bob. Fig. 5.1 shows the overall structure of the MQCL with the

main modules labeled. The MQCL works in such a way that the quantum entanglement

resource is generated in the Alice cryostat and then transferred through the cryogenic

environment to the Bob cryostat.

57
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Figure 5.1: (a) CAD drawing of the microwave quantum cryogenic link (MQCL). The main modules are

labeled, namely the Alice cryostat, the Eve cryostat, the Bob cryostat, and the cryogenic

link. Image courtesy of Oxford Instruments. (b) Photograph of the Eve cryostat with the

link arm segments.

Alice cryostat

The Alice cryostat is a dry dilution refrigerator home-built at the WMI [72], but with new

shields adapted to the cryolink produced by Oxford Instruments. This cryostat consists

of five layers, which from outermost to innermost are: outer vacuum chamber (OVC),

pulse tube refrigerator stage 1 (PT1), pulse tube refrigerator stage 2 (PT2), distillation

chamber (still), and mixing chamber (MC). The OVC, PT1, and PT2 shields are made

of aluminum, while the still and MC shields are made of copper. We remark that these

layers are consistent also for the Bob cryostat and cryogenic link, since the chambers are

connected across the modules. The structure of the Alice cryostat can be seen from Figure

5.2.

The Alice cryostat uses a Cryomech PT420 pulse tube refrigerator (PTR) to cool the
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(a) (b)

Figure 5.2: (a) Photograph of the inside of the Alice cryostat. (b) Photograph of the Alice cryostat with

OVC shields installed.

PT1 and PT2 stages. This PT420 cooler is upgraded from the original PT410 cooler to

provide additional cooling power for the Alice cryostat. At the PT1 stage, the PT420

cooler produces 55 W of cooling power at a temperature of 45 K to generate temperatures

of ∼ 47 K [73]. At the PT2 stage, it produces 2.0 W of cooling power at a temperature of

4.2 K to generate temperatures of ∼ 3.5 K. After the PT2 stage, the 1 K pot stage uses

evaporative cooling of helium-4 to generate temperatures of ∼ 1.2 K. Finally, dilution

cooling of helium-3/helium-4 mixture is used at the mixing chamber (MC) stage to provide

300 µW of cooling power at 100 mK, which reaches a base temperature below 11 mK

without load [74]. In experiment, we attain a base temperature of ∼ 35 mK at the MC

stage.

The sample stage is attached and thermalized to the MC stage. During experiment

with the cryolink, heatable components and input signals to the sample stage dissipate

heat and hence heat up the mixing chamber to ∼ 50 mK. Without the cryolink attached,

we reach a base temperature of ∼ 15 mK. The microwave building blocks installed at the

sample stage are detailed in Section 4.1.2.

Bob cryostat

The Bob cryostat is a dry dilution refrigerator manufactured by Oxford Instruments.

It uses the commercial Triton design from Oxford Instruments, but with an additional
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Figure 5.3: (a) Photograph of the Bob cryostat with labels for each temperature stage. (b) Photograph

of the Bob cryostat along with the supporting frame.

opening at the bottom shields to connect to the cryolink. The layer structure for the

shields of Bob cryostat coincides with that of Alice. However, the Bob cryostat is larger

in radius and has significantly stronger cooling power. The structure of the Bob cryostat

can be seen from Figure 5.3.

Similar to the Alice cryostat, the OVC, PT1, and PT2 shields are made of aluminum,

while the still and MC shields are made of copper. The Bob cryostat uses a Cryomech

PT415 Cryocooler PTR to cool the PT1 and PT2 stages. At the PT1 stage, it produces

40 W of cooling power at a temperature of 45 K to generate temperatures of ∼ 42 K

[73]. At the PT2 stage, it produces 1.5 W of cooling power at a temperature of 4.2 K to

generate temperatures of ∼ 3.4 K. The Bob cryostat does not have a 1 K pot, and instead

uses a Joule-Thomson cooler to generate temperatures of ∼ 1.2 K. Dilution cooling is

used in the MC to provide 500 µW of cooling power at 100 mK and 20 µW of cooling

power at 20 mK [75]. In the case that the cryogenic link is attached, we attain a base

temperature of ∼ 20 mK, which is lower than that achievable by the Alice cryostat.

During experiment, heatable components and input signals to the sample stage dissipate

heat and thus heat up the mixing chamber to ∼ 35 mK. The microwave building blocks

installed at the sample stage are detailed in Section 4.1.2.

The Bob cryostat shows improved performance compared to the Alice cryostat, mainly

because the cryolink shields are designed specifically for the Bob cryostat but not for our

home-built Alice cryostat. For example, the pre-cooling and mixing circuits in the Bob
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Figure 5.4: (a) Photograph of the adapter piece that connects the Alice cryostat with the link arm

segment towards the Eve cryostat. (b) Photograph of the link arm segment with labels for

each layer. (c) Photograph of the C-shaped pieces that contain the NbTi superconducting

cables and connect the cryostat with the link arm.

cryostat allow greater throughput and the Joule-Thomson cooler requires less pre-cooling

of the input mixture. Also, the cooldown is automatically executed in an optimized way,

which results in a faster cooldown time. In comparison, the Alice cryostat valves are all

manually operated during cooldown.

Cryogenic link

The cryogenic link is the main novel component of the MQCL. It directly connects the

mixing chamber shields of the Alice cryostat and the Bob cryostat. The superconducting

transmission lines in the cryolink serves as a quantum channel that allows, for instance,

entanglement distribution between the Alice cryostat and Bob cryostat. It can also serve

as a low-loss classical channel to transmit, for instance, the analog feedforward in our

teleportation protocol. The structure of the cryolink can be seen from Figure 5.4.

Consistent with the cryostats, the cryolink consists of five layers separated by high

vacuum. These layers are formed by the OVC, PT1, and PT2 shields made of aluminum,

and the still and MC shields are made of polished copper. The ends of the cryolink are

thermalized by direct contact with the Alice and Bob stages. At the center of the cryolink

is a partially equipped cryostat, which we call Eve. The Eve cryostat only has a Cryomech

PT415 PTR for cooling the PT1 and PT2 stages, but no dilution unit. The PT415 cooler
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can reach a PT2 base temperature of 2.8 K without load. In combination with the cooling

from the Alice and Bob mixing chambers, this is already enough to generate temperatures

of ∼ 50 mK on the Eve mixing chamber tube and temperatures of ∼ 100 mK on the

superconducting cables inside Eve. This temperature is measured at the center of the

superconducting cable, which is threaded in the innermost layer of the cryolink. Thus,

dilution cooling is not required for the Eve cryostat.

The Alice and Bob experimental setups are connected using 6-meter-long NbTi su-

perconducting cables threaded through the cryolink. At a base temperature of ∼ 120
mK, the cyrogenic channel allows the cables to become superconducting. Thus, quantum

signals sent across the cable experience negligible disturbances and we protect quantum

coherence in our experiments.

5.1.2 Superconducting cryogenic channel

The cryogenic link connects the Alice mixing chamber with the Bob mixing chamber with

a superconducting channel. This is implemented by threading three 6-meter-long NbTi

superconducting cables through the cryolink and attaching them to the experimental

setups via SMA connectors. These long superconducting cables are thermalized every

meter with silver wires. Since the cables are superconducting at cryogenic temperatures,

signals can travel through with negligible losses and low thermal noise.

In the experimental setup, three NbTi cables are threaded through the cryogenic link.

For the teleportation experiment, one of the cables is used as the quantum channel for

entanglement distribution. A second cable is employed as the classical channel for sending

the analog feedforward signal. In this section, we discuss the cryogenic quantum and

classical channels.

Quantum channel

The quantum channel carries the quantum resource from the Alice cryostat to the Bob

cryostat. In the analog quantum teleportation protocol, a TMS state is shared between

Alice and Bob as the entanglement resource. This is achieved by generating a TMS state

in the Alice setup, by passing two orthogonally squeezed Gaussian states through a beam

splitter, and then keeping one output at Alice and sending the other output to Bob. This

distribution of quantum entanglement towards the Bob cryostat is done over the quantum

channel.

Since the quantum channel utilizes a superconducting cable in cryogenic temperatures,

the transferred quantum state can maintain their quantum coherence. This is because

NbTi cables have superconducting losses of less than 0.3 dB/m. Furthermore, the

thermal noise at the cryogenic link base temperature of ∼ 120 mK is ∼ 0.1 photons

at microwave frequency modes, which is relatively small compared to the signal of & 1
photons. Thus, the quantum resource can be obtained with relatively high purity at the
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Bob cryostat, which enables the analog quantum teleportation protocol. We note here

that the fluctuation-dissipation theorem implies that losses and noise cannot be regarded

as decoupled quantities and only their product is relevant.

Classical channel

In the analog quantum teleportation protocol, the Bell measurement result is sent from

Alice to Bob in the classical feedforward channel, and determines the displacement for

retrieving the input state. The Bell measurement is realized by superimposing the

input state and Alice’s TMS resource state via a beamsplitter, and then projecting

the superposition along two orthogonal quadratures. This operation is implemented by

strongly amplifying the signal along certain quadratures, which approximates a projection

in the large gain limit [14]. The feedforward signal becomes classical since the power of

vacuum fluctuations becomes small compared to the signal power.

Similar to the quantum channel, the classical channel benefits from negligible losses

and low thermal noise. However, these conditions are not necessary since the feedforward

signal is relatively robust against losses and noise. In particular, losses in the classical

channel can be compensated by increasing the gain before the classical channel. Also,

ambient thermal noise in the classical channel is small when compared to the strongly

amplified feedforward signal. Thus, we can interpret that quantum teleportation performs

error-correction on the classical feedforwad signal, which is discussed in Section 3.3.3. The

main deterioration of the feedforward signal happens due to the amplification noise of

the amplification devices. This is due to the Friis equation, where the amplifier noise is

effectively amplified in the same way as the signal.

In view of the robustness of the feedforward signal against losses and noise, a variation

of the experimental setup is proposed. That is to send the feedforward signal over a

room-temperature classical channel instead of through the cyrogenic link. This method is

feasible because the main obstacle with implementing a room-temperature feedforward is

the high thermal noise, which can eventually be overcome with sufficient amplification

within the cryogenic stages. Analysis and simulation results in this regard are presented

in Section 3.3.

5.1.3 Assembly of cryogenic link

The cryogenic link is a novel device, especially with arm segments that connect three

cryostats. In total, the cryolink consists of around 60 shields and 2000 screws that

must be installed for assembly. While the cryolink components have been tested by

Oxford Instruments, we complete the first installation of the entire cryolink and discover

many empirical solutions. Since assembling the cryolink requires great technical care and

patience, we describe the whole assembly procedure in a precise way. In this section, we

explain the assembly procedure and describe the alignment between the cryostats and the
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Figure 5.5: Flowchart of the assembly procedure for the cryogenic link. The middle column lists the

main assembly procedures. The side columns list the auxiliary steps for each procedure.

cryolink arm. The system is ideally installed with three people.

Assembly procedure

We explain in detail the assembly procedure, since the cryolink parts fit together in an

interdependent way. In particular, some components must be fixed in a specific order,

otherwise they are not possible to access afterwards. The assembly procedure can be

divided into three parts, namely installing the cryostat shields, installing the link arm

adapters, and completing the assembly. Figure 5.5 is a flowchart of the assembly procedure.

In the first step, we close the shields of the respective individual cryostats and keep

the bottoms of the shields open to maintain access to the experimental setup, before

connection of the link arms. The procedure is similar for both the Alice and Bob cryostats.

The shields must be screwed onto the cryostat starting from the uppermost stage and

innermost layer, then proceeding downwards and outwards. This requires two to three

people, with one person screwing and one to two people holding the shield. It is important

to note the size of each shield before installing, as some outer shields are large, such that

an inner shield of a lower stage should be installed before this outer shield. Great care

should be taken when closing the OVC shields since the Viton O-rings used are susceptible

to dust, which might eventually create leaks. The main difference between the MQCL
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prototype and conventional cryostats is the connection to the link arm segments. When

installing the shields that attach to the arm segments, the connection ports can be aligned

via long screw holes. It is important to carefully align each cryostat shield with respect to

the link arm, since the orientation of the inner shields cannot be changed after installation

of the OVC shield. Once the shields are installed, corresponding blanks are fixed on the

connection ports on the opposite side of the link arm.

Installing the link arm adapters requires careful alignment between the cryostat and

the link arm. First, the cylindrical adapter pieces must be inserted coaxially inside the

connection ports of the cryostat shields. This should be done when installing the OVC

shield, such that the cylindrical adapter pieces are placed inside the connection port while

the OVC shield is installed. Otherwise, there is not enough space to insert the cylindrical

adapter pieces after the OVC shield is installed. Then, the cylindrical adapter pieces are

screwed onto their corresponding shields, where the MC and still adapters are screwed

from the inside of the cryostat and the PT2 and PT1 adapters are screwed from the

outside. We use molybdenum washers on the MC to establish better thermal contact at

cryogenic temperatures, since this type of washer compensates for the different contraction

lengths of our stainless steel screws and copper pieces. The still and PT2 adapters should

first be fixed with a few screws, which makes installing the MC cylindrical adapter pieces

more convenient. After the link adapter pieces are screwed onto the cryostat ports, the

C-shaped adapter pieces used to connect with the link arm segment can be installed. It is

crucial to place the arm segment O-ring before attaching the C-shaped pieces, since the

O-ring cannot be inserted after the adapter pieces are installed. Also, before installing

the C-shaped pieces, we need to bend in situ the superconducting cables from the setup

and the silver thermalization wires through the connection port for the mixing chamber.

It is crucial to check that the superconducting cables and silver wires are connected, as

they cannot be accessed after the C-shaped pieces are installed. While the C-shaped

pieces allow for decent mechanical flexibility, the alignment must still be done slowly and

precisely. Thus, it is better to screw the pieces with multiple revolutions, such that the

tension is evenly distributed. We again use molybdenum washers on the MC pieces for

better thermal contact. Next, we use aluminum tape to cover the gaps in the C-shaped

pieces to reduce thermal radiation. To align the PT2 and PT1 pieces, we need to overcome

greater tension in the link arm segment. Thus, it is easier to hold the arm segment in

place and then to insert the C-shaped pieces. After installing the C-shaped pieces, it

is important to wrap at least 20 layers of superinsulation around the PT1 pieces and

link arm segments, as this significantly reduces the impact of thermal radiation from the

room temperature shield. Finally, the OVC adapter can be attached. This is done by

first screwing the adapter piece to the correct position on the link arm segment and then

aligning the arm segment with the cryostat connection port. This alignment process is

described in detail in the next section.

After the entire cryolink is installed, we complete the assembly procedure by performing
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a leak test. The leak test is important to make sure that no gas from the atmosphere

enters the cryolink, which would cause a thermal short between the layers. Once the

leak test is completed, we can begin a full cooldown of the cryolink. We first start the

pre-cooling process by turning on the PTRs of Alice, Bob, and Eve. After the PT2

stages reach temperatures below 4 K, we can start the 1K circuit and mixture circuit in

Alice. We start the commercial cooldown script for Bob only when Alice nearly finishes

condensation, since Bob condenses faster than Alice. The cooldown is complete when the

mixtures in both Alice and Bob are fully condensed.

Cryolink alignment

Careful alignment of the cryostat connection ports with the link arm segment is crucial

for establishing a vacuum-tight connection between the cryostat shields and the link arm.

While there a a few centimeters of leeway in the cryolink design, the different modules of

the cryolink move by a few centimeters after cooldown and disassembly due to thermal and

mechanical stress in the system. Thus, the cryolink modules need to be almost completely

realigned for each assembly. In particular, it is important to match the displacement and

angle between the OVC adapter and its connection port for alignment. In the following,

we describe how we realize this fine-tuned alignment.

There are several places which allow for flexibility regarding alignment. The Alice

cryostat can be adjusted by the flexible washers and the pressure gauges in its supporting

frame. The Eve cryostat can be adjusted by screwing the supporting plate on its frame,

such that the screws push the cryostat in the opposite direction. The Bob cryostat can

similarly be adjusted by screwing the supporting plate on its frame. The cryostat frames

can also be moved by pushing to gain distance. The link arm segments can be raised by

using a lifting crane, so that the link arms match in height with the cryostat connection

ports. When aligning the cryolink, it is better to first match the angular orientation

between the link arm segments and the cryostat connection ports while leaving a gap, and

then adjust the displacement to close the gap. The angular orientation can be adjusted at

the Alice and Bob cryostats by rotating the entire cryostats. The displacement can be

adjusted by pushing the Eve cryostat. Once one side of the cryolink is closed, it is still

possible to push the Eve cryostat towards the other side to gain distance. It is important

to take care that the orientation between link arm segments and the cryostat connection

ports match, because misalignment easily leads to a leak.

5.1.4 Cryolink modifications

We make several modifications to the MQCL to optimize its performance. In particular,

the cooling power of the individual cryostats can be upgraded to support the larger cryolink

structure. Additionally, we insert charcoal sorbs and superinsulation to let the cryolink

run in a more stable manner. In this section, we discuss the cold head replacement and
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Figure 5.6: (a) Photograph of the old Cryomech PT410 PTR cold head installed in the Alice cryostat.

(b) Photograph of the new Cryomech PT420 PTR cold head installed in the Alice cryostat.

additional components inserted to improve the cryolink performance.

Cold head replacement

The Alice cryostat originally uses a Cryomech PT410 Cryocooler pulse tube refrigerator,

which has 40 W cooling power at 45 K and 1.0 W cooling power at 4.2 K, at its PT1 and

PT2 stages [73]. However, in the first cooldown attempt with the entire cryolink, the

Alice cryostat only reached final temperatures of 62 K at the PT1 stage and 5.6 K at the

PT2 stage. These temperatures are significantly higher than the target values of ∼ 45
K at PT1 and ∼ 3 K at PT2, and are insufficient for recondensing the helium-3 that is

pumped out of the still chamber with the TMP. The dilution cooling process does not

work effectively and a mixing chamber temperature of only ∼ 500 mK is attained. Thus,

we look to upgrade the cold head onto a Cryomech PT420 Cryocooler PTR, which has 55
W cooling power at 45 K and 2.0 W cooling power at 4.2 K [73]. In order to replace the

cold head, new adapters must be designed since the old and new cold heads have slightly

different heights. Furthermore, the capillaries for the helium circuits need to be resoldered

for the cold head exchange. The entire modification process is done with care due to the

tight space and myriad components inside the cryostat. Fig. 5.6 compares the old and

new cold heads installed in the Alice cryostat.

After installing the Cryomech PT420 Cryocooler PTR, the Alice cryostat reaches
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Figure 5.7: (a) Photograph of the thermalization braids at the cryolink arm segment. We tie down

the braids with wax string to prevent thermal contact with the OVC adapter piece. (b)

Photograph of the superinsulation wrapped around the thermalization braids. We add the

superinsulation to reduce thermal radiation from the OVC layer to the PT1 layer.

temperatures of 59 K at the PT1 stage and 4.6 K at the PT2 stage, which is still

insufficient to effectively execute dilution cooling. While the Alice mixing chamber reaches

a temperature of ∼ 100 mK, it is largely due to cooling power from the Bob mixing

chamber. After inspecting the entire cryolink, we find that the OVC adapters between the

cryostats and the link arm segments are significantly colder compared to room temperature.

We suspect that there is a touch between the PT1 braids in the link arm segment and

the room-temperature OVC shields. Thus, we tie down the braids using multiple layers

of wax string and cover them with superinsulation to reduce the thermal coupling, as

shown in Fig. 5.7. As a result of this modification, the Alice cryostat attains 49 K at the

PT1 stage and 3.5 K at the PT2 stage. This is then sufficient for a full cooldown and we

achieve a base temperature of 35 mK at the Alice mixing chamber.

Charcoal sorbs and superinsulation

There are a few additional components added into the cryolink to improve its performance.

During each cooldown, there is a clear uptrend in the Alice PT2 temperature of around 1
mK/hr. With an initial temperature 3.5 K and a limiting temperature around 4 K, at

which liquid helium begins to evaporate, this means that the cryolink can only survive

for around three weeks before it breaks down. This uptrend is probably a result from

gas leakage into the cryolink vacuum through out Viton O-rings. Thus, we install several

charcoal sorbs and more superinsulation, hoping to extend the lifetime of a cryolink

cooldown. Fig. 5.8 show how these additional components are installed.
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Figure 5.8: (a) Photograph of a small charcoal sorb placed between the still and MC stage of the Alice

cryostat. (b) Photograph of a large charcoal sorb placed at the PT2 stage of the Alice

cryostat. (c) Photograph of superinsulation wrapped around the PT1 shield of the Alice

cryostat. (d) Photograph of the superinsulation wrapped around the thermalization braids

near the PT1 link arm adapters. (e) Photograph of the superinsulation and charcoal sorb

added to the PT1 blank.

Charcoal sorbs work as strong absorption pumps for fluids at cryogenic temperatures.

We hypothesize that nitrogen and water may leak into the cryolink vacuum from the

atmosphere. In addition, we potentially suffer from cold leaks in our resoldered helium

circuits. These fluids create a thermal shortage between stages, which might create more

heat leakage and reduce the effective cooling power of the system. Hence, we place charcoal

sorbs at several strategically chosen locations around the cryolink, namely onto the PTR

stage of the Alice cryostat, onto the coil exchanger stage of the Alice cryostat, and at

the PT1 blanks of all three cryostats. However, this does not significantly improve the

temperature uptrend of the cryolink, which means that the heating effect may not come
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from helium leakage. From this experiment, we learn that these temperature uptrends are

not a result from fluids which directly short different temperature stages, but potentially

from water which freezes on top of the superinsulation and thereby changes the reflective

properties of the PT1 shields.

Superinsulation improves the reflective surface properties and thereby reduces the heat

load from thermal radiation. We cover the cryostat shields and link arm adapters of

the PT1 stage with superinsulation and see a significant improvement in the cryolink

temperatures, with the Alice PT2 initial temperature dropping from around 3.8 K to

3.5 K. This means that it is crucial to reduce thermal radiation from the OVC to the

PT1. However, even with superinsulation the temperature uptrend still persists at the

same rate, which means that the temperature uptrend probably results from the fact that

the reflection properties of the superinsulation change over time due to gas adsorption.

Nevertheless, the superinsulation extends the cryolink lifetime by multiple days.

The uptrend results from the change of the superinsulation reflection properties, which

is likely due to water which diffuses through the O-rings. It might be helpful to investigate

each module separately or with less thermal load, and observe how the system evolves. A

possible solution is to improve the helium-3 precooling in the Alice cryostat, for example by

installing a Joule-Thomson cooler or additional counterflow heat exchangers. In addition,

we can add superinsulation to the remaining link arm segments, which have not been

open since initial installation.

5.2 Entanglement distribution

The MQCL allows the sharing of quantum information in a cryogenic environment. Due

to the cryogenic temperature, propagating quantum microwave signals can travel across

the superconducting cable while maintaining quantum coherence. In our experiment, we

demonstrate quantum state transfer and entanglement distribution over the MQCL. The

success of these processes is the foundation for more advanced quantum communication

protocols, such as quantum teleportation. In this section, we describe quantum state

transfer and entanglement distribution over our the MQCL and present the corresponding

experimental results. We also discuss entanglement distribution over a thermal channel

which we artificially create by heating the center of our cryogenic link.

5.2.1 Quantum state transfer

Quantum state transfer is implemented in the MQCL by generating a squeezed state in

the Alice cryostat and then sending it to the Bob cryostat. First, a pumped JPA in the

Alice mixing chamber generates phase-space squeezing in a selected vacuum mode around

5 GHz. Then, the squeezed state propagates to Bob through a superconducting cable over

the cryogenic link. We determine the success of quantum state transfer by amplifying the
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Figure 5.9: Measurement of quantum state transfer over the cryolink. The working point resonance

frequency is f0 = 5.435 GHz. Pump powers are referred to the input port of the JPA pump.

(a) Squeezing level as a function of pump power. (b) Purity as a function of pump power.

QLAN represents the state sent across the MQCL, local represents the state measured at

Alice, and corrected represents the state after correcting for the hybrid ring.

propagating signal from Bob and measuring it with a room-temperature FPGA setup on

the Alice side. Experimentally, we measure that indeed a squeezed state is retrieved in the

Bob cryostat, which corresponds to the quantum state generated from the Alice cryostat.

Fig. 5.9 shows the experiment results for quantum state transfer. We compare the local

version of a generated squeezed state with the version that is sent over the MQCL, and

find that the results match well. We remark that the measured squeezing level is limited

to 3 dB, because the squeezed state passes through a hybrid ring and becomes mixed

with a weak thermal state. The weak thermal state contributes a minimum quadrature

variance of 1/8, which corresponds to a squeezing level of 3 dB. We can retrieve the

original squeezed state by using quantum state reconstruction as detailed in 4.2.3. With

this method, we reconstruct a maximum squeezing level of around 8 dB. We also measure

the purity of the squeezed state and see that purity decreases with higher pump power

due to amplification noise. Thus, when generating squeezing states for our experiment,

there is a trade-off between squeezing level and state purity.

5.2.2 Entanglement distribution over the cryolink

Entanglement distribution over the cryolink is implemented in the MQCL by generating a

TMS state in the Alice cryostat and then distributing it between Alice and Bob. First,

two pumped JPAs in the Alice mixing chamber generate phase-space squeezing along

orthogonal quadratures in a selected vacuum mode around 5 GHz. The two squeezed states

pass through a hybrid ring, which forms a TMS state at the outputs. Then, one output

signal is kept in Alice and the other output signal is sent to Bob through a superconducting
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Figure 5.10: Measurement of entanglement distribution over the cryolink, by calculating negativity as a

function of pump power. The working point resonance frequency is f0 = 5.435 GHz. Pump

powers are referred to the input port of the JPA pump. JPA1 represents the state when

only JPA1 is pumped, JPA2 represents the state when only JPA2 is pumped, and TMS

represents the state both JPAs are pumped. We see that N > 0 for certain pump powers,

which implies that entanglement is shared over the cryolink.

cable over the cryogenic link. Finally, the TMS state is shared between Alice and Bob,

with which we reconstruct the respective quantum correlations. In addition to the TMS

state measurement, we also measure single-mode squeezed states, generated by JPA1

or JPA2 individually, that are split up by a hybrid ring. We determine the success of

entanglement distribution by amplifying the propagating signals from Alice and Bob, and

measuring them with a room-temperature FPGA setup. In this measurement, we look

for quantum correlations between the signal quadratures and determine the negativity,

which acts as an entanglement monotone. The negativity is defined as in Section 2.1.3.

Experimentally, we measure that indeed the signals from Alice and Bob are entangled,

which implies successful entanglement distribution.

Fig. 5.10 shows the experiment results for entanglement distribution over the cryolink.

We measure the negativity of the states shared over the cryolink to determine the quantum

entanglement. When we share quantum states between Alice and Bob with squeezing

only in JPA1 or JPA2, we measure negativity N > 0 for all pump powers below 7 dBm ,

indicating shared quantum entanglement. When both JPAs generate squeezing and we

share a TMS state between Alice and Bob, the negativity becomes much higher. This

verifies that we indeed distribute quantum entanglement between Alice and Bob in the

form of a TMS state.
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Figure 5.11: Measurement of entanglement distribution at elevated temperatures. The working point

resonance frequency is f0 = 5.435 GHz. S0 represents the squeezing level at base temperature.

The cryolink temperature is measured as the ambient temperature at the center of the

cryolink. We share a squeezed state generated by JPA2 over the cryolink. (a) Squeezing

level as a function of cryolink temperature. (b) Purity as a function of cryolink temperature.

(c) Negativity as a function of cryolink temperature. We see that there are fluctuations in

the squeezing level values.

5.2.3 Entanglement distribution over a thermal channel

Entanglement distribution over a thermal channel is implemented in the MQCL by

repeating the previous experiments in Section 5.2.1 and Section 5.2.2 but for multiple PID-

stabilized temperatures at the cryolink center. The temperature of our superconducting

transmission lines inside the cryogenic link is controlled using PID control architecture,

consisting of a 100 Ω heater and a rubidium oxide sensor. Since the heater is placed at

the cryolink center, it provides the benefit of a localized heating in the center.

By inducing elevated temperatures in the cryolink environment, we can examine the effect

of ambient thermal noise on the entanglement distribution. In general, additional thermal
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noise in the environment couples into the quantum signal via the beam-splitter model

and reduces the quantum correlations in the signal. However, since the superconducting

cables used to carry the signal has low losses, the coupled thermal noise is negligible over

the 6.5 m cryolink distance. Thus, as long as the channel is still superconducting, there

should be no significant difference in the properties of entanglement distribution up to

moderate temperatures. In this measurement, we follow the same procedure as in Section

5.2.1 and Section 5.2.2 to characterize entanglement distribution but vary the cryogenic

link temperature from 120 mK base temperature up to 1 K. Experimentally, we measure

that indeed the entanglement distribution performs similarly across temperatures and

that the cryogenic channel is robust against ambient thermal noise.

Fig. 5.11 shows the experiment results for entanglement distribution at elevated

temperatures. We generate a single-mode squeezed state and distribute it between Alice

and Bob by splitting it through a hybrid ring. This procedure mixes the squeezed state

at on input with a weak thermal state at the other input. We measure the squeezing,

purity, and negativity of the shared state over the cryolink while changing the cryolink

temperature. These values are relatively independent of the cryolink temperature, with

fluctuations explained by variations in the heatable attenuator temperature. In particular,

the purity of the shared state remains stable across temperatures, indicating that there is

little influence from the thermal noise. This verifies that indeed entanglement distribution

over our MQCL is robust against ambient thermal noise up to moderate temperatures.

We thereby demonstrate the fluctuation-dissipation theorem.
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Experimental quantum teleportation

In this chapter, we present the experimental results for quantum teleportation over the

MQCL. This is the first demonstration of microwave quantum teleportation between

spatially-separated cryostats. The successful realization of the quantum teleportation

protocol with propagating microwaves is a strong step towards establishing a QLAN in

the microwave regime. In Section 6.1, we present the results of our quantum teleportation

measurement, including the necessary calibration measurements. In Section 6.2, we discuss

our plans for implementing quantum teleportation over a room temperature feedforward

channel.

6.1 Microwave teleportation over MQCL

The MQCL is used in our quantum teleportation experiment to provide a cryogenic

environment for entanglement distribution and for transmitting the feedforward signal.

The measurements in our experiment are done in analogy to the measurements in Ref.

[14]. In order to perform quantum teleportation with high fidelity, we need to generate

a balanced TMS as state entangled resource and perform a balanced Bell measurement.

Furthermore, we need to calibrate the input displacement photon number to determine

our available codebook space and communication security. In this section, we describe

the calibration and balancing measurements needed to perform quantum teleportation.

Finally, we present the measurement results of our microwave quantum teleportation

experiment. We note that JPA1 and JPA2 are used to generate the TMS state, while

JPA4 and JPA5 are used to implement the Bell measurement. JPA3 is installed in the

setup to generate squeezed input states, but is not utilized for our current experiment.

6.1.1 State displacement calibration

We perform a coherent photon number calibration in order to determine the displacement

of our coherent signals at the input of Alice’s measurement setup. This is needed when we

want to generate input signals of a desired displacement and compare them to the output

signal displacement. The amplitude and phase of the displacement is determined by the

75
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Figure 6.1: Calibration of displacement photons in terms of input state power, referred to the input port

of the JPA signal line. The input signal has a frequency of 5.55 GHz.

power and phase of the coherent signal, respectively. Thus, we need to map the coherent

input power to displacement photon numbers. We do this calibration by measuring the

output when the SGS microwave source is chosen at a specific signal power, along with the

reference when the SGS source is turned off and no displacement is applied. We run the

measurement in a 2-pulse scheme using the DTG, where each pulse activates a different

subset of microwave sources. We then use reference state reconstruction to determine the

displacement photon number at our chosen signal power.

Fig. 6.1 shows the measurement results for our state displacement calibration, where

we use working frequency f0 = 5.55 GHz. We plot the displacement photon number nd

obtained from reference state reconstruction against the input signal power. We use input

state powers ranging from −166 to −126 dBm, which correspond to displacements of

around 10−2 to 102 photons. This range is sufficient to cover the displacement regime

we are interested in for our quantum teleportation experiment, which ranges from a few

photons to tens of photons. As expected, we see that the displacement photon number

depends linearly on the input power.

6.1.2 State balancing calibration

We perform state balancing calibration in order to obtain higher fidelities and no phase

dependence in our quantum teleportation result. We begin the calibration by choosing

rough working points for JPA1 and JPA2 for generating a TMS state and by choosing

rough working points for JPA4 and JPA5 for the Bell measurement. We then fix the

JPA2 and JPA4 parameters, and optimize the state balancing by varying the JPA1 and

JPA5 parameters. For the state balancing calibration, we use 1.1 displacement photons,

corresponding to input signal power of −146 dBm. To begin the calibration procedure,

we choose a squeezing level of 3 dB, corresponding to initial JPA1 pump power of −75
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Figure 6.2: Optimization of JPA5 squeezing angle for the quantum teleportation experiment. The input

signal has a frequency of 5.55 GHz and displacement photon number of 1.1. (a) Measurement

of displacement photons nd while sweeping JPA5 squeezing angle γ5 and target state angle.

(b) Measurement of fidelity F while sweeping JPA5 squeezing angle γ5 and target state angle.

The optimal JPA5 squeezing angle is chosen at γ5 = 138◦, which is denoted by the red box.

dBm and JPA2 pump power of −31 dBm, and also choose a Bell measurement gain of 21
dB, corresponding to initial JPA4 pump power of −20.45 dBm and −20.03 dBm. JPA1

and JPA4 squeezing angles are initialized at 45◦, while JPA2 and JP5 squeezing angles

are initialized at 135◦.

JPA5 angle sweep

We balance the Bell measurement to reduce the displacement angle dependence of the

teleportation protocol. In effect, we balance the electric path in length in both arms of the

interferometer that forms the Josephson mixer. Ideally, the teleportation protocol should

perform uniformly for all target state angles, so that we obtain a codebook symmetric

in signal phase. We begin this calibration by fixing the JPA4 parameters and sweeping

the JPA5 squeezing angle γ5. Fig. 6.2 shows the measurement results for our JPA5 angle

calibration. We sweep the JPA5 angle from 130◦ to 138◦ around our initial value. We

cover 180◦ in the target state angle since the behavior is 180◦-periodic. We see from Fig.

6.2(a) that the detected number of displacement photons is least dependent on target state

angle at γ5 = 138◦. Moreover, we see from 6.2(b) that the teleportation fidelity is most

uniform around γ5 = 138◦. Thus, we choose γ5 = 138◦ as the optimal JPA5 squeezing

angle in this balancing step.

JPA5 power sweep

We continue to balance the Bell measurement, by fixing the JPA4 parameters and sweeping

the JPA5 pump power P5. Fig. 6.3 shows the measurement results for our JPA5 pump
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Figure 6.3: Optimization of JPA5 pump power for the quantum teleportation experiment. The input

signal has a frequency of 5.55 GHz and displacement photon number of 1.1. Pump power is

referred to the input port of the JPA pump. (a) Measurement of displacement photons nd

while sweeping JPA5 pump power P5 and target state angle. (b) Measurement of fidelity F

while sweeping JPA5 pump power P5 and target state angle. The optimal JPA5 pump power

is chosen at P5 = −19.85 dBm, which is denoted by the red box.

power calibration. We sweep the JPA5 pump power from −20.20 to −19.80 dBm around

our initial value. We see from Fig. 6.3(a) that the displacement photons is least dependent

on target state angle at P5 = −19.85 dBm. Moreover, we see from 6.3(b) that the

teleportation fidelity is also most uniform around P5 = −19.85 dBm. We note that

teleportation fidelity deteriorates at higher pump powers due to increased amplification

noise from the JPA. Thus, we choose P5 = −19.85 dBm as the optimal JPA5 squeezing

angle in this balancing step.

TMS state balancing

We then balance the TMS state to improve the interference effect of this entangled resource,

and thereby optimize teleportation fidelity. Ideally, the TMS state should be balanced, so

that we have perfect destructive interference of the quantum noise at Bob’s directional

coupler. We begin this calibration by fixing the JPA2 parameters and sweep the JPA1

squeezing angle γ1 and pump power P1. Fig. 6.4 shows the measurement results for our

JPA1 calibration. We sweep the JPA1 squeezing angle from 15◦ to 55◦ and the JPA1

pump power from −75.7 to −74.3 dBm around our initial values. We see from Fig. 6.4

that the purity and variance ratio behave in opposing manners. Thus, we find an optimal

compromise where simultaneously variance ratio is lowest and purity is highest at γ1 = 55◦
and P1 = −75.7 dB m. This working point gives a variance ratio σ2

r = 1.23 and a purity

µ = 0.389.
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Figure 6.4: Optimization of TMS state balancing for the quantum teleportation experiment. The

input signal has a frequency of 5.55 GHz and displacement photon number of 1.1. (a)

Measurement of purity µ while sweeping JPA1 pump power P1 and JPA1 squeezing angle

γ1. (b) Measurement of variance ratio σ2
r while sweeping JPA1 pump power P1 and JPA1

squeezing angle γ1. The optimal working point is chosen at P1 = −75.7 dBm and γ1 = 55◦,

which is denoted by the red box. This gives a variance ratio σ2
r = 1.23 and a purity µ = 0.389.

6.1.3 Microwave quantum teleportation

After choosing the optimal working parameters, we can proceed with the quantum

teleportation measurement. We run the measurement in a 8-pulse scheme using the DTG.

The pulses that include only individual JPAs are used to stabilize the JPA squeezing

angles. The pulse with no input signal and the pulse with only the coherent signal are used

as references. The pulse that includes JPAs 1/2/4/5 and the coherent signal implements

quantum teleportation. The pulse that includes only JPAs 4/5 and the coherent signal

implements classical teleportation. We then compare the fidelities between the quantum

teleportation and classical teleportation measurements to see if a quantum advantage is

achieved.

Fig. 6.5 shows the results for our teleportation experiment. We sweep the full 360◦
target state angle and the target state power from −156 to −136 dBm, corresponding

to displacement photon numbers from 0.07 to 7.79. We observe that fidelities are higher

for small displacement photon numbers, since these states are more closely resembled by

the ambient thermal noise and also the JPAs enter compression for high photon numbers.

We see that classical teleportation attains higher fidelities for small displacement photon

numbers, but is surpassed by quantum teleportation fidelity at around 1.11 displacement

photons. In particular, quantum teleportation fidelity is on average 0.129 higher than

classical teleportation fidelity at around 7.02 displacement photons. The reason that

classical fidelity exceeds quantum fidelity at low displacement photon numbers is because

we do not ideally match the projection condition Gβ = 4. Furthermore, the average
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Figure 6.5: Results for a microwave quantum teleportation experiment over the cryogenic link. Input

state power is referred to the input port of the JPA signal line. (a) Measurement of classical

teleportation fidelity Fclassical while sweeping input state power and target state angle. (b)

Measurement of quantum teleportation fidelity F while sweeping input state power and target

state angle. (c) Measurement of quantum advantage F − Fclassical while sweeping input state

power and target state angle. Quantum advantage is calculated here as the fidelity advantage

of the quantum teleportation case over the classical teleportation case. (a) Measurement

of displacement photons nd while sweeping input state power and target state angle. We

see that there is a quantum advantage above 1.11 displacement photons. Furthermore, the

average quantum teleportation fidelity remains above 0.547 up to 4.45 displacement photons,

which exceeds the asymptotic classical limit F = 1/2.

quantum teleportation fidelity remains above 0.547 up to 4.45 displacement photons,

which exceeds the asymptotic classical limit F = 1/2. These results show that microwave

quantum teleportation has been successfully demonstrated and indeed achieves a quantum

advantage.
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Figure 6.6: Simulation results for implementing a room temperature feedforward channel in the quantum

teleportation experiment. We assume that the amplification chain fully compensates for the

cable and fridge attenuations. (a) Classical teleportation fidelity for different attenuation levels

in the RT cable and fridge. (b) Quantum teleportation fidelity for different attenuation levels

in the RT cable and fridge. (c) Fidelity of quantum teleportation and classical teleportation

depending on the amount of noise in the amplification chain before room temperature. We

take JPA noise to be quantum-limited at 1/2 photons and HEMT noise to be 7 photons.

6.2 Analog quantum teleportation with room

temperature feedforward

With the successful realization of quantum teleportation over the cryogenic link, we

theoretically investigate quantum teleportation over a RT feedforward. We can then

experimentally test our theory about teleportation over thermal channels and its function

as an error-correction scheme for Gaussian imperfections, as described in Section 3.3.

We simulate teleportation over a RT feedforward using the scheme in Fig. 3.2. From

Fig. 6.6(a,b), we see that quantum teleportation fidelity surpasses classical teleportation
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Figure 6.7: (a) Photograph of cryogenic switch in the Alice cryostat. (b) Photograph of the cryogenic

switch in the Bob cryostat. (c) Photograph of the RT amplifier at Alice used to amplify the

RT feedforward signal.

fidelity, and can exceed the asymptotic classical limit F = 1/2, given that there is sufficient

attenuation of the RT signal before it enters the Bob fridge. We note that, in experiment,

the RT cable attenuation is εcable = 7 dB and the fridge attenuation is 54 dB at 5 GHz. The

large attenuation is needed to suppress the Johnson-Nyquist noise from room temperature.

For the simulation, we assume that the amplification chain fully compensates for the RT

cable and fridge attenuations. Furthermore, we see from Fig. 6.6(c) that teleportation

fidelity is limit by the noise in the amplification chain before room temperature. In fact

the HEMT is the main noise sources, because components before the HEMT have low

noise, and noise sources after the HEMT becomes negligible due to the Friis equation,

since the signal is greatly amplified.

We plan to implement quantum teleportation over a RT feedforward by introducing

cryogenic switches at the feedforward superconducting cable. A switch is installed at the

Alice sample stage and receives the feedforward signal after the Bell measurement. One

output of the switch remains connected to the superconducting cables through the cryolink,

while the other output would exit the Alice cryostat into a RT microwave cable (TrueBlue

090-2684, Teledyne Storm Microwave) and reenter the Bob cryostat as a room temperature

input. The 11 m RT feedforward cable is made by connecting two 4 m cables and one

3 m cable, and has an attenuation of 7 dB at 5 GHz. The Bob cryostat has an attenuation

of 54 dB at 5 GHz. To compensate for these losses, we need to utilize a cryogenic HEMT
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(LNF-LNC4 8C) with 42 dB gain and a RT amplifier (AMT-A0033, Agile MwT) with 28
dB gain. Excessive gain can be reduced by adding attenuators in the RT cable. The RT

feedforward signal then travels to the Bob sample stage through a microwave input line.

Another switch is installed in the Bob sample stage, which receives the feedforward signal

from either the cryolink or the room temperature path, and outputs the signal into the

directional coupler. We can use this switch system to choose between operating with the

cryogenic feedforward or the RT feedforward during measurement. Fig. 6.7 shows the

installed switches and RT amplifier in preparation for the RT feedforward experiment.

Studying microwave quantum teleportation under room temperature conditions can give

us better understanding about how thermal noise affects quantum information and can

have practical applications for microwave quantum communication.





Chapter 7

Conclusion and outlook

In this thesis, we analyze analog CV quantum teleportation under realistic scenarios and

construct a cryogenic link to experimentally implement microwave quantum teleportation.

Due to the promising advancements in quantum computers based on superconducting

circuits, microwave quantum teleportation sees applications as an efficient communication

protocol between superconducting quantum processors. Thus, we are motivated to realize

a prototype quantum local area network in the microwave regime. In our experiments, we

use Josephson parametric amplifiers to generate and manipulate propagating quantum

microwaves, such as the two-mode squeezed state that serves as our entangled resource

for quantum teleportation. We use our cryogenic link as a low temperature environment

that connect Alice and Bob for our entanglement distribution and feedforward channels.

As our first main result, we analyze the influence of a finite-energy codebook and

thermal channels on the performance of quantum teleportation. The available codebook

size is limited by the 1 dB compression point of our JPAs, which affects the no-cloning

threshold to guarantee unconditional security. We choose a truncated Gaussian codebook

as a compromise between the Gaussian codebook with theoretically known results and

truncation limit due to finite energy requirements. We are then able to derive an upper

bound FTG on the no-cloning threshold that is greater than the asymptotic no-cloning

threshold F = 2/3. This result means that when considering a realistic codebook, we

might require higher teleportation fidelities in order to guarantee secure communication.

We then analyze the influence of ambient thermal noise in the entanglement distribution

and feedforward channels. For the entanglement distribution channel, we find that any

losses and noise deteriorate the interference mechanism of the quantum teleportation

protocol, and thereby would reduce fidelity. However, the loss and noise term for the

feedforward channel is modulated by the coupling β. This implies that losses and noise

from the feedforward channel can be suppressed if we use sufficiently small coupling and

correspondingly large gain, so that fidelity is not reduced. Thus, we find that quantum

teleportation implements an error-correction scheme for Gaussian imperfections in the

feedforward channel.

Another large part of our work is constructing the novel 6.5-meter-long microwave

quantum cryogenic link. The MQCL consists of three modules, namely the Alice cryostat,

85
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the Bob cryostat, and the cryogenic link. The Alice cryostat is a home-built dilution

refrigerator at the Walther-Meißner-Institute. The Bob cryostat is a commercial Triton

dilution refrigerator manufactured by Oxford Instruments. The cryolink is a custom-made

connection that can maintain cryogenic temperatures between Alice and Bob, produced

by Oxford instruments. We implement the entanglement distribution and feedforward

channels in our quantum teleportation experiment by threading superconducting microwave

cables through the cryolink and connecting them with the experiment setups at the Alice

and Bob sample stages. After a full cooldown with the MQCL, we have base temperatures

of ∼ 35 mK at the Alice mixing chamber, ∼ 20 mK at the Bob mixing chamber, and ∼ 100
mK at the cryolink center. These temperatures are sufficiently low to perform experiments

with propagating quantum microwaves and we successfully demonstrate entanglement

distribution over the cryolink. Furthermore, we make measurements while heating the

cryolink center to 1 K, and find that the quantum states transferred over the cryolink

do not deteriorate due to low losses in the superconducting cable. With the successful

installation of the MQCL, we move towards realizing a microwave quantum local area

network.

Finally, we demonstrate analog continuous-variable quantum teleportation over the

MQCL. This is the first demonstration of microwave quantum teleportation between

spatially-separated cryostats. We begin by generating a TMS state from two orthogonally

squeezed states with 3 dB squeezing level and distributing it between Alice and Bob

through the cryolink. We then input a propagating quantum microwave state at Alice

and perform a join quadrature measurement with 21 dB gain on the input state and

Alice’s part of the TMS state. We send the measurement result to Bob and use it

to perform state displacement on Bob’s part of the TMS state. This procedure then

teleports the input state from Alice to Bob. In our quantum teleportation experiment, we

send propagating microwave states with displacement photon numbers from 0.07 to 7.79
over the entire 360◦ phase angle. We measure that classical teleportation attains higher

fidelities for small displacement photon numbers, but quantum advantage is achieved

at around 1.11 displacement photons. In particular, quantum teleportation fidelity is

on average 0.129 higher than classical teleportation fidelity at around 7.02 displacement

photons. Furthermore, the average quantum teleportation fidelity remains above 0.547
up to 4.45 displacement photons, which exceeds the asymptotic classical limit F = 1/2.

These measurement results show that we successfully demonstrate quantum advantage

with microwave quantum teleportation over the MQCL.

In the next steps, we plan to include a room temperature feedforward channel in order to

study quantum teleportation over thermal channels and its function as an error-correction

scheme for Gaussian imperfections. This can be implemented by installing a switch

that directs the feedforward signal from the superconducting cable in the cryolink to a

microwave cable at room temperature. Due to additional attenuation from the room

temperature cable and the Bob cryostat input line, we need to compensate by increasing
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amplification with a cryogenic HEMT and a RT amplifier. Realizing quantum teleportation

over a room temperature feedforward would be technologically useful and provide better

understanding about where the microwave signal transitions from quantum to classical.

As an outlook, we can envision a quantum local area network with propagating mi-

crowaves, where quantum information is communicated using quantum teleportation

schemes between nodes connected by cryogenic links. We can consider realizing quantum

gate teleportation between spatially-separated superconducting quantum processors. We

can also consider implementing an open-air feedforward channel by using microwave

antennas.





Bibliography

[1] M. H. Devoret and R. J. Schoelkopf, “Superconducting Circuits for Quantum Infor-

mation: An Outlook”, Science 339, 1169 (2013).

[2] N. Gisin and R. Thew, “Quantum communication”, Nature Photonics 1, 165 (2007).

[3] L. Steffen, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur, C. Lang, C. Eichler,

G. Puebla-Hellmann, A. Fedorov, and A. Wallraff, “Deterministic quantum teleporta-

tion with feed-forward in a solid state system”, Nature 500, 319 (2013).

[4] S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in

photonic quantum sensing”, Nature Photonics 12, 724 (2018).

[5] S. Lloyd, “Enhanced Sensitivity of Photodetection via Quantum Illumination”, Science

321, 1463 (2008).

[6] C. Gross and I. Bloch, “Quantum simulations with ultracold atoms in optical lattices”,

Science 357, 995 (2017).

[7] R. J. Schoelkopf and S. M. Girvin, “Wiring up quantum systems”, Nature 451, 664

(2008).

[8] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-. S. Huang, J. Majer, S. Ku-

mar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a

superconducting qubit using circuit quantum electrodynamics”, Nature 431, 162

(2004).

[9] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J.
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