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Abstract

Propagating quantum microwaves are a key ingredient for quantum communication.

A particular form of such quantum microwaves is squeezed states. In this work, we

investigate squeezed states generated by Josephson parametric amplifiers (JPAs)

with a dual-path setup. Squeezed coherent states can be generated by sending

coherent states into a JPA. Alternatively, displacement operations can be performed

using a directional coupler. We discuss our results in the context of remote state

preparation and quantum teleportation.

Kurzzusammenfassung

Propagierende Quantenmikrowellen sind Schlüsselbausteine für die Quantenkommu-

nikation. Wir untersuchen gequetschte Zustände, die mit Josephson parametrischen

Verstärkern (JPA) erzeugt werden, mit der Zweipfadmethode zur Zustandsrekon-

struktion. Gequetschte kohärente Zustände können sowohl durch Einsenden eines

kohärenten Signals in den JPA, als auch durch Anwenden einer Verschiebungsope-

ration auf einen gequestschten Vakuumzustand, generiert werden. Wir diskutieren

unsere Ergebnisse im Rahmen von ferngesteuerter Zustandspräparation und Quan-

tenteleportation.
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Chapter 1

Introduction

Over the past decades, modern computers and telecommunication networks, which

can be described on the basis of classical physics, have been rapidly developing, and

the information processing, transfer and storage efficiency have been continuously

improving. As the size of computer components scales down to the atomic level,

scientists and engineers were thinking about using resources of quantum mechanics,

such as superposition of states and entanglement, for the realization of quantum

computation and communication systems. The discipline which deals with compu-

tation and communication based on quantum mechanics is quantum information

science. Quantum computers consist quantum two-level systems, which for example

can be realized by atoms and molecules, for data storage and computational tasks.

In quantum communication systems information usually is transferred by individual

photons.

All operations in a classical computer are based on binary bits, which can be in

either of two states. The fundamental unit of a quantum computer, a quantum bit

or qubit, can be in any superposition state α|0〉+β|1〉 of the eigenstates, |0〉 and |1〉,
where |α|2 and |β|2 are the probability of the qubit in state |0〉 and |1〉 , respectively.

This feature enables a quantum computer to evaluate certain functions with all

the possible input values simultaneously. In 1985, D. Deutsch termed this effect

“quantum parallelism” [1]. Later on, quantum parallelism found its applications

in the Deutsch-Jozsa algorithm [2], the Shor algorithm [3], etc., where quantum

computers can provide exponential speedup of certain problems.

Since the 1960s, scientists started to apply fundamental principles of quantum

mechanics to communication systems [4, 5]. The basic problem to solve in quan-

tum communication is to transfer an arbitrary quantum state from one location to

another. Traditionally, the sender is called Alice and the receiver Bob. There are

1



2 1. Introduction

several ways to transfer a quantum state. One possible solution is to map a qubit

state in Alice’s station to a nonclassical photon state, and transmit the photon to

Bob, where the information stored in the photon is retrieved by a qubit in Bob’s sta-

tion [6, 7]. With this method, the quantum information is transferred directly from

Alice to Bob. However, if the communication channel between Alice and Bob is too

lossy for the quantum state to be transferred, this method is not a good option.

When the superposition principle applies to correlated states of multiple subsys-

tems, entanglement could be observed. This is what Einstein called “spooky action

at a distance”. As one of the most counterintuitive characteristics in quantum me-

chanics, entanglement makes another intriguing form of quantum communication,

quantum teleportation, possible. Quantum teleportation, which was first proposed

by C. H. Bennett et al. in 1993 [8], uses a classical channel and a quantum channel.

The classical channel is for communication of classical information (two classical

bits), whereas the quantum channel is for distributing entanglement in the form of

an Einstein-Podolsky-Rosen (EPR) pair [9]. An EPR pair is distributed to Alice

and Bob. The state to be teleported is unknown to both Alice and Bob. In Alice’s

station, a Bell state measurement is performed on the state to be teleported and

half of the EPR pair. This measurement destroys the state to be teleported, and

generates two classical bits. Then, Alice communicates the measurement results,

two bits of information, to Bob via the classical channel. This classical communica-

tion is also called feed-forward. Based on the classical information received by Bob,

he applies a linear transformation on his half of the EPR pair. The state after linear

transformation is guaranteed to be identical to the original state to be teleported.

The first experimental realization of quantum teleportation [10,11] was achieved

in 1997 by making use of the photon polarization. These experiments have shown

that even with experimental errors the teleportation fidelity, which characterizes the

similarity between the input and output states, has exceeded the classical thresh-

old. Besides quantum teleportation of discrete variables, the scheme for continuous

variables has been studied theoretically [12, 13] and experimentally. For continu-

ous variables, information is embedded into the position and momentum, the two

quadratures of a propagating electromagnetic field. In 1998, A. Furusawa et al. [14]

have demonstrated quantum teleportation of optical coherent states with active

feed-forward. In 2011, nonclassical wave packets of optical photons have been suc-

cessfully teleported [15]. In this experiment, the fragile nonclassical properties of

the input state was preserved after teleportation. Based on the achieved progress,

quantum teleportation in the optical domain has also been demonstrated in free
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space [16–18], and it is presently being developed towards satellite based quantum

teleportation. Here the question arises about the present experimental status of

quantum teleportation in the microwave regime?

Since the first demonstration of strong coupling between microwave photons and

qubits based on superconducting circuits [19,20], circuit Quantum ElectroDynamics

(QED) systems are considered to be a promising physical realization of the basic

elements required for quantum information processing. In contrast to the optical

domain, where natural atoms or molecules are supposed to be the fundamental units

in a quantum computer, in the microwave domain macroscopic superconducting cir-

cuits act as qubits. Since these superconducting qubits can be considered as artificial

atoms, there is a lot of flexibility to design the relevant parameters. Also, strong and

even ultrastrong coupling [21] between superconducting qubits and microwave pho-

tons are relatively easy to achieve. At the same time, these superconducting qubits

have transitions frequencies of the order of 10 GHz corresponding to about 500 mK

and interact strongly with the environment. Therefore, cryogenic temperatures are

needed to bring the superconducting circuits into a regime where quantum effects

dominate the thermal noise from environments. First, the environment temperature

should be well below the critical temperature of the superconducting materials to

suppress the effect of quasiparticles. Second the energy of thermal excitations should

be well below the qubit transition energy and the excitation energy of resonators.

Due to the low single microwave photon energy, which is typically five orders of

magnitude lower than that of optical photons, single microwave photon detectors do

not exist yet. So far the measurement of such signals make use of signal averaging

techniques which are based on amplification of the weak microwave signals. For a

long time, phase-insensitive High Electron Mobility Transistor (HMET) amplifiers

have been used for this purpose. They have a broad operation bandwidth and high

gain, but 5-20 noise photons [22, 23] are added to the input signal. Recently, with

the application of Josephson Parametric Amplifiers (JPAs) [24–34], the number of

added noise photons has been significantly reduced. In the phase-insensitive or

non-degenerate operation mode, the JPA noise temperatures approach the standard

quantum limit set by the Heisenberg uncertainty relation [31–33, 35–37]. In phase-

sensitive or degenerate operation mode, JPAs can amplify a signal quadrature with

a noise temperature even below the standard quantum limit [22,32]. With JPAs as

low noise pre-amplifiers followed by HEMT amplifiers, quantum teleportation in the

microwave domain with superconducting circuits has been realized [38] in 2013. In

this experiment, a qubit state has been teleported to another qubit which was 6 mm
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away.

Operating JPAs in the phase-sensitive mode, one quadrature can be amplified

while the conjugate quadrature is squeezed. If the quadrature fluctuations are

squeezed below the vacuum fluctuations, a single mode squeezed state is gener-

ated [32,34,39]. Sending squeezed states into a beam splitter, the state at the beam

splitter outputs is a two-mode squeezed state [39, 40], which can be utilized as an

EPR pair in a quantum teleportation protocol based on continuous variables. With

our current progress of dual-path state reconstruction method [40–43], JPA-based

low noise amplification [32], and path entanglement [39], the goal of this work is

quantum teleportation of propagating microwave signals.

The quantum teleportation protocol contains several building blocks: EPR pair

generation, Bell state measurement, classical communication and linear transfor-

mation of an arbitrary quantum state. The linear transformation for continuous

variables corresponds to a displacement operation, which is the main topic of this

thesis. An asymmetric beam splitter, whose transmissivity is close to unity, with a

coherent state at the second input performs a displacement operation on the state

at the first input. A JPA, operating in the phase-sensitive mode, applies a squeeze

operator to the input state. By sending a coherent state into a JPA, effectively a

displacement operator followed by a squeeze operator are applied to a vacuum state.

By sending a squeezed vacuum state into an asymmetric beam splitter, effectively a

squeeze operator followed by a displacement operator is applied to a vacuum state.

In this way, we can study the effect of the displacement operator and squeeze op-

erator applied to a vacuum state. Due to the fact that these two operators do not

commute, different sequences lead to different states.

The teleportation of an unknown qubit state requires two classical bits of infor-

mation (two bits) as the classical resource and an EPR pair, which is called one

“ebit” as the quantum resource. There is no trade-off between the classical and

quantum resources. When the state to be transferred is known to the sender, this

case is called remote state preparation. In the extreme case without entanglement,

Alice can communicate to Bob an infinite number of classical bits, which fully de-

scribe the state, and Bob prepares the state locally. In the other extreme case,

the minimal amount of classical bits required is one, which is set by causality. Be-

tween these two extreme cases, there is a trade-off among classical and quantum

resources. Quantum teleportation is a special case of remote state preparation with

two classical bits and one ebit.

The displacement operation, which has been studied in this work, is also an
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important building block in remote state preparation. We develop a protocol to

remotely prepare a squeezed state. Alice and Bob share an EPR pair in the form

of a two-mode squeezed state. Alice performs a projective measurement on her half

of the EPR pair. Then, Alice communicates the result, which is one bit, to Bob.

Bob performs a linear transformation on his half of the EPR pair based on Alice’s

result. The final state obtained by Bob is a squeezed state.

This thesis is structured as follows. In Chapter 2, we introduce the basics of

quantum microwave signals and circuit QED systems. This includes classical and

quantum representations of electromagnetic fields. We discuss the displacement

operators in the context of coherent states, and the squeeze operators in the con-

text of squeezed states. Important building blocks of circuit QED systems, such as

microwave resonators, Josephson junctions, dc-Superconducting QUantum Interfer-

ence Devices (dc-SQUIDs) and flux-driven JPAs are discussed. In Chapter 3, the

treatment of quantum communication with propagating microwaves is presented.

We focus on two-mode squeezed vacuum states, correlation functions, and we also

describe quantum teleportation and remote state preparation protocols with prop-

agating microwave signals in more detail. In Chapter 4, experimental techniques,

including cryogenic and room temperature setups, data acquisition and phase sta-

bilization methods, are presented. In Chapter 5, the JPA characterization including

gain measurements, 1 dB-compression point measurements, etc. is presented. We

also explain in detail a theoretical method to describe the flux-dependence of the

JPA resonance frequency. In Chapter 6, we apply displacement and squeeze oper-

ators to vacuum states in different sequences, and reconstruct the states with the

dual-path reconstruction method. We discuss the rich physics behind the squeezed

coherent states and coherent squeezed states. In Chapter 7, we conclude the work

and give a brief outlook.
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Chapter 2

Microwave signals and circuit

QED systems

In this chapter, the basics of circuit Quantum ElectroDynamics (QED) are intro-

duced. We start with classical and quantum representations of electromagnetic

fields. Then displacement and squeeze operations are introduced. Also, the ba-

sic building blocks for circuit QED systems, including microwave transmission lines,

resonators, Josephson junctions and dc-SQUIDs, are discussed. Finally, the working

principle of a Josephson Parametric Amplifier (JPA) is introduced.

2.1 Classical representation of electromagnetic

fields

Maxwell’s equations provide the basis for the classical description of electromagnetic

waves. A monochromatic wave in a linear medium propagating along direction ~r

can be presented as

S (~r, t) = Aei(ωt−~k~r) . (2.1)

Here, ω is the angular frequency, and ~k is the wavevector. For a fixed ~r, Eq. (2.1)

can be written as

S(t) = Aei(ωt+φ)

= [A cos (φ)︸ ︷︷ ︸
I

+iA sin (φ)︸ ︷︷ ︸
Q

]eiωt

= [I + iQ] eiωt, (2.2)

7
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where I and Q are called in-phase and out-of-phase components of the signal, re-

spectively, and φ is the phase of the signal. In microwave engineering, the notations

I and Q are used. In a quantum mechanical treatment, the quadratures p̂ and q̂ are

used.

In general, microwave signals have frequencies f = ω/2π between 300 MHz and

300 GHz [44]. Different frequency ranges correspond to different applications. For

example, 2.45 GHz microwave radiation is used for heating in microwave ovens. GPS

satellites broadcast on two carrier frequencies: 1575.42 MHz and 1227.60 MHz. WiFi

refers to 2.4 GHz and 5 GHz signals. In our case, we are interested in signals in the

frequency range from 4 to 20 GHz propagating in free space, transmission lines or

CoPlanar Waveguides (CPW).

2.2 Quantum representation of electromagnetic

fields

2.2.1 Density operator

The classical description of electromagnetic fields does not include the Heisenberg

uncertainty relation. To fully describe electromagnetic fields, one needs to use quan-

tum statistical method. Electromagnetic fields typically have a certain bandwidth in

frequency, corresponding to an infinite number of frequency modes. However, each

mode requires an independent Hilbert space, and a distribution function to describe

the probability distribution of all the possible values of a certain property of the

field. In the following, we restrict our discussion to single mode fields. The product

of probability distribution functions of individual modes represents the entire field.

A quantum mechanical state, both for pure states and mixed states, for discrete

variables and continuous variables, is completely described by its density operator.

It is defined as

ρ̂ =
∑

j

Pj|Ψj〉〈Ψj| , (2.3)

where Pj > 0, and
∑

j Pj = 1. Pj indicates the probability of finding the system

in state |Ψj〉. The states |Ψj〉 are normalized, and do not have to be orthogonal.

Referring the density operator to a basis {|φn〉}, the density matrix,

ρnm =
∑

j

Pj〈φn|Ψj〉〈Ψj|φm〉 , (2.4)
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is obtained. The expectation value of an operator Ô is given by

〈Ô〉=
∑

j

Pj〈Ψj|Ô|Ψj〉= Tr(Ôρ̂) . (2.5)

2.2.2 P-representation

Depending on the chosen basis, a density operator can have different representations.

For example, the P-representation is obtained by expanding the density operator

in terms of coherent states. We introduce â and â† as annihilation and creation

operators, obeying the bosonic commutator relation
[
â, â†

]
= 1. The wave function

of a coherent state is written as |α〉 = exp
(
αâ† − α∗â

)
|0〉 = D̂(α)|0〉, where |0〉 is

the vacuum state, and D̂(α) is the so-called displacement operator with a complex

amplitude, α. Coherent states |α〉 form a complete set of non-orthogonal states.

Therefore, the diagonal expansion of the density operator in coherent states becomes

ρ̂ =

∫
P (α)|α〉〈α|d2α . (2.6)

P (α) is called Glauber-Sudarshan P-representation [45, 46]. Since the projection

operation |α〉〈α| is onto non-orthogonal states, P (α) is not a real probability distri-

bution for the system. Therefore, it is called a quasi-probability distribution.

A normally ordered characteristic function ξN(η) = Tr{ρ̂eηâ
†
e−η

∗â} is often used

to evaluate the P-function. P (α) is the Fourier transform of ξN(η) ,

P (α) =
1

π2

∫
exp(η∗α− ηα∗)ξN(η) d2η . (2.7)

For more details, we refer to Ref. [47].

2.2.3 Wigner function

Another widely used quasi-probability distribution function is the Wigner func-

tion [48]. We define a characteristic function ξ(η) = Tr{ρ̂D̂(η)} = Tr{ρ̂eηâ
†−η∗â} =

ξN(η)e−
1
2
|η|2 . The Wigner function is defined as the Fourier transform of this char-

acteristic function,

W (α) =
1

π2

∫
exp(η∗α− ηα∗)ξ(η) d2η . (2.8)
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Next we show that the moment matrix,
〈
(â†)mân

〉
with m,n∈N0 , contains the same

information as the Wigner function [49,50]. The antinormally ordered moments are

related to the normally ordered moments by

âm(â†)n =

min(m,n)∑
j=0

(
m

j

)(
n

j

)
j!(â†)n−j âm−j . (2.9)

The characteristic function ξ(η) becomes

ξ(η) = e−|η|
2/2
∑
m,n

〈
(â†)mân

〉
m!n!

ηm (−η∗)n . (2.10)

Inserting the characteristic function ξ(η) into Eq. (2.8) gives

W (α) =
∑
m,n

〈
(â†)mân

〉
π2m!n!

∫
ηm (−η∗)n exp

(
−|η|

2

2
+ αη∗ − α∗η

)
d2η . (2.11)

Based on the complete moment matrix, we can obtain the Wigner function of an

arbitrary state. Ref. [51] demonstrated that at least up to fourth order moments

are needed to evaluate the negativity of a Wigner function. In our experiments, the

limited detection efficiency only allows us to detect up to fourth order moments,

0 < m + n 6 4 . For Gaussian states, on which we concentrate in this work, the

Wigner function is fully described by the first two moments.

A Wigner function is often expressed in phase space. To this end, we intro-

duce the quadrature operators p̂ and q̂ , which are analogues to the position and

momentum operators,

p̂ =
1

2i

(
â− â†

)
, q̂ =

1

2

(
â+ â†

)
, [q̂, p̂] =

i

2
. (2.12)

Here, i is the imaginary unit. This implies the Heisenberg inequality relation

(∆p̂)2(∆q̂)2 > 1/16 . (2.13)

In this thesis, for any operator A, we use (∆Â)2 to denote its variance,

(∆Â)2 ≡ 〈(∆Â)2〉 ≡ 〈Â2〉 − 〈Â〉2 . (2.14)



2.3 Displacement 11

A generalized quadrature operator is written as

X̂δ=q̂ cos δ+p̂ sin δ , (2.15)

where δ is the angle between X̂δ and q̂ . In Eq. (2.8), one needs to substitute α

by (q + ip) to obtain the phase space expression. An alternative definition of the

Wigner function is based on the Wigner-Weyl transform [52],

W (q, p) =
1

2π

∫
〈q − ζ/2|ρ̂|q + ζ/2〉eipζdζ . (2.16)

Ref. [53] has shown both definitions to be identical. Integration of the Wigner

function over p ,
∫
W (q, p)dp gives the probability distribution of q , and integration

over q ,
∫
W (q, p)dq gives the probability distribution of p .

In this work, we use Wigner functions to describe microwave states, such as vac-

uum states, coherent states, squeezed states, etc. All the Wigner function presented

are unit-less and normalized to one. In Sec. 2.3 and Sec. 2.4, further discussions

about Wigner functions of coherent states and squeezed states, respectively, are

presented. In Chapter 6, the discussion of displacement operations are based on

Wigner function reconstructions of various microwave states.

Besides the P -function and Wigner function discussed above, the Q-function is

the Fourier transform of antinormally ordered characteristic function,

ξA(η) = Tr{ρ̂e−η
∗âeηâ

†} . (2.17)

For more details, we refer to Ref. [47].

2.3 Displacement

Classically, an electromagnetic field has a well-defined phase and magnitude. But

this is not the case when we consider the field quantum mechanically. In Sec. 2.2.3,

we have introduced two conjugate quadrature operators p̂ and q̂ in Eq. (2.12). The

fluctuations of the quadratures need to fulfill the Heisenberg uncertainty relation

(Eq. (2.13)). When the field is in a vacuum state, the quadrature fluctuations are

minimal, and the equal sign in the Heisenberg uncertainty relation (Eq. (2.13)) holds.

In phase space, the vacuum state is located at the origin and its Wigner function

is symmetric in all phase directions (Fig. 2.1 (a,d)). If we apply a displacement

operator D̂(α) = exp
(
αâ† − α∗â

)
, which has been introduced in Sec. 2.2.2, to the
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Figure 2.1: (a) Wigner function of the vacuum state. (b) Wigner function of a
coherent state with n = 5. (c) Wigner function of a squeezed vacuum state with
r = 1.2 , and n = 5 . Squeezed states are introduced in Sec. 2.4. (d) 1/e-contours
of the Wigner function in (a)-black, (b)-green and (c)-blue.

vacuum state, the Wigner function is shifted by α, keeping its shape unchanged

(Fig. 2.1 (a,b,d)). Here, α= |α| exp [iπ (90◦− θ) /180◦] . We define the coherent

phase θ as the angle between the displacement direction and the p-axis. Therefore,

we get coherent states |α〉 = D̂(α)|0〉. The coherent state |α〉 is an eigenstate of â,

â|α〉 = α|α〉 ,

〈α|â† = α∗〈α| . (2.18)

The quadrature fluctuations in all directions are of the same size as for the vac-

uum state. The expectation value of the photon number operator is 〈α|n̂|α〉 =

〈α|â†â|α〉 = |α|2 ≡ n. The Wigner function for a coherent state |α〉 = |Q+ iP 〉 is

W (q, p) =
2

π
exp

[
− 2
(
(q −Q)2 + (p− P )2

)]
, (2.19)
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and the 1/e-contour is

(q −Q)2 + (p− P )2 =
1

2
. (2.20)

The moment matrix reads 〈α|(â†)mân|α〉=(α∗)mαn .

Input 
state

Displaced
state

Coherent
state

(b)

50 Ω Coherent
state

û

Input
state

âin Displaced
state

âout

(a)

(Input port) (Transmitted port)

(Coupled port) (Isolated port)

P1 P2

P3
P4

Figure 2.2: (a) Schematic of an antisymmetric beam splitter. (b) Schematic of a
microstrip line directional coupler (not to the scale). Pi with i = 1 , 2 , 3 and 4 ,
denotes the power of the signal at port i .

The field generated by a well stabilized microwave source is a coherent state,

which is equivalent to a displaced vacuum state. In principle, a displacement oper-

ator D̂(α) can be applied to any electromagnetic field. Experimentally, this can be

realized with an antisymmetric beam splitter biased with a highly excited coherent

state. Using âin and û to denote the annihilation operators of the input state and

the coherent state, respectively, as shown in Fig. 2.2(a), the beam splitter relation

gives

âout =
√
τ âin +

√
νû , (2.21)

where τ and ν are the power linear transmissivity and reflectivity, respectively, and

âout is the annihilation operator of the output state. The operator û applies on a

coherent state |Φc〉 , which means û|Φc〉 = ũ|Φc〉 , with ũ as the eigenvalue. If τ → 1 ,

Eq. (2.21) becomes

âout = âin +
√
νũ . (2.22)

This is analog to

D̂†(α̂)a†inD̂(α) = âin + α, (2.23)

where α =
√
νũ . Therefore, the input state is displaced by α . For detailed theoret-

ical treatment, we refer to Ref. [54]. In the microwave domain, a directional coupler

(Fig. 2.2(b)) is an antisymmetric beam splitter. A low insertion loss from the input

port to the transmitted port gives a high transmissivity for the input signal,

Insertion loss(dB) = 10 lg
P1

P2

= 10 lg
1

τ
. (2.24)
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A low coupling factor indicates a low reflectivity,

Coupling(dB) = 10 lg
P2

P3

= 10 lg ν . (2.25)

Here, Pi with i = 1 , 2 , 3 and 4 , denotes power of the signal at port i .

2.4 Squeezing

Quadrature fluctuations of coherent states are equal to vacuum fluctuations,

(∆X̂δ)
2 =

1

4
, (2.26)

with δ the angle between X̂δ and q̂ . The relation in Eq. (2.26) applies to all quadra-

tures with 0◦ < δ < 180◦ . If a state has a certain quadrature with

(∆X̂δsq)2 <
1

4
, (2.27)

this state is a squeezed state, and the value δsq is the phase of the squeezed quadra-

ture. In the following, we use X̂sq to denote the squeezed quadrature. To fulfill

the Heisenberg uncertainty, the variance of the conjugate quadrature has to be

larger than the vacuum fluctuations. The conjugate quadrature of X̂sq is called

anti-squeezed quadrature, and denoted by X̂anti .

Squeezed states can be generated by many nonlinear photon mixing processes.

The parametric down conversion process, which also provides the basis for our JPA

samples, is a three-wave mixing between the pump photons [32,37,39,55], the signal

and idler photons. Due to a second-order nonlinear interaction, a pump photon splits

into a signal and idler pair forming a squeezed state with fpump = fsignal + fidler .

When the signal and idler photons are emitted into the same mode, fsignal = fidler, a

single-mode squeezed state is generated. When fsignal 6= fidler, a two-mode squeezed

state is generated. Similarly, in the optical domain, fibers and nonlinear crystals in

a cavity are often used to generate squeezed states [56–58]. In four-wave mixing,

due to a third-order nonlinear process two pump photons produce a photon pair in

a squeezed state [29], 2fpump = fsignal + fidler . Four-wave mixing is also a typical

mechanism to generate squeezed states with atomic assembles in optical cavities [59].

Because of the unique properties of squeezed states, they have become primary

building blocks in many applications based on propagating variables, such as low

noise amplification [25, 27, 28, 30, 32, 34], quantum state engineering, quantum key
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distribution, quantum teleportation [14,15], etc.

To define the squeezing level S in decibel, we compare the variance of the

squeezed quadrature (∆Xsq)2 with the vacuum fluctuations, obtaining

S = −10 lg
[
(∆Xsq)2/0.25

]
. (2.28)

We note that (∆Xsq)2< 0.25 indicates squeezing and S is positive. Larger S corre-

sponds to a higher squeezing level. (∆Xsq)2 ≥ 0.25 means no squeezing and S < 0 .

We still use S to evaluate the quadrature variances of a state if the state is not

squeezed below vacuum (S < 0). In this work we use the nomenclature that the

term “squeezing” is equivalent to “squeezing below the vacuum level”.

2.4.1 Squeezed vacuum states

To describe squeezed states mathematically, we introduce a squeeze operator

Ŝ(ξ) = exp

(
1

2
ξ∗â2 − 1

2
ξ(â†)2

)
, (2.29)

where ξ denotes the complex squeeze parameter ξ = reiϕ̃ with squeeze factor r ≥ 0

and squeezing angle ϕ̃. Here, ϕ̃/2 is the angle between the squeezed quadrature and

the q-axis. Very often, the anti-squeezed angle γ=− ϕ̃/2 as the angle between the

anti-squeezed quadrature and the p-axis is used. Applying the squeeze operator to

vacuum states Ŝ(ξ)|0〉, we get squeezed vacuum states; to thermal states, we get

squeezed thermal states; to coherent states, we get squeezed coherent states.

The Wigner function of a squeezed vacuum state Ŝ(ξ)|0〉 is

W (q, p) =
2

π
exp

[
−(e2r+e−2r)|q+ip|2 − 1

2
(e2r−e−2r)e−iϕ̃(q+ip)2

−1

2
(e2r−e−2r)eiϕ̃(q−ip)2

]
, (2.30)

and the 1/e-contour is an ellipse,(
q cos ϕ̃

2
+ p sin ϕ̃

2

)2

e−2r
+

(
p cos ϕ̃

2
− q sin ϕ̃

2

)2

e2r
=

1

2
. (2.31)

The length of the major axis is er/
√

2, and the minor axis e−r/
√

2. The uncertainty

of the squeezed and the anti-squeezed quadratures are e−2r/4 and e2r/4 , respectively.

The number of photons in the state is 〈n̂〉 = sinh2 r. Fig. 2.1(c) shows the Wigner
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function of a squeezed vacuum state with r = 1.2 , and photon number n = 5 .

2.4.2 Squeezed coherent states

There are two ways to obtain a squeezed coherent state. First, one can apply a dis-

placement operator to a vacuum state D̂ (α) |0〉, and subsequently squeeze this dis-

placed vacuum Ŝ (ξ) D̂ (α) |0〉 . Second, one can squeeze the vacuum state Ŝ (ξ) |0〉
and apply a displacement operator D̂ (α) Ŝ (ξ) |0〉 . To distinguish between these

states, we call the states generated with the first method squeezed coherent states,

and those obtained with the second method coherent squeezed states. We illus-

trate the difference of the two methods in Fig. 2.3. For the former method, the

displacement of the squeezed coherent state depends on both the displacement and

squeeze operations. When the anti-squeezed quadrature is parallel to the displace-

ment direction of the coherent state D̂ (α) |0〉, the final displacement of the squeezed

coherent state is maximal (Fig. 2.3(a)). Contrary, the final displacement reaches its

p
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Figure 2.3: Sketch of 1/e contours of the ideal vacuum (blue), the coherent state
(green), the squeezed coherent state (red) for (a-c) and the coherent squeezed
states (red) for (d-f) with r = 1.7, θ= 45◦ and |α|2 = 2. p and q are dimensionless
quadrature variables spanning the phase space. (a)–(c) Displace the vacuum first,
then squeeze. (d)–(f) Squeeze the vacuum state first, then displace. The anti-
squeezed angle γ is 45◦ in (a) and (d), 135◦ in (b) and (e) and 90◦ in (c) and (f).
Reprinted figure from Ref. [32].
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minimal value when the anti-squeezed quadrature is perpendicular to the displace-

ment direction of the coherent state (Fig. 2.3(b)). However, the final displacement of

the coherent squeezed state obtained from the second method only depends on the

displacement operation and is independent of the squeeze factor r (Fig. 2.3(d)–(f)).

The difference can be seen from the moment matrix. The displacement operation

does not change the shape of the Wigner function. It only makes a linear displace-

ment in phase space. The experimental implementations of both squeezed coherent

states and coherent squeezed states are discussed in Chapter 6.

For a squeezed coherent state, the moments (up to second order) are [47]

〈â〉 = α cosh r − α∗eiϕ̃ sinh r , (2.32)

〈â2〉 = α2 cosh2 r + (α∗)2e2iϕ̃ sinh2 r

− 2|α|2eiϕ̃ sinh r cosh r − eiϕ̃ sinh r cosh r , (2.33)

〈â†â〉 = |α|2(cosh2 r + sinh2 r)− (α∗)2eiϕ̃ sinh r cosh r

− α2e−iϕ̃ sinh r cosh r + sinh2 r . (2.34)

For a coherent squeezed state, the moments (up to fourth order) are

〈â〉 = α , (2.35)

〈â2〉 = α2 − eiϕ̃ sinh r cosh r , (2.36)

〈â†â〉 = |α|2 + sinh2 r , (2.37)

〈â3〉 = α3 − 3αeiϕ̃ sinh r cosh r , (2.38)

〈â†â2〉 = |α|2α + 2α sinh2 r − α∗eiϕ̃ sinh r cosh r , (2.39)

〈â4〉 = α4 − 6α2eiϕ̃ sinh r cosh r + 3e2iϕ̃ sinh2 r cosh2 r , (2.40)

〈â†â3〉 = |α|2α2 + 3α2 sinh2 r − 3|α|2eiϕ̃ sinh r cosh r − 3eiϕ̃ sinh3 r cosh r , (2.41)

〈â†2â2〉 = |α|4 − α2e−iϕ̃ sinh r cosh r − α∗2eiϕ̃ sinh r cosh r

+ 4|α|2 sinh2 r + sinh2 r cosh2 r . (2.42)

Here, α= |α| exp [iπ (90◦− θ) /180◦] , and n = |α|2 . The equalities 〈â†〉 = 〈â〉∗ ,

〈(â†)2〉 = 〈â2〉∗ , 〈â†3〉 = 〈â3〉∗ , 〈â†2â〉 = 〈â†â2〉∗ , 〈â†4〉 = 〈â4〉∗ and 〈â†3â〉 = 〈â†â3〉∗

are valid for both cases.
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2.5 Microwave transmission line

A transmission line for electromagnetic waves usually is modeled using distributed

circuit elements, which means the circuit network length is comparable to or larger

than the wavelength of the electromagnetic signal. Thus, voltages and currents

vary in space. For a lossless transmission line, the characteristic impedance (Z) is

determined by the inductance and capacitance per unit length, denoted as L′ and

C ′ , respectively,

Z =

√
L′

C ′
. (2.43)

When a wave travels from a transmission line with a characteristic impedance Z1 to

another transmission line with a characteristic impedance Z2, and Z2 6= Z1, the wave

is partially reflected and partially transmitted. The amplitude reflection coefficient

Γ is

Γ =
Z2 − Z1

Z2 + Z1

, (2.44)

and the amplitude transmission coefficient T = 1 + Γ. Transmission lines in our

applications have a characteristic impedance of about 50 Ω to comply with standard

microwave devices.

In circuit QED systems, superconducting CoPlanar Waveguides (CPWs) are
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Figure 2.4: (a) Schematic of a CPW resonator on a substrate (not to the scale). A
lossless CPW resonator is modeled as a chain of LC oscillators with L′ and C ′ as
the inductance and capacitance per unit length, and it is coupled to the feed line via
coupling capacitors Ck. Green lines indicate microwave cables which connect VNA
to the resonator input and output ports. The red curve indicates the fundamental
current mode. (b) A typical transmission spectrum of a Nb CPW resonator on Si
substrate measured at 4 K . The red line is a Lorentzian fit, and the blue squares
denote measurement data. f0 represents the resonant frequency of the fundamental
mode, and FWHM means Full Width at Half Maximum.
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widely used as microwave transmission lines. A CPW consists of ground planes, a

center conductor, gaps which separate the center conductor from the ground planes

(Fig. 2.4). CPWs have several advantages. First, it is easy to design and fabricate

a desired characteristic impedance by adjusting the width of the center conductor

(W ) and the widths of the gaps G (Fig. 2.4). Second, it is convenient to integrate

circuits based on Josephson junctions, which are introduced in Sec. 2.7, into the

CPWs based on modern integrated circuit technology. Third, the typically small

lateral dimensions of CPWs provide large vacuum fields, which is very important

for experiments studying the fundamental light-matter interaction.

2.6 Microwave resonator

The two gaps interrupting the center conductor of a transmission line act as re-

flecting mirrors and can be modeled as two capacitors. Standing waves are formed

between the two mirrors with current nodes at the capacitors. In this case the res-

onator length is half the wavelength of the fundamental mode, therefore this type of

resonator is called λ/2 resonator. Different boundary conditions give different types

of resonators. When one coupling capacitor is replaced by a short, which means the

center conductor is connected to a ground plane, a λ/4 resonator is formed.

Fig. 2.4(a) shows a schematic of a λ/2 CPW resonator. The two coupling ca-

pacitors, marked with Ck , couple signals into the resonator and also couple the

resonator to feed lines for measurements. The characteristic impedance of 50 Ω is

realized by adjusting the center conductor width W and the gap width G . The red

curve indicates the fundamental current mode, the wavelength of which is twice the

resonator length l . By connecting the input and output ports, which are marked

with “in” and “out”, respectively, to a Vector Network Analyzer (VNA), transmis-

sion and reflection measurements can be performed. Fig. 2.4(b) shows a typical

experimental transmission curve of a Nb resonator on a Si substrate measured with

a VNA at 4 K . The transmission shows a Lorenzian peak.

There are three important parameters to describe a resonator: resonance frequen-

cies, internal quality factors Qint and external quality factors Qext . At resonance

the resonator can be simply modeled by a parallel LC circuit, if the resistive part

due to the resonator losses is ignored. The stored energy oscillates between the

capacitor and the inductor without external excitation. The resonance frequencies
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of the different modes can be written as

ωm ≡ 2πfm =
c
√
εeff

π

l
= m

1√
L′C ′

π

l
, (2.45)

where εeff is the effective dielectric constant of the CPW, l is the resonator length,

L′ and C ′ are the inductance and capacitance per unit length, respectively, c is the

speed of light, and m is the mode number m = 1, 2, 3 ... The fundamental mode

corresponds to m = 1 . Very often, f0 is used to denote the fundamental mode. The

internal (Qint) and the external quality factor (Qext) together determine the total

loaded quality factor Q by
1

Q
=

1

Qint

+
1

Qext

. (2.46)

Q characterizes the energy loss rate, and for each mode it is defined as

Qm = 2π
energy stored

energy lost per cycle
=

fm

FWHM
. (2.47)

Here, the Full Width at Half Maximum (FWHM) characterizes the linewidth of the

resonant mode m . The loss channel induced by the coupling to external circuits

via Ck determines the external quality factor Qext. The internal quality factor

Qint characterizes intrinsic losses in the resonator. For a superconducting CPW

resonator, the internal losses include the dielectric loss due to two-level systems, the

quasiparticle loss due to a finite temperature, and the radiation loss.

Similar to a mechanical oscillator, the quantum mechanical treatment of a har-

monic oscillator also applies to an electromagnetic resonator. The Hamiltonian is

Ĥ = ~ω
(
â†â+

1

2

)
, (2.48)

and the energy eigenvalues are

Em̃ = ~ω
(
m̃+

1

2

)
. (2.49)

Here, â and â† are the annihilation and creation operators, respectively, and ω is

the angular resonance frequency. We point out that Eqs. (2.48)-(2.49) describe a

single resonant mode. The characteristic energy ~ω is the energy quantum of the

electromagnetic field, which is the energy of a single photon. Even in the vacuum

state, i.e. in the absence of any photon m̃ = 0 , the energy is ~ω/2, which is called

zero-point energy.
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Figure 2.5: (a) Schematic of a JJ consisting of two superconductors (S) and an
isolator (I). Dimensions are not to the scale. (b) Circuit symbol of a JJ. (c) Scanning
electron micrograph of a typical Al-AlOx-Al JJ. Reprinted figure from Ref. [60].

2.7 Josephson junction

Josephson Junctions (JJs) are fundamental building blocks in circuit QED systems

due to their non-linear transport properties. A JJ consists of two weakly coupled

superconductors. Such weak coupling can be established by a weak link, a normal

metal layer or a thin isolating layer (Fig. 2.5 (a)). We use Al-AlOx-Al junctions

(Fig. 2.5 (c)) fabricated by shadow evaporation [61]. Here, we only consider the

case where the supercurrent density is uniform in the area perpendicular to the

current flow and the junction width and length are smaller than the Josephson

penetration depth. In this case (quasi zero-dimensional junction), the current-phase

relation and the voltage-phase relation are

I(ϕ) = Ic sinϕ ,
∂ϕ

∂t
=

2π

Φ0

V (t) , (2.50)

respectively. Here, Φ0 = h/2e is the magnetic flux quantum with h the Planck

constant and e the electron charge, Ic is the junction critical current, ϕ is the phase

difference between the two superconductors, and I (V ) is the current (voltage)

across the junction. According to these two relations, a constant dc current with

−Ic ≤ I ≤ Ic can flow as a supercurrent through the JJ without a voltage drop, and

a constant dc voltage across the JJ leads to an oscillating current.

There are two characteristic energies of a JJ, the Josephson coupling energy EJ

EJ =
Φ0Ic

2π
(1− cosϕ) (2.51)

and the charging energy Ec

Ec =
1

2

(2e)2

CJ

. (2.52)

Here, EJ describes the binding energy of the two superconductors due to the overlap

of their wave functions, and Ec corresponds to the charge energy of a single Cooper
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Figure 2.6: Schematic of a dc-SQUID. Dimensions are not to the scale. Two JJs
have the critical current Ic, and phase differences ϕ1,2 . The currents through the
two junctions are denoted by I1,2 , and the total dc bias current through the SQUID
is denoted with Ib . Blue arrows indicate external magnetic flux through the SQUID
loop.

pair on the Josephson capacitor CJ.

2.8 Dc-SQUID

When two JJs are combined in parallel as shown in Fig. 2.6, we get a direct current

Superconducting QUantum Interference Device (dc-SQUID). In the following, the

two JJs are assumed to be identical. The flux quantization implies [62]

ϕ1 − ϕ2 = 2π
Φ

Φ0

+ 2πn , (2.53)

with n ∈ Z . Therefore, the total current Ib through the SQUID is

Ib = Ic sinϕ1 + Ic sinϕ2

= 2Ic cos

(
π

Φ

Φ0

+ nπ

)
sin

(
ϕ2 + π

Φ

Φ0

+ nπ

)
. (2.54)

Here, ϕ1,2 are the phase differences for each junction. The total magnetic flux

threading the loop Φ is determined by an external applied magnetic flux Φext and

the flux generated by the circulating current Icir = I1−I2
2

,

Φ = Φext − LloopIcir , (2.55)
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where Lloop is the loop inductance. We introduce a screening parameter β ≡ 2LloopIc
Φ0

.

If β = 0, the second term in Eq. (2.55) is zero, and Φ = Φext . Eq 2.54 is rewritten

as

Ib = 2Ic cos

(
π

Φext

Φ0

+ nπ

)
sin

(
ϕ2 + π

Φext

Φ0

+ nπ

)
. (2.56)

At a fixed Φext , ϕ2 has a value which gives the maximum supercurrent through the

loop,

Isquid = 2Ic

∣∣∣∣cos

(
π

Φext

Φ0

)∣∣∣∣ . (2.57)

We can assign the inductance Lsquid to the SQUID which depends on its critical

current Isquid ,

Lsquid =
Φ0

2πIsquid

. (2.58)

We conclude that a dc-SQUID can be considered as a flux dependent inductor.

In this work, the inductance of a dc-SQUID is modulated by modulating the flux

through the SQUID. Since SQUIDs are very sensitive to magnetic flux, they are

widely used to detect any signal that can be converted to a magnetic flux, such as

voltage, current and gravity. Therefore, it allows for a broad range of applications

in many areas, such as biomagnetic imaging, microscopy, etc [62].

2.9 Flux-driven JPA

A parametric amplifier is an oscillator whose resonant frequency ωr is modulated

periodically in time, ωr → ωr[1 + δp cos(ωpt)], with the modulation frequency ωp

and the modulation magnitude δp. Neglecting the δ2
p terms, the Hamiltonian of the

parametric amplifier becomes

Ĥ = ~ωr

(
â†â+ 2δp cos(ωpt)(â+ â†)2 +

1

2

)
. (2.59)

A detailed theoretical treatment is given in Ref. [64]. In the case of a JPA, the

oscillating system is a λ/4 CPW resonator whose resonant frequency is determined

by its capacitance and inductance (see Fig. 2.7(a)). The latter can be tuned by a

dc-SQUID. The external magnetic flux through the dc-SQUID, Φext , contains two

parts: Φdc and Φrf . The dc flux Φdc is generated by a magnetic field coil and

the ac flux Φrf comes from a radio frequency pump tone. By modifying Φdc, the

resonant frequency can be adjusted. Fig. 2.7(b) shows the flux dependence of the

resonance frequency of one JPA sample, which is labeled as Q300 JPA. By fitting
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Figure 2.7: Flux driven JPA. (a) Circuit diagram. The transmission line resonator
is terminated by a dc-SQUID (loop with crosses symbolizing Josephson junctions)
at one end. A magnetic flux Φdc + Φrf penetrating the dc-SQUID modulates the
resonant frequency. (b) Dependence of the resonant frequency on the dc flux Φdc.
The red line is a fit of a distributed circuit model [63] to the data (black square). Blue
dot indicates the operation point for Q300 JPA in our experiments. (c) Schematic
of the operating principle of the JPA (see text for details). Reprinted figure from
Ref. [32].

a theoretical model [63] to the experimental data (black squares), we can estimate

a Josephson coupling energy EJ =h× 1305 GHz for each junction, where h is the

Planck constant.

Periodically varying the resonant frequency with an ac flux Φrf at 2f0, where f0 is

the operation point frequency, results in parametric amplification: A signal at f0−f
incident at the signal port is amplified by the signal gain G and reflected back to the

signal port. At the same time, an idler mode at f0 + f is created, whose amplitude

is determined by the intermodulation gain M . This operation principle is depicted

in Fig. 2.7(c). If the incoming signal consists of vacuum fluctuations, this process

is the analogue of parametric down-conversion in optics, where a pump photon

splits into a signal and an idler photon. Energy and momentum are conserved

during this process. Energy conservation requires fpump = fsignal + fidler, while

momentum conservation establishes phase correlations between the signal, idler and

pump modes. The destructive interference between signal and idler modes leads to

squeezing.



Chapter 3

Quantum communication with

propagating microwaves

Entanglement is a unique property of a composite quantum system. Due to the

correlations between the subsystems, a measurement on one subsystem projects

the other subsystems into a specific state. Since the subsystems can be spatially

separated, entanglement becomes an important resource for quantum teleportation,

quantum computing, quantum communication, etc. In this chapter, we first describe

a two-mode squeezed vacuum state, which is a representative of an entangled state

containing two subsystems. Then we discuss its G(2) correlation function, which is

an important quantity for the protocol of quantum teleportation. We also explain

a quantum teleportation protocol based on propagating microwave photons. In the

end, a remote state preparation protocol used to benchmark all the building blocks

for quantum teleportation is presented.

3.1 Two-mode squeezed vacuum state

In Sec. 2.4, we have discussed single-mode squeezed states which can be generated

by a JPA operating in the degenerate mode. When the JPA is operated in the

non-degenerate mode, which means that the signal and idler modes have different

frequencies, the correlations between the signal and idler modes establish a two-mode

squeezed state [36, 58]. Alternatively, a two-mode squeezed state formed by two

spatially separated modes with the same frequency can be generated by a balanced

beam splitter with two squeezed states at the inputs [35, 39]. Two-mode squeezed

states generated by various methods have the same mathematical representation,

and different applications. The second method has been widely used in quantum

25
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teleportation [14,15] to generate EPR pairs.

In analogy with the single-mode squeeze operator (Eq. (2.4.1)), we introduce a

two-mode squeeze operator,

Ŝ(a,b)(ξ) = exp
(
ξ∗âb̂− ξâ†b̂†

)
. (3.1)

Similar to single-mode squeezing, ξ = r exp(iϕ̃(a,b)), and â, b̂, â† and b̂† are the

operators of the two photonic modes. We notice that Ŝ(a,b) is not the product of two

single-mode operators. A two-mode squeezed vacuum state is obtained by applying

Ŝ(a,b)(ξ) onto a two-mode vacuum |0, 0〉,

Ŝ(a,b)(ξ)|0, 0〉 = exp
(
ξ∗âb̂− ξâ†b̂†

)
|0, 0〉 . (3.2)

The two-mode squeezed vacuum state is not a product of two squeezed vacuum

states. It is an entangled state containing correlations between two modes. Each

mode itself is a thermal state with a photon number 〈n̂a〉 = 〈n̂b〉 = sinh2 r ≡ n. Also,

the quadrature fluctuations are identical for all phase angles, (∆p̂x)
2 = (∆q̂x)

2 =
1
4

cosh 2r = 1
2
n + 1

4
with x = a, b . Therefore, the squeezing does not exist in

the individual modes, but in the superposition of two modes. We introduce the

superposition quadrature operators P̂(a,b) and Q̂(a,b) ,

P̂(a,b) =
1√
2

(p̂a + p̂b) , Q̂(a,b) =
1√
2

(q̂a + q̂b) , [Q̂, P̂ ] =
i

2
, (3.3)

where p̂a,b and q̂a,b are quadrature operators defined in Eq. (2.12). The variance of

the superposition quadratures depends on the squeezing angle ϕ̃(a,b). The variances

of the squeezed and anti-squeezed superposition quadratures are e−2r/4 and e2r/4 ,

respectively. These expressions are the same as for the single-mode squeezed vacuum

state in Sec. 2.4. The Wigner function of a two-mode squeezed vacuum state [65]

is 1

W(a,b)(pa, qa, pb, qb) =

4

π2
exp {−e−2r[(pa − pb)2 + (qa + qb)2]− e2r[(pa + pb)2 + (qa − qb)2]} . (3.4)

1To simplify the expresson, the coordinate system is rotated until P̂(a,b) is the squeezed quadra-
ture.
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In the limit of infinite squeezing, r →∞ , the Wigner function becomes

W(a,b)(pa, qa, pb, qb) =

{
1 if pa + pb = 0 and qa − qb = 0

0 if pa + pb 6= 0 or qa − qb 6= 0
(3.5)

This relation implies

p̂a + p̂b = 0 and q̂a − q̂b = 0 (3.6)

for ideal two-mode squeezed vacuum states.

3.2 Correlation functions

Correlation functions are widely used in the characterization of radiation fields [66,

67]. To measure the correlation functions, single-photon detectors are used in the

optical domain. In the microwave domain, due to the lack of single microwave photon

detectors, linear amplifiers together with quadrature-based detection techniques turn

out to be efficient tools to detect quasi-distribution functions of microwaves [39,41,

43], as well as temporal correlations of propagating microwave signals [68].
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Figure 3.1: (a) Schematic of a setup for the dual-path method. (b) Schematic of
a setup for the reference state method.

3.2.1 Dual-path method

First we discuss how to calculate correlation functions using a dual-path setup [39,

41,43]. In the following, we use subscripts “1, 2” to indicate two different detection

chains, and the subscript “d” to denote the dual-path method and “r” the reference

state method. As shown in Fig. 3.1(a), the beam splitter relates the input and
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output modes as

ĉ1 =
1√
2

(â+ v̂) , (3.7)

ĉ2 =
1√
2

(−â+ v̂) , (3.8)

where â is the bosonic annihilation operator of the signal under study, and v̂ is the

bosonic annihilation operator of a reference mode. We choose the vacuum state as

the reference mode. ĉ1,2 denote the bosonic operators of the output modes. Then,

ĉ1,2 are amplified by the detection chains with effective gains Gd1 and Gd2 . The

noise added during amplification is represented by the bosonic operators ĥ1,2 and

ĥ†1,2 [22]. This process can be written as

Ĉ1,2 =
√
Gd1,d2 ĉ1,2 +

√
Gd1,d2 − 1 ĥ†1,2 . (3.9)

Subsequently, using room temperature IQ-mixers we get access to the quadrature

components, p̂1,2 and q̂1,2 , which are digitized by Analogy-to-Digital Converters

(ADCs). We define a complex envelope operator as ξ̂1,2 ≡ p̂1,2 +iq̂1,2. The IQ mixers

fulfill the relation

ξ̂1,2 = Ĉ1,2 + v̂†1,2 , (3.10)

where v̂1,2 are the annihilation operators of the added noise by the IQ-mixers. By

combining the Eqs. (3.7)-(3.10), the detected signals are

ξ̂1 =

√
Gd1

2
( + â+ v̂) +

√
Gd1 − 1ĥ†1 + v̂†1 , (3.11)

ξ̂2 =

√
Gd2

2
(− â+ v̂) +

√
Gd2 − 1ĥ†2 + v̂†2 . (3.12)

We define the operators

V̂1,2 ≡
√

2

Gd1,2

(√
Gd1,2 − 1 ĥ1,2 + v̂1,2

)
, (3.13)

Ŝ1,2 ≡
√

2

Gd1,2

ξ̂1,2 , (3.14)
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to simplify Eqs. (3.11)-(3.12) to

Ŝ1 = + â+ v̂ + V̂ †1 , (3.15)

Ŝ2 = − â+ v̂ + V̂ †2 . (3.16)

We note that the following calculations in this section are based on private dis-

cussions with Roberto Di Candia from the University of the Basque Country

UPV/EHU, Spain. So far we have not included any time dependence in the ex-

pressions. To describe the dynamics of field â, we define the temporal correlation

functions G(1) and G(2) as

G(1)(t, t+ τ) ≡ 〈â†(t)â(t+ τ)〉 , (3.17)

G(2)(t, t+ τ) ≡ 〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉 . (3.18)

Based on the fact that the first moments of the added noise are zero 〈V̂1〉 = 〈V̂2〉 = 0

and v̂ represents a vacuum state, it is easy to get

G(1)(t, t+ τ) = −〈Ŝ†1(t)Ŝ2(t+ τ)〉+ 〈V̂1(t)V̂ †2 (t+ τ)〉 (3.19)

= +〈Ŝ†1(t)Ŝ1(t+ τ)〉 − 〈V̂1(t)V̂ †1 (t+ τ)〉 (3.20)

= +〈Ŝ†2(t)Ŝ2(t+ τ)〉 − 〈V̂2(t)V̂ †2 (t+ τ)〉 . (3.21)

The method for calculating G(2)(t, t + τ) is similar. Since this procedure is

lengthy, the final expressions will not be listed here. It turns out that 160 mo-

ments of the form 〈Ij
′

1 (t+ δ)Ik
′

2 (t+ δ)Qm′
1 (t+ δ)Qn′

2 (t+ δ)〉, where j′, k′,m′,n′ ∈ N0,

0 < j′+ k′+m′+n′≤ 4, and δ = 0 or τ , are needed to include all the expressions of

G(2)(t, t+τ) . As already mentioned in Sec. 2.1, for a quantum mechanical treatment,

the notations p̂ and q̂ are used to denote in-phase and out-of-phase components of a

signal, while for microwave engineering the notations I and Q are used. I1,2 and Q1,2

are measured quantities of the operators p̂1,2 and q̂1,2 . Compared to the reference

state method, which is discussed in the next section, this method does not require

a reference measurement. Instead, it requires the knowledge of the beam splitter

relations. The dual-path method allows to characterize the properties of the beam

splitter input states, whilst the reference state method describes the beam splitter

output states.
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3.2.2 Correlation functions of two-mode squeezed states

Next, we calculate the correlation functions which characterize the quantum correla-

tions of the EPR pair when a time offset exists between two modes. The correlation

function is a crucial parameter in quantum teleportation (Sec. 3.3) and remote state

preparation (Sec. 3.4) protocols, because it sets the delay threshold before the linear

transformation in Bob’s side.

Two modes with bosonic annihilation operators ŝa,b pass the detection chains

with effective gain Gr1,r2(Fig. 3.1(b)). Based on the amplifier relation (Eq (3.9))

and IQ-mixer relation (Eq. (3.10)), the detected quadrature components, p̂1,2 and

q̂1,2 , in the form of complex envelope operators, ξ̂1,2 ≡ p̂1,2 + iq̂1,2 , are written as

ξ̂1(t) =
√
Gr1ŝa(t) +

√
Gr1 − 1ĥ†1(t) + v̂†1(t) , (3.22)

ξ̂2(t) =
√
Gr2ŝb(t) +

√
Gr2 − 1ĥ†2(t) + v̂†2(t) , (3.23)

where ĥ†1,2 and v̂†1,2 are creation operators of the noise added by the amplifiers and

IQ-mixers, respectively. In the case of a two-mode squeezed state generated by a

beam splitter, ŝa,b represent the output modes of the beam splitter. To simplify the

equations, we define

V̂1,2(t) ≡
√

1

Gr1,2

(√
Gr1,2 − 1 ĥ1,2(t) + v̂1,2(t)

)
, (3.24)

Ŝ1,2(t) ≡
√

1

Gr1,2

ξ̂1,2(t) . (3.25)

With these definitions, Eqs. (3.22)-(3.23) read as

Ŝ1(t) = ŝa(t) + V̂ †1 (t) , (3.26)

Ŝ2(t) = ŝb(t) + V̂ †2 (t) . (3.27)

Since 〈V̂1〉 = 〈V̂2〉 = 0, the first moments are

〈ŝa(t)〉 =〈Ŝ1(t)〉 , (3.28)

〈ŝb(t)〉 =〈Ŝ2(t)〉 , (3.29)
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and the second moments are

〈ŝa(t)ŝb(t+ τ)〉 =〈Ŝ1(t)Ŝ2(t+ τ)〉 − 〈V̂ †1 (t)V̂ †2 (t+ τ)〉 , (3.30)

〈ŝ2
a,b(t)〉 =〈Ŝ2

1,2(t)〉 − 〈V̂ †21,2(t)〉 , (3.31)

〈ŝ†a,b(t)ŝa,b(t)〉 =〈Ŝ†1,2(t)Ŝ1,2(t)〉 − 〈V̂1,2(t)V̂ †1,2(t)〉 , (3.32)

〈ŝ†a,b(t+ τ)ŝa,b(t+ τ)〉 =〈Ŝ†1,2(t+ τ)Ŝ1,2(t+ τ)〉 − 〈V̂1,2(t+ τ)V̂ †1,2(t+ τ)〉 . (3.33)

The conjugate terms have a similar form. For two-mode squeezed vacuum states, the

variances of the superposition quadrature operators (Eq. (3.3)) characterize quantum

correlations. Here, we need to add a time offset τ in one chain. The variances of

superposition quadrature operators of the modes under study become

(
∆[Q̂(a,b)(t, t+ τ)]

)2

=

(
∆

[
1√
2

(q̂a(t) + q̂b(t+ τ))

])2

, (3.34)(
∆[P̂(a,b)(t, t+ τ)]

)2

=

(
∆

[
1√
2

(p̂a(t) + p̂b(t+ τ))

])2

. (3.35)

Here, p̂a,b and q̂a,b are the quadratures of the ŝa,b, and they fulfill

p̂a,b =
1

2i

(
ŝa,b − ŝ†a,b

)
and q̂a,b =

1

2

(
ŝa,b + ŝ†a,b

)
. (3.36)

The noise moments are calculated from a reference measurement which requires

uncorrelated vacuum states at the beam splitter outputs. This can be easily realized

by sending vacuum states into the beam splitter. This method does not rely on the

beam splitter relation and treats the beam splitter as a black box.

3.3 Quantum teleportation

In 1993, C. H. Bennett et al. [8] proposed a teleportation protocol for discrete

variables based on a classical communication channel and an EPR channel. This

proposal has triggered lots of investigations. In 1997, the first experimental realiza-

tions [10, 11] of quantum teleportation succeeded in teleporting an optical photon

polarization state. Theoretical protocols on how to teleport a quantum state of

a system with continuous variables were proposed by L. Vaidman [12] and S. L.

Braunstein et al. [13]. This protocol was also generalized to teleport multimode

continuous variables [69]. Teleportation of coherent states in the optical domain

was demonstrated in 1998 [14]. There were also other experiments on teleporting
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nonclassical wave packets [15] and teleportation network [70]. The rapid improve-

ment of techniques in the optical domain makes the quantum teleportation in free

space [16–18] a reality. There are also reports on quantum teleportation for cold

atoms [71–73]. Because of the technical difficulties in the microwave domain, such

as the lack of single microwave photon detector, so far only quantum teleportation

of discrete variables has been demonstrated [38]. Quantum teleportation with con-

tinuous variables in the microwave domain has not yet been realized. In this section,

we present a quantum teleportation protocol for propagating microwave signals [74].
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Figure 3.2: Schematic of a quantum teleportation protocol with propagating mi-
crowaves. An EPR pair (a, b) is generated by sending two squeezed state (1, 2) into
a 50/50 beam splitter. The EPR pair (a, b) is distributed to Alice and Bob. Alice
performs a Bell state measurement on the state to be teleported (T ) and half of the
EPR pair (a), and classical results a, b are obtained. Then, Alice communicates the
classical results to Bob by classical communication. Bob applies a linear transfor-
mation on his half of the EPR pair (b). The output state is identical to the input
state.

The protocol is schematized in Fig. 3.2. Alice and Bob are spatially separated

stations. They share an EPR pair, which is, in our case, a two-mode squeezed state

following relations Eq. (3.6). Half of the EPR pair is distributed to Alice, and the

other half to Bob. The EPR pair is generated by sending two squeezed states into

a balanced beam splitter. We emphasize that the quadrature operators p̂a,b and q̂a,b

denote the beam splitter output states, and p̂1,2 and q̂1,2 the beam splitter input
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states. Alice wants to send an unknown quantum state, which is characterized by

p̂T and q̂T, to Bob. Alice first performs a Bell measurement on state T and her half

of the EPR pair, and reads out a and b,

p̂T + p̂a = a and q̂T − q̂a = b . (3.37)

Here, Alice only performs a local operation, and the measurement outcomes do not

contain any information on the state T . After this measurement, the other half of

the EPR pair in Bob’s station collapses into

p̂′b = p̂T − a and q̂′b = q̂T − b . (3.38)

Next, Alice communicates her measurement results, a and b , to Bob via a classical

channel, and Bob applies a linear transformation to his state based on the classical

information. In phase space this means, Bob displaces his state by a + ib. In the

end, the state at Bob’s station is identical to the initial state to be teleported. In

this protocol, the state T disappears at Alice’s station and is recovered at Bob’s

station. This does not violate the no-cloning theorem. In reality, one needs to

consider the imperfection of the EPR pair, the setup losses, the noise added by the

detector, the detector efficiency, the linear transformation efficiency, the temporal

mode matching, etc. Therefore, the final state at the end of the protocol is not

identical to the input state. A fidelity F ≡ 〈in|ρ̂out|in〉 [75], which describes the

similarity of the input and output states, is used to verify the protocol. Here, ρ̂out

is the density operator of the output state. The maximum that can be achieved for

continuous variables without any entanglement channel is F = 1/2 [76]. A successful

quantum teleportation requires F > 1/2 .

3.4 Remote state preparation

In the quantum teleportation protocol, which is discussed in the last section, Alice

has no knowledge about the input state. To teleport a qubit state, the protocol

requires one bit of entanglement, which is also called “ebit”, and two classical bits.

Both quantum and classical resources are needed, and there is no trade-off between

them. If the input state is known to Alice, the protocol is called remote state

preparation. In this case, there is a trade-off between the quantum and classical

resources. In one limiting case, Alice encodes the input state fully into classical

bits and sends them to Bob, and Bob reconstructs the state on his side. This case
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Figure 3.3: (a) Schematic of an ideal setup for remote state preparation. No loss
is taken into account. Detection efficiency is one. (b) Schematic of a realistic
setup for remote state preparation. Triangles represent JPAs and HEMT amplifiers.
G1,2 are the degenerate gains of the EPR-JPAs. GJ is the degenerate gain of the
detection-JPA (det-JPA), and GH is the HEMT gain. ηa,b,α denote the transmissivity
of corresponding cables and connectors, and 1−ηa,b,α are connection losses. All the
losses and gains are in linear power units. Blue symbols are the subscripts of the
states at different stages of the setup. v1 and v2 are the subscripts of the vacuum
states at the inputs of the EPR-JPAs. Green symbols denote the noise added by the
connection losses, det-JPA and HEMT amplifiers.

requires no entanglement resource but an infinite number of classical bits. The other

extreme case is set by causality: the information transfer speed can not exceed the

speed of light. Therefore, the minimal amount of classical bits needed is one. A

thorough theoretical study [77] has shown that at least 3.79 ebits per qubit are

required to remotely prepare a qubit state with one classical bit. Teleportation

could be considered as a special case of remote state preparation. In Ref. [78], A.

K. Pati has pointed out that the resources can be cut down if the input state is

restricted to an ensemble of special pure qubit states. For example, an equatorial

qubit state on a Bloch sphere can be remotely prepared with one classical bit and

one entanglement bit. The discrete variables remote state preparation has been

extended to continuous variables [79, 80]. Ref. [81] proposed a scheme to remotely

prepare a squeezed state based on homodyne detection.

In this section, we present a scheme to remotely prepare a squeezed state which is

compatible with microwave technology. This protocol is based on private discussions

with Roberto Di Candia from the University of the Basque Country UPV/EHU,

Spain. From an experimental point of view, this protocol requires the same building

blocks as the quantum teleportation protocol: EPR pair generation, classical com-

munication and linear transformation. In the teleportation protocol, a Bell measure-

ment is needed in Alice’s station, but here only a projective measurement on one
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quadrature is required. This significantly reduces the experimental requirements.

The protocol is sketched in Fig. 3.3. To simplify the explanation, we first consider

the ideal case (Fig. 3.3(a)). This means the EPR state is an ideal two-mode squeezed

vacuum state, there is no loss in the setup, and the detection efficiency is one.

Therefore, no amplifier is needed in the setup for detection purposes. An ideal two-

mode squeezed vacuum state is generated by sending two orthogonally squeezed

states with infinite squeezing into a 50/50 beam splitter. The two input states are

represented by quadrature operators p̂1,2 and q̂1,2, with q̂1 = p̂2 = 0 . Based on the

beam splitter relations (Eqs. (3.7)-(3.8)) and quadrature definitions (Eq. (2.12)),

the EPR state is

ĉ1 = q̂a + ip̂a =
1√
2

[+q̂1 + q̂2 + i(+p̂1 + p̂2)] =
1√
2

(q̂2 + ip̂1) , (3.39)

ĉ2 = q̂b + ip̂b =
1√
2

[−q̂1 + q̂2 + i(−p̂1 + p̂2)] =
1√
2

(q̂2 − ip̂1) , (3.40)

satisfying Eq. (3.6). Alice makes a projective measurement on the p-quadrature with

the result a. Now on Bob’s side the state becomes 1√
2
(q̂2− ia). Alice communicates

the result to Bob, and Bob applies a displacement operator D(ia). In the end, Bob

has q̂f + ip̂f = q̂2/
√

2 on his side. At the end of the protocol, Alice has remotely

prepared a state with infinite squeezing along the p-quadrature at Bob’s station.

In reality, the setup is much more complicated (Fig. 3.3 (b)). According to our

quadrature definitions in Eq. (2.12), the quadrature variance of a vacuum state is

0.25 (Eq. (2.26)). A two-mode squeezed vacuum state, acting as the EPR pair, is

generated by a beam splitter with two squeezed states at the inputs. In experiments,

a hybrid ring, which is a 50/50 beam splitter, is used to generate the EPR pair. The

two squeezed states are generated using two JPAs, which are noted as EPR-JPAs in

short, with degenerate power gains G1 and G2. If the EPR-JPAs do not add noise

during amplification, the quadratures of the output states are written as

p̂1 =
√
G1p̂v1 and q̂1 =

1√
G1

q̂v1 , (3.41)

p̂2 =
1√
G2

p̂v2 and q̂2 =
√
G2q̂v2 , (3.42)

and the squeezed and anti-squeezed quadrature variances are 0.25/G1,2 and 0.25×
G1,2 , respectively. The operators p̂1,2 and q̂1,2 denote the EPR-JPAs’ output states,

which are also the squeezed states at the hybrid ring inputs. Due to the JPA

losses and the connection losses between the EPR-JPAs and the hybrid ring, the
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quadrature variances of the squeezed states at the hybrid inputs in reality always

differ from the ideal case. To include the EPR-JPAs losses and the connection

losses, we use experimental quadrature variances (∆Xsq)2 and (∆Xanti)
2, rather

than 0.25/G1,2 and 0.25×G1,2 . After the hybrid ring, the states become

p̂a =
p̂1 + p̂2√

2
, (3.43)

p̂b =
−p̂1 + p̂2√

2
. (3.44)

In the rest of the calculations, we only consider the p-quadrature, and the q-

quadrature is obtained with the same method. At Alice’s side, the state passes

through cables, connectors and circulators with total power loss of 1− ηa, which is

included in the protocol with the beam splitter model. The state becomes

p̂a1 =
√
ηap̂a +

√
1− ηap̂va . (3.45)

Here, p̂va represents the noise added by the connection losses. Afterward, the state

is projected by a detection JPA (det-JPA) with a degenerate power gain GJ. Here

a det-JPA is used to realize low noise amplification. The state after the det-JPA

becomes

p̂a2 =
√
GJp̂a1 +

√
kJp̂vJ . (3.46)

The term kJ denotes the number of noise photons added by the det-JPA at the

JPA output, and p̂vJ is the quadrature operator of the noise mode. Again the state

experiences a connection loss 1− ηα with noise term p̂vα ,

p̂a3 =
√
ηαp̂a2 +

√
1− ηαp̂vα . (3.47)

Then a HEMT amplifier with a linear power gain GH and noise p̂vH is used to further

amplify the signal,

p̂af =
√
GHp̂a3 +

√
GH − 1p̂vH . (3.48)

So far the state has been amplified a lot. Also a certain amount of noise has been

added to the state. Now Alice measures the p-quadrature value paf and communi-

cates the result to Bob.

At Bob’s side, the other half of the EPR pair travels through a cable with
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connection loss 1− ηb and noise p̂vb ,

p̂bf =
√
ηbp̂b +

√
1− ηbp̂vb . (3.49)

Finally, Bob displaces the state based on the classical information from Alice. This

is realized with a high transmissivity (τ) beam splitter, which is a directional coupler

(Sec 2.3). Similar to Eq. (2.21), the output state is written as

p̂f =
√
τ p̂bf +

√
1− τ p̂af . (3.50)

If the protocol works, a state squeezed along p-quadrature is prepared at Bob’s

station. We use the variance of p̂f to evaluate the squeezing level of the output

state. If (∆p̂f) < 0.25, the protocol works.

(∆p̂f)
2 =

1

8
τηb

(
1

G2

+G1

)
+

1

8
(1− τ)GHGJηαηa

(
1

G2

+G1

)
+

1

4
(1− τ)GHGJηα (1− ηa) +

1

4
(1− τ)GHηαkJ +

1

4
τ (1− ηb)

+
1

2
(1− τ)GH(1− ηα)

(
nα +

1

2

)
+

1

2
(1− τ)(GH − 1)

(
nH +

1

2

)
+

1

4

√
τ(1− τ)

(
1

G2

−G1

)√
ηbGHGJηαηa . (3.51)

Since the EPR-JPAs, det-JPA, hybrid ring and directional coupler, including the

circulators, connectors and cables connecting these components, are installed at the

sample stage of the dilution refrigerator, and the temperature is smaller than 50 mK,

which is well below the thermal excitation temperature at our working frequency

5 − 6 GHz , the noise added by the beam splitter is approximately at the vacuum

level. Here we only consider the thermal photons nα introduced by the connection

loss 1 − ηα from the det-JPA to the HEMT amplifier, nH by the HEMT amplifier,

and kJ by the det-JPA. We emphasize that the thermal photons added by the det-

JPA are not only determined by the physical temperature, but mainly by the JPA

losses.

With an ideal setup, which assumes no losses (ηa = ηb = ηα = 1) and a detection

efficiency of one (GJ = GH = 1 and kJ = nα = nH = 0), the output state has the

same squeezing level as the squeezed states generated by the EPR-JPAs, assuming

that the EPR pair is balanced, G1 = G2. As long as we need to amplify the state

at Alice’s station, the squeezing level of the final state decreases compared to the

squeezed states generated by EPR-JPAs. Tab. 3.1 shows how much squeezing is lost
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Table 3.1: Comparison of the squeezing level between the hybrid ring input states
and the final output states. G1 = G2 are the linear power gains of the EPR-JPAs,
and GJ is the linear power gain of the det-JPA, GJ = 100. No loss is taken into
account (ηa = ηb = ηα = 0). GH = 20000 and nH = 7.4, corresponding to 43 dB
gain and 2 K noise temperature, are realistic values for HEMT amplifiers in the
frequency range of 5− 6 GHz .

G1 Squeezing at the hybrid inputs (dB) Squeezing of the output state (dB)

3 4.8 1.6
10 10 4.6
50 17 7.1
90 20 7.5
130 21 7.6

using this protocol. In this calculation, the det-JPA gain, the HEMT amplifier gain,

and the HEMT amplifier noise are taken into account, while the connection losses,

the EPR-JPA noise and the det-JPA noise are ignored.

Based on Eq. (3.51), we can investigate the effect of different parameters on

the protocol. The main results are plotted in Figs. 3.4-3.6. In Figs. 3.4(a)-(d),

the connection losses are ignored ηa = ηb = ηα = 1. GH = 20000 and nH = 7.4

are realistic values for a HEMT. Fig. 3.4(a) shows the quadrature variance (∆pf)
2

versus transmissivity of the directional coupler. The τ value, which could balance

the gains and losses in Alice’s side, gives the minimal quadrature variance, and the

largest squeezing level. We consider the noise of the EPR-JPAs and the det-JPA

by plugging in the parameters of Q300 JPA according to Refs. [32, 39]. It is clear

from the figure that both the EPR-JPAs noise and the det-JPA noise are crucial

for the protocol. In Fig. 3.4(b), the squeezing level of the output state is plotted

as a function of GJ with the other parameters fixed except τ . We choose the τ

value which leads to the minimal variance. The figures shows that the squeezing

level saturates as GJ increases. Similarly, in Fig. 3.4(c), the squeezing level of the

hybrid ring input states and the final output state is plotted versus G1. The former

increases fast, while the latter increases slowly and tends to saturate. Above, we

suppose the two EPR-JPAs are gain balanced, G1 = G2. In real experiments, there

can be some imbalance between them. Fig. 3.4(d) shows the influence of the EPR-

JPA gain imbalance on the output state.

Ideally, the two squeezed states at the hybrid ring inputs should have the

squeezed quadratures with 90 ◦ phase difference. This means if one is squeezed

along ϕ̃/2, the other is squeezed along (ϕ̃/2 + 90) ◦ . In experiments, temperature

and pressure fluctuations in and outside the cryostat cause phase fluctuations of the
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Figure 3.4: (a)-(d) ηa = ηb = ηα = 1, GH = 20000 , and nH = 7.4 . (b)-(d)
nα = 4 . (a) The influence of the EPR-JPA noise and the det-JPA noise on
the quadrature variance of the output state. G1 = G2 = 39.8 , GJ = 100 . “Real”
stands for the cases with finite JPA noise photons, and “ideal” means zero JPA noise
photons. kJ = 140 corresponds to 0.14 noise photons at the JPA input for anti-
squeezed quadrature. (∆Xsq)2 = 0.0813 and (∆Xanti)

2 = 9.1378 correspond to a
degenerate gain of G = 39.8 on a linear scale and 10 dB signal gain. The values
of kJ , (∆Xsq)2 and (∆Xanti)

2 are from Refs. [32, 39]. The gray area indicates
squeezing. (b) Squeezing level of the output state versus GJ with different det-JPA
noise photons at the JPA input for the anti-squeezed quadrature. G1 = G2 = 39.8 ,
and the EPR-JPA noise is disregarded. (c) The dependence of the squeezing level
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balanced (G1 = G2). GJ = 100 and kJ = 0 . In (b) and (c), for each point the τ
corresponds to a value which gives the minimal variance of the final output state.
(d) The dependence of the quadrature variance of the output state on EPR-JPA
gain imbalance. GJ = 100 , kJ = 0 and G1 = G2 + ∆G . G1 = 10 for solid lines
and G1 = 40 for dashed lines.
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Figure 3.5: The effect of the EPR-JPAs angle error on the output state with different
EPR-JPA gains G1 . G1 = G2 . The angle error is 2 ◦ for the dashed lines and
0 ◦ for the solid lines. GJ = 100 . “With noise” means ∆Xsq = 0.0813 and
∆Xanti = 9.1378 for Q300 JPA with 10 dB signal gain [32, 39]. A degenerate gain
G = 23.4 corresponds to 10 dB signal gain. ηa = ηb = ηα = 1, GH = 20000 ,
nH = 7.4 and nα = 4 .

microwave signals. Also the microwave sources have phase drifts. All these instabil-

ities can lead to a phase drift of the squeezed states, and result in an angle error of

the EPR state. The angle error θ̃ is used to express how much the phase difference

deviates from 90 ◦. We assume p̂1 is the reference and it fulfills Eq. (3.41). Then p̂2

becomes

p̂2 =
cos θ̃√
G2

p̂v2θ̃ −
√
G2q̂v2θ̃ sin θ̃ , (3.52)

where p̂v2θ̃ and q̂v2θ̃ are the quadrature operators of the vacuum state with the

squeezed and anti-squeezed quadrature phase, respectively. Then, Eq. (3.51) be-

comes

(∆p̂f)
2 =

1

8
τηb

(
cos2 θ̃

G2

+G1 +G2 sin2 θ̃

)

+
1

8
(1− τ)GHGJηαηa

(
cos2 θ̃

G2

+G1 +G2 sin2 θ̃

)
+

1

4
(1− τ)GHGJηα (1− ηa) +

1

4
(1− τ)GHηαkJ +

1

4
τ (1− ηb)

+
1

2
(1− τ)GH(1− ηα)

(
nα +

1

2

)
+

1

2
(1− τ)(GH − 1)

(
nH +

1

2

)
+

1

4

√
τ(1− τ)

(
cos2 θ̃

G2

−G1 +G2 sin2 θ̃

)√
ηbGHGJηαηa . (3.53)
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In Fig. 3.5 the effect of the angle error of the squeezed state generated by EPR-JPAs

is shown. For higher degenerate gains, which means more squeezing, the angle error

becomes more problematic.

So far we have ignored the connection losses, assuming ηa = ηb = ηα = 1. Now

we investigate the influence of connection losses. Fig. 3.6(a) shows that mainly

ηA determines the maximal squeezing level. When the parameters for the det-JPA

(GJ , kJ), the HEMT amplifier (GH , nH), and other connection losses at Alice’s side

(ηα , nα) are fixed, there is a threshold ηAth for ηA. If ηA > ηAth, which means less

losses, the output state is squeezed for an optimum τ . When the losses at Bob’s

side are zero (ηB = 1), the maximal squeezing level, which is set by ηA, is reached.

More losses at Bob’s side mean more vacuum state contributes to the final quantum

state. As long as ηB 6= 0, the state is still squeezed below vacuum. Larger ηB needs

smaller τ to balance the magnitude of the quantum state and the coherent state. If

ηA < ηAth, the p-quadrature variance of the output state is always larger than 0.25.

If ηA = ηAth, the p-quadrature variance of the output state equals 0.25.
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Chapter 4

Experimental techniques

In this work, we have investigated mainly 3 flux-driven JPAs, which are denoted as

Q600 JPA, Q300 JPA and Q200 JPA 1. In this chapter, the experimental setups and

techniques are discussed. Here we describe the assembly of the cryogenic setup: mi-

crowave input and output lines, DC lines, sample preparation. Next, we discuss the

room temperature setup, including IQ cross-correlation detection, data acquisition

and processing methods used in the experiments.

4.1 Cryogenic setups

The frequency of the microwave signals we study in this work is around 6 GHz ,

corresponding to a temperature of 300 mK . To investigate the quantum properties

of microwave signals, an environmental temperature well below 300 mK is required

to suppress perturbations from thermal excitations. Also, the generation of quan-

tum microwaves is performed using superconducting circuits. In our case, JPAs,

which are based on Nb and Al thin films on a Si substrate, are used to generate

squeezed states. Although the critical temperature of Nb and Al is 9.2 K and 1.2 K ,

respectively, a temperature well below the critical temperature reduces the amount

of quasiparticles in superconductors. Therefore, we use 3He/4He-dilution refrigera-

tors to reach the required temperatures of a few 10 mK . The experiments on Q300

JPA are conducted in a liquid helium precooled 3He/4He-dilution refrigerator [40].

In the following the cryogen-free 3He/4He-dilution refrigerator is described which

1The notation for the JPA samples are based on the designed external quality factors, not the
measured Qext . By simultaneous fitting of phase and magnitude of the transmission spectra to
a theoretical model [64], the calculated Qext of Q600, Q300, Q200 JPAs are 12000, 300 and 280,
respectively. The calculated internal quality factors Qint of Q600 JPA is between 1000 and 1500,
Qint of Q300 JPA is between 5000 and 10000, and Qint of Q200 JPA is between 1000 and 2000.

43
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Figure 4.1: Photograph of the cryogenic setup for measurements with Q600 and
Q200 JPAs. PTR: pulse tube refrigerator.
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has been used for the experiments on the Q200 and Q600 samples.

This dilution refrigerator is designed and constructed at the Walther-Meißner-

Institut by K. Uhlig, A. Marx, T. Brenninger, S. Höss, and our workshop team.

There are 6 temperature stages (Fig. 4.1). A two-stage Pulse Tube Refrigerator

(PTR) cools the first and second stages to 50 K and 3 K , respectively. To cool

microwave components (e.g. cables, amplifiers and circulators), the dilution refrig-

erator is equipped with a separate 4He-1 K loop which offers a cooling power up to

100 mW near 1 K at the third stage. The still chamber of the dilution refrigerator

sets the temperature of the fourth stage to around 700 mK . Below the still stage,

there are one continuous and two step heat exchangers. The first step exchanger is

mounted to the fifth temperature stage at around 100 mK . The mixing chamber is

bolted to a large copper plate which defines the lowest stage temperature. In the

present setup, the dilution unit reaches a lowest temperature around 11 mK and the

cooling power at 100 mK is about 300µW . More details about the cryostat, can be

found in Refs. [82,83].

In the following, we discuss the input lines, the sample preparation, the mil-

likelvin stage, the output and DC lines in detail. We present the most recent setups

for the millikelvin stage and the output lines. However, not all the experimental

results presented in Chapter 5 and Chapter 6 have been measured with the most

recent setups. For example, some results are obtained with a setup without a cryop-

erm shield. The difference between the actual setup and the setup presented in this

chapter is noted if this difference is essential for the discussion of the measurement

results.

4.1.1 Input lines

Since the losses in the input losses are not crucial for the measurements, stainless

steel cables manufactured by Coax Co., Ltd with a specified loss of 9.44 dB per meter

at 5 GHz are used for the input lines. The SMA connectors are soldered manually

to these cables. During the soldering process and the subsequent thermal circling

inside the cryostat, the dielectric expands and shrinks, resulting in the movement of

the inner conductors due to different thermal expansion coefficients of the dielectric

and conductors. To prevent a potential damage of the SMA connectors, the cables

are thermally cycled to liquid N2 temperatures several times before soldering, and

bended (Fig. 4.3(a)) to reduce movements of the inner conductors. They are con-

nected to attenuators, which are mounted on top of the feedthroughs on the different

temperature plates. In this way, both the inner and outer conductors of the cables
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Figure 4.2: Schematic of the cryogenic setup for measurements with Q600 and
Q200 JPAs. The blue region indicates the cryogenic part of the dual-path receiver
(Sec 4.2.1). Losses of the input lines inside the gray area (from room temperature
down to millikelven temperature) are shown in Fig. 4.3. RT: room temperature;
SS: stainless steel, SSS: silver plated stainless steel. Minibend cables are ruggedized
flexible coaxial cables with silver plated copper as an inner conductor, and stainless
steel as an outer conductor. Female-female adapters between two cables are omitted.
Input lines I14, I12 are for pump signals, I13, I11 are for input signals, and I24 is for
displacement signals.
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Figure 4.3: (a) Photograph of input cables between PTR 1st and 2nd stages.
(b) Transmissions of input cables in the gray region in Fig. 4.2 measured at room
temperature.

The losses of the input lines in the gray region in Fig. 4.2 measured at room

temperature are shown in Fig. 4.3(b). The JPA pump lines (I11, I12) have 14 dB

less attenuation than the other input lines, since the required power for the pump

signal is much higher. Each JPA signal line (I13, I11) is connected to a measurement

circulator, and the output signal which is reflected back from the JPA signal port

is directed to the microwave outputs lines by the measurement circulator. Since

the cable between the measurement circulators and the JPAs are also a part of the

output lines, NbTi/NbTi-superconducting cables 2 are used to reduce the connection

losses. At the Q200 JPA signal input, a 30 dB-attenuator is installed. Additionally,

a heater and a silver wire, which is weakly coupled to the mixing chamber plate,

are attached to this attenuator. Thus its temperature can be controlled over a wide

range (50−800 mK) without heating up the rest of the mixing chamber components.

By sweeping the temperature of the 30 dB-attenuator, we can calibrate the gain of

the whole detection chains (Sec. 6.1.1, 6.2.1). To minimize the connection losses

and thermal coupling between the 30 dB-attenuator and the JPA, a NbTi/NbTi-

superconducting cable is used.

2NbTi/NbTi indicates the material of the inner and outer conductor.



48 4. Experimental techniques

4.1.2 Sample preparation

The JPA samples have been designed and fabricated by T. Yamamoto and K. In-

omata in the group of Y. Nakamura at NEC Smart Energy Research Laboratories,

Japan. An optical micrograph of the Q200 JPA is shown in Fig. 4.4. The resonator

and antenna are patterned from a sputtered 50 nm thick Nb film. As substrate we

use thermally oxidized (300 nm) silicon with a thickness of 300µm. In the last step,

the Al dc SQUID is fabricated using shadow evaporation [61]. Each Al electrode

has a thickness of 50 nm. The sample layout for Q600 and Q200 JPA are the same.

For Q300 JPA, 95 nm of gold is deposited on top of a 5 nm Ti bonding layer at the

contacts. The optical micrograph of Q300 JPA is presented in Ref. [32].

(a)

(b) (c)

Figure 4.4: Flux driven JPA (Q200 JPA) used in our experiments. (a) Optical
micrograph of the chip. Red rectangle: coupling capacitor. Green rectangle: dc
SQUID and pump line. (b) Zoom-in of the coupling capacitor marked with the red
rectangle in panel (a). (c) dc-SQUID and pump line in the region marked with the
green rectangle in panel (a). The size of the SQUID loop is 4.2× 2.4µm2 .

The JPA samples are glued into the sample box with GE-vanish, and the sample

ground planes are connected to the box and the Printed Circuit Boards (PCBs) by

Al wires (Fig. 4.5(a)). The Al wires are pressed to the desired positions with an

ultrasonic bonding machine. The PCBs, which transfer the coplanar to the coaxial

configuration, contain a piece of CPW. One side of the CPW is connected to the

sample by Al bonds, and the other side is soldered to the center pin of a glass bead

(V-110) from Anritsu. The PCBs are grounded to the box by Al bonds. Male V-
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Figure 4.5: (a) Photograph of the Q200 JPA in a side-mounted sample box. The
sample is bonded, using an ultrasonic bonding machine, with Al wires. (b) Photo-
graph of the sample box for Q200 JPA inside an Al shield. The Al cover of the shield
is not shown. A heater and a sensor are attached to the sample box. A magnetic
field coil made of a NbTi wire is mounted on top of the sample box. Two silver
wires thermally connect the sample box to a silver rod. SMA connectors (2.4 mm ,
from Southwest) match the V-connectors.

(a) (b)

Figure 4.6: Photograph of Q600 JPA in a top-mounted sample box. (a) Top view.
(b) Bottom view.

connectors (V102MR) from Anritsu are installed at the box to connect the glass

beads. The Q200 JPA is mounted into a side-mounted sample box (Fig. 4.5), while

the Q600 JPA is mounted into a top-mounted sample box (Fig. 4.6). Details on the

PCBs, glass beads, V-connectors and sample boxes are given in Ref. [64].

As depicted in Fig. 4.5(b), a magnetic field coil is placed on top of the sam-

ple box to provide an external flux through the SQUID. A temperature sensor and

heater are used for PID control of the sample temperature. Two silver wires pro-

vide thermal connection to a silver rod where the sample and most of the other

microwave components are installed. This silver rod is thermally anchored to the

mixing chamber plate. The sample box, magnetic field coil, heater and sensor are

placed inside an Al shield to provide screening of external magnetic fields. The Al

shield is placed inside a cryoperm shield (Fig. 4.1).
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Figure 4.7: Front and rear views of the silver rod attached to the mixing chamber
plate with the corresponding components.

4.1.3 Millikelvin stage

The JPA samples and most of the microwave components at the millikelvin stage are

installed on a silver rod, which is fixed to the mixing chamber plate (see Fig. 4.7).

The silver rod is additionally thermalized by silver wires to the mixing chamber

plate. A circulator in front of each JPA sample is used to separate incoming from

outgoing microwaves. We call this circulator the “measurement circulator” to dis-

tinguish it from other circulators in the setup. Since the Q600 JPA is not used

for squeezing measurements, its measurement circulator is directly connected to the

output line. Q200 JPA has been used for squeezing and displacement measurements,

and it is connected to a dual-path receiver. Between the dual-path receiver and the

measurement circulator a directional coupler is installed. The directional coupler

acts as a transmission line with a vacuum signal incident at the coupled port, while

it applies a displacement operation to the input signal with a coherent signal at

the coupled port. The transmitted port of the directional coupler is connected to a

customized hybrid ring. For details on hybrid rings, it is referred to Refs. [40, 84].

Compared with the hybrid ring used for measurements with Q300 JPA, which is
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described in Refs. [39, 40], the hybrid ring for Q200 JPA has a slightly different

geometry. The connectors have the proper gender which directly matches the con-

necting parts of the directional coupler and circulators. The second input of the

hybrid ring is terminated with a 50 Ω load, and this 50 Ω load can be connected

directly to the hybrid ring without additional interconnects. The hybrid ring’s two

outputs are connected to the dual-path circulators and the outputs of the latter are

further connected to the microwave output lines, as shown in Fig. 4.2 and Fig. 4.7.

The components are thermalized by firmly bolting them to the silver rod. For

some free hanging components and 50 Ω loads, silver wires are used for thermal

anchoring. To increase the thermal conductivity of the silver wires, we process them

as follows. First, they are bent to the exact desired shape, and then annealed at

900 ◦C for one hour. In the end, they are installed without further bending.

4.1.4 Output lines

The losses between the JPA sample and the first amplifier, a HEMT amplifier in

this case, can significantly reduce the signal-to-noise ratio. Therefore, NbTi/NbTi-

superconducting cables are used for the corresponding connections. We have in-

vestigated several ways to mount SMA connectors on this kind of cable, and the

main results are summarized in Tab. 4.1. Based on the mechanical stability, the

impedance missmatch and the complexity to make connectors, we choose type-III

connectors (crimped type) for most of our purposes. In Fig. 4.8 the losses of a thick

(2.19 mm diameter) and thin (1.19 mm diameter) NbTi/NbTi cable of 1 m length

with type-III and IV connectors, respectively, measured at 3 K are shown. As shown

in Fig. 4.8(a), the cable is bent into circles to fit into the refrigerator. A five-port

switch is used to calibrate the input and output lines. At position A of the switch

a calibration is done, while at position B the cable is measured. The linear fits are

used to estimate the losses. The thin cable has a larger loss (0.23 dB per meter at

6 GHz) than the thick cable (0.16 dB per meter at 6 GHz). The regularly spaced

peaks with a separation of about 216 MHz are due to reflections at the connectors.

The power of the peaks can be suppressed by reducing the impedance mismatch.

Unlike the input lines, where the cables are fixed and thermalized by attenuators,

the cables in the output lines are fixed and thermalized by copper braids or silver

wires at each temperature stage. To block thermal noise and microwave reflections

coming from higher temperature stages, additional circulators are installed for each

output line at the mixing chamber plate. They are fixed and thermalized by copper

holders, and further thermalized by 50 Ω-loads at the unused ports. The cables are



52 4. Experimental techniques

Table 4.1: Summary of different types of SMA connectors on NbTi/NbTi cables.

Model
company

Outer
diameter

Connection
method

Machanical
stability

Impedance
miss-match

Complexity

I
SMA

Huber+Suhner
2.19 mm Soldered* good > 2 Ω High

II
SMA

Huber+Suhner
2.19 mm

ECCOBOND
glued

bad > 2 Ω Low

III
SMA

Radiall
2.19 mm Crimped good ≈ 2 Ω Low

IV
SMA

Southwest microwave
1.19 mm Soldered* good > 2 Ω High

(*): There are three main steps before soldering onto NbTi/NbTi cables.

1. Mechanical polishing.

2. 1-2 minutes cleaning in the mixture HF/HNO3/H2O/CH3COOH with a ratio 1 : 6 : 10 : 2 .

3. Electroplating for about 8 minutes in the mixture H2O/CuSO4/H2SO 4 with a ratio 40 : 8 :
1 . Current is set to 60 mA .

connected to the circulators and HEMT amplifiers, which also provide thermaliza-

tion for the cables. HEMT amplifiers are installed onto the 3 K and 1.2 K plates.

The amplification is based on high electron mobility transistors, and this process

adds 5 − 20 noise photons to the input signal [22, 23]. The power supply of the

HEMT amplifiers is temperature stabilized within ±0.2 ◦C .

NbTi/NbTi
cable

)b()a(

B B AA

3 K

Figure 4.8: (a) Schematic of a cable loss measurement setup. When the microwave
switch is at position A, a transmission calibration is performed. At position B, the
NbTi/NbTi cable is measured. (b) The losses of one meter NbTi/NbTi cable with
an outer diameter of 2.19 mm and type III connectors (crimp connectors), and one
meter NbTi/NbTi cable with an outer diameter of 1.19 mm and type IV connectors
(southwest connectors) measured at 3 K .
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4.1.5 DC lines

DC lines have been used for powering of the magnetic field coils, heaters, HEMT

amplifiers and switches. At temperatures above 3 K , beryllium-copper looms are

used. Below 3 K , superconducting NbTi wires have been used. The ends of the DC

wires are fixed and thermalized to the plates by connectors as shown in Fig. 4.9(a).

As the DC wires pass through each plate, they are pressed between two copper plates

with thermal grease in between to enhance thermalization (Fig. 4.9(b)). Kapton foils

are wrapped around the wires to avoid any damage from the copper plates.

(a) (b)

Figure 4.9: (a) Photograph of a connector for DC wires inside the refrigerator. (b)
Photograph of the thermal anchor for DC wires at different temperature stages.

4.2 Room temperature setups

The room temperature setup for the Q600 JPA is shown in Fig. 4.10. A microwave

source provides a pump signal at around 12 GHz . For microwave sources, whose base

band frequency fpump/2 for a pump signal is not properly filtered, filters are needed

at the source output. The input signals are supplied by either a microwave source

or a Vector Network Analyzer (VNA). The signals coming out of the cryostat are

further amplified with room temperature amplifiers, whose temperature is stabilized

by a peltier cooler and PID controller. Then the signal is detected by either a VNA

or a spectrum analyzer.

In addition to the setup for Q600 JPA, the setups for Q200 and Q300 JPAs also

contain dual-path receivers. The VNA and spectrum analyzer are used for character-
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Figure 4.10: Schematics of the room temperature setup for Q600 JPA. RT: room
temperature.

ization measurements, while the dual-path receiver is used for state reconstructions.

A schematic of the setups for Q300 JPA is shown in Appendix A, and it is explained

in Ref. [40]. Here mainly the setups of Q200 JPA are presented.

4.2.1 Dual-path receiver

The dual-path state reconstruction method is based on statistics and cross-

correlation techniques. It consists of the cryogenic part (Fig. 4.2 marked in blue) and

the room temperature part (Fig. 4.11 marked in magenta). A complete schematic

of the dual-path receiver is presented in Appendix B. Fig. 4.12 shows a simplified

schematic of a dual-path receiver. We split a signal under study described by bosonic

annihilation and creation operators â and â† using a hybrid ring and feed them into

two amplification and detection chains. In the splitting process vacuum fluctua-

tions, represented by v̂ and v̂† , are added to the signals. In our case, the signal is

a squeezed state emitted from the JPA samples, and the vacuum fluctuations are

realized by terminating the second input port of the hybrid ring with a broadband

50 Ω load. At the two output ports, we first amplify the signals using cold HEMT

amplifiers and room temperature amplifiers and then downconvert them from radio

frequency (RF) to an intermediate frequency (IF) of 11 MHz using IQ-mixers. For

the Q300 JPA measurements (see Appendix A), a Field Programmable Gate Array

(FPGA) based receiver [32,39,40] is used. Here, the resulting orthogonal quadrature

signals I1,2 and Q1,2 after the IQ-mixers are filtered, amplified and digitized by four

Analog-Digital-Converters (ADCs), and processed in real time by an FPGA logic.

For the experiments on Q200 JPA, an Acqiris card based receiver is used. Here, only
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Figure 4.11: Schematics of the room temperature setup for Q200 JPA. The room
temperature dual-path receiver, which is the extension of the cryogenic dual-path
receiver (Fig. 4.2, marked in blue), is marked in magenta.
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Figure 4.12: A simplified schematic of the dual-path receiver.

one output of each IQ mixer is used. The quadrature (I1,2 and Q1,2) calculations

are performed by a conventional computer CPU after data acquisition.

Based on the beam splitter relations and the fact that the noise contribu-

tions from the two detection chains are statistically independent, we get access

to all moments of signal and noises added by the two detection chains. In re-

ality, we record the noisy quadrature moments 〈Ij
′

1 I
k′
2 Q

m′
1 Qn′

2 〉 up to fourth order

0 < j′+ k′+m′+n′ ≤ 4 , and j′, k′,m′,n′ ∈ N0. The reconstructed signal and noise

moments have the form of 〈(â†)lâm〉 and 〈V̂ r
1,2(V̂ †1,2)s〉, respectively. Here, V̂1,2 and

V̂ †1,2 represent annihilation and creation operators of the noise modes in the detection

chains, 0 < l + m ≤ 4 , and 0 < r + s ≤ 4 with l,m, r, s∈ N0 . With the third and

fourth order moments we calculate the third and fourth order cumulants, 〈〈(â†)lâm〉〉
for l+m = 3 , 4 and l,m∈N0 , to verify the Gaussianity of the state [85, 86] (Ap-

pendix C). Furthermore, we use the first and second order moments to reconstruct

the Wigner functions of the signal at the hybrid ring input and the noises added by

the two detection chains. Analytical expressions of signal and noise moments, and

the Wigner function construction are presented in Appendix D.

To make sure all the microwave devices are properly synchronized, they are

connected to a 10 MHz reference supplied by a rubidium frequency standard. In the

following, the IQ cross-correlation detector, which mainly contains the components

after the IQ-mixers, is explained in detail. For the Acqiris card based setup, one IQ-

mixer output is used, and the I1,2 and Q1,2 quadratures and moments calculations are

performed after data acquisition. The details are presented in Sec. 4.2.3. The FPGA

based setup for Q300 JPA uses both of the IQ-mixer outputs, and the quadratures
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Figure 4.13: Schematic of an IQ mixer. LO: local oscillator, intermediate frequency
ωIF = ωLO − ω .

and moments calculations are performed in real time with the FPGA logic. For

details, refer to Refs. [32, 39,40].

4.2.2 IQ cross-correlation detector

As discussed in Sec. 2.1, a microwave signal is described by its magnitude and

phase, A and φ(t) in Eq. (2.2). At the same time, the in-phase and out-of-phase

components, I(t) and Q(t) also provide a complete description.

For the FPGA based dual-path receiver, both the I and Q outputs of IQ-mixers

are used. An IQ-mixer(Fig. 4.13) is biased by a local oscillator, ALO cos(ωLOt) ,

with a frequency ωLO and magnitude ALO. After the IQ-mixer, the input RF signal

A cos(ωt+φ) is converted into two components with frequencies ωLO±ω. The higher

frequency terms are filtered away [87]. In the end, the two outputs of the IQ-mixer

become

IIF(t) =
ALO

2
A cos(ωIFt+ φ) ,

QIF(t) =
ALO

2
A sin(ωIFt+ φ) , (4.1)

where, ωIF = ω − ωLO . Inside the FPGA, digital down-conversion with a local

oscillator cos(ωIFt) is implemented to convert the IF signals into DC signals. Here

we point out that during digital down-conversion 2ωLO terms are generated. Digital

filters are needed to filter out 2ωLO terms. In the end, the DC signals become

IDC =
ALO

4
A cos(φ) ,

QDC =
ALO

4
A sin(φ) . (4.2)



58 4. Experimental techniques

For the Acqiris card based dual-path receiver, one output of each IQ-mixer is

used. Let us suppose output I is used. After the IQ-mixer, the RF signal becomes

IIF(t) = ALO

2
A cos(ωIFt + φ) . The I and Q terms are obtained by integrating over

one period of the IF frequency,

I =
ωIF

2π

∫ t+2π/ωIF

t

cos(ωIFτ)IIF(τ)dτ =
ALO

4
A cos(φ) (4.3)

Q =
ωIF

2π

∫ t+2π/ωIF

t

sin(ωIFτ)IIF(τ)dτ =
ALO

4
A sin(φ) . (4.4)

These calculations are performed with a computer after data acquisition.

As shown in Fig. 4.11, in front of the IQ-mixers, RF amplifiers are used to

further amplify the signals. Bandpass filters reduce the detection bandwidth to

avoid the compression of the IF amplifiers induced by broadband noise. Next, IQ-

mixers, which are biased with local oscillators with a frequency 11 MHz lower than

the signal frequency, downconvert the RF signals to IF signals. The local oscillators

for the two IQ mixers are supplied by splitting the signal from a single microwave

source. A phase shifter is inserted into one of the local oscillator inputs to balance

the phase of both chains. Before the IF amplifiers used for the amplification of the

IF signals, step attenuators and IF bandpass filters are placed. The step attenuators

adjust the amplitude of the IF signals to the detection range of the ADCs inside the

Acqiris card or the FPGA, and pre-balance the signals in the detection chains. The

band pass filters filter away the (ω+ωLO) signals generated by the IQ-mixers. After

the IF amplifiers, low pass filters and DC blocks are installed. The low pass filters

are use to reduce the noise bandwidth of the IF amplifiers, and the DC blocks are

used to filter out the possible DC voltages induced by ground loops, which could

damage the ADCs. Isolators are inserted to the setup to avoid possible spurious

noise correlations. Finally, the IF signals are converted into digital signals by ADCs

at a rate of 400 MHz. The data is transferred to a computer for the IQ quadrature

calculations, digital filtering and moments calculations. For the FPGA based setup,

the sampling rate is 150 MHz, and the digital down-conversion, digital filtering, and

moments calculations are performed in real time with an FPGA logic [39,40].

4.2.3 Acqiris card based data acquisition and processing

The IF signals are digitized using an Acqiris DC440 with 12-bit resolution and

400 MHz maximum sampling rate. The card has two ADC inputs. The input voltage

ranges are from ±125 mV to ±5 V. In the experiments, ±1 V is usually used.
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The card has 8× 106 samples acquisition memory, which means 4× 106 samples

for each chain. This is insufficient for our measurement scheme. Therefore, when the

memory is full, the data is transferred to a computer for further processing. Fig. 4.14

gives an overview of the data processing. First, the Acqiris card records samples until

the required number of samples and segments is reached. The samples are stored in

N segments. Each segment consists of M samples, and M ×N ≤ 4 × 106 for each

chain. Then all the samples are transferred to a computer. Next, by integrating over

the period of the IF frequency (Eqs. (4.3)-(4.4)), I and Q are computed. This is

effectively a down-sampling procedure with a ratio of about 36 . Digital FIR filters

are implemented to filter out higher frequency terms from I and Q computation.

In the third step, the moments up to fourth order are calculated for each sample.

In the fourth step, the moments are averaged over segments. Now we get M − 36

samples 3 for each moment. By then, the first cycle is finished. After the step one

(Fig. 4.14), data acquisition for the second cycle starts. The cycle is repeated until

a desired number of cycles is reached. Every cycle is triggered by a high/low pulse

generated by a Data Timing Generator (DTG). The DTG is synchronized with the

other microwave sources by a 10 MHz reference. For details, refer to Ref. [42].

4.3 Phase stabilization

The dual-path method for state reconstruction is based on statistics of large num-

ber of the same events. This requires identical gain and phase of the setup to be

constant during the measurement. In reality, there are always fluctuations, due to

temperature drifts, stray magnetic fields, pressure fluctuations, instabilities of mi-

crowave sources, etc. Considerable efforts have been taken to reduce the effects of

these environmental fluctuations on the measurements. The JPA temperature has

been stabilized for squeezing and displacement measurements. The HEMT amplifier

power supply and the room temperature amplifiers are temperature controlled. To

stabilize the phase, a Labview based phase stabilization protocol has been imple-

mented. We adjust the total number of samples for a measurement to fit within one

minute. A squeezed state reconstruction is performed for this measurement. The

phase drifts of the whole detection setup cause an offset between the reconstructed

squeezed phase and the target squeezed phase. This can be corrected by adjusting

the phase of the pump source. Then the measurement step, the corresponding state

3There are no complete integration windows for 1 to 18 and M − 18 to M samples for I and Q
calculation, and this give minus 36 .
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Figure 4.15: Red line shows SGS source temperature drifts over 300 minutes. Blue
line depicts relative phase drifts between two SGS sources over 300 minutes. The
two SGS sources are placed in an air-conditioner controlled room, and they generate
RF signals at 12 GHz with a 6 GHz local oscillator connecting each other.

reconstruction and the phase correction are repeated until the desired total sample

number is reached. In this way, the phase drift due to the microwave source and the

output setup is corrected.

As discussed in Sec. 3.3-3.4, for remote state preparation three JPAs, and for

quantum teleportation four JPAs are required. The three or four JPAs should

operate in a phase-locked mode. We have studied SGS100A microwave sources

from Rohde & Schwarz which could be operated in a daisy-chain configuration with

local oscillators connecting all the units. With this option, the relative phase drifts

between different units are minimized. Meanwhile, the IQ modulation of each unit

allows the individual phase and magnitude adjustment.

Fig. 4.15 shows a stability test of two phase-locked SGS sources and their tem-

perature. These two units are placed in an air-conditioner controlled room which

gives a temperature stability within about 2 ◦C . It is clear that the temperature

drift is the main reason for the phase drift of the sources. With a temperature con-

trol protocol [88], the temperature stability is improved to 0.2 ◦C . This temperature

controlled phase stabilization protocol has not yet been used for the measurements

in this thesis. However, it is going to be very crucial for future experiments of remote

state preparation and quantum teleportation.
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Chapter 5

JPA characterization

In this chapter, the characterization of Q600 and Q200 JPAs is discussed. We

start with the flux dependence of the JPA resonance frequency. A strong hysteretic

response is observed for Q600 JPA, which has a relative large screening parameter

β ≡ 2LloopIc
Φ0

. A general approach has been developed to describe this hysteretic

behavior. This approach is also valid for JPAs with small β . Then, a detailed study

of non-degenerate amplification is presented. The characterization of the Q300 JPA

which has been described in detail in Refs. [32, 40] , will not be presented here. For

the measurements in this section, the JPA temperature is about 25 mK if no other

value is specified.

5.1 Q600 JPA

5.1.1 Flux dependence of the resonance frequency

As already mentioned in Sec. 2.9, a magnetic flux Φdc , generated with an external

coil, is used to tune the resonance frequency f0 of a JPA to a desired value. At

a fixed Φdc, a microwave pump tone provides high-frequency modulation of the

magnetic flux through the SQUID, which generates high-frequency modulation of

f0 , which in turn leads to amplification. To measure the flux dependence of the

resonance frequency, a Vector Network Analyzer (VNA) is used, as shown in Fig. 5.1.

Since the JPA is a quarter-wavelength resonator, with one signal port, a reflection

measurement scheme is needed. A measurement circulator is used to separate the

JPA input signal and the signals reflected back from the JPA. Fig. 5.2 presents

reflection spectroscopy measured on Q600 JPA when the external flux is swept from

small to large values (Fig 5.2(a)) and from large to small values (Fig 5.2(b)). At a

63
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fixed flux value, the reflection spectrum shows a Lorentz dip in the magnitude and

a 360◦ phase shift in the phase compared with the input wave at the JPA resonance

frequency f0 . The resonance frequency f0 shows a periodic dependence on the

external flux. There are sudden jumps of f0 (the dips of the spectra) at certain flux

values. The flux up-sweep and down-sweep do not overlap over the whole range,

and there is strong hysteresis.

JPA

At
t.

At
t.

50

VNA
Port 1 Port 2

Pump off

Figure 5.1: JPA reflection measurement scheme with a VNA. “Att.” denotes atten-
uators.
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Figure 5.2: Reflection spectra of Q600 JPA as a function of the applied external
flux with pump off. The coil current can be linearly mapped to flux threading the
SQUID loop. (a): the coil current increases from 16µA to 316µA . (b): the coil
current decreases from 316µA to 16µA .

Next we discuss a model to describe the observed behavior. The JPA resonance

frequency f0 depends on the cavity geometric capacitance and inductance, and on

the SQUID inductance, which is flux dependent. Therefore we first calculate the

SQUID inductance Lsquid . From Eq. (2.58), we see that Lsquid depends on the

SQUID critical current Isquid. We assume the two junctions in the dc-SQUID to

have identical critical current Ic (Fig. 2.6). According to the current-phase relation
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of a Josephson junction in Eq. (2.50), the superconducting currents through the two

junctions are I1 = Ic sinϕ1 and I2 = Ic sinϕ2 , respectively. Here, ϕ1,2 are the phase

differences across the two junctions. Therefore, the total current flowing through

the SQUID Ib and the circulating current around the SQUID loop Icir are written

as

Ib =I1 + I2 = 2Ic sin
ϕ1 + ϕ2

2
cos

ϕ1 − ϕ2

2
= 2Ic sin Φ+ cos Φ− , (5.1)

Icir =
I1 − I2

2
= Ic cos

ϕ1 + ϕ2

2
sin

ϕ1 − ϕ2

2
= Ic cos Φ+ sin Φ− . (5.2)

Here, we have defined

Φ+ ≡
ϕ1 + ϕ2

2
, (5.3)

Φ− ≡
ϕ1 − ϕ2

2
, (5.4)

to simplify the expressions. Following the flux quantization relation in Eq. (2.53),

we get

ϕ1 − ϕ2 ≡ 2Φ− = 2π
Φ

Φ0

+ 2πn , (5.5)

where n ∈ Z , and Φ is the total magnetic flux through the SQUID (Eq. (2.55)),

including the external flux Φext and the flux generated by Icir. For β = 0 , we get

Φ = Φext . In this case the maximum supercurrent of a SQUID Isquid follows the

relation in Eq. (2.57).

For finite β, Eq. (2.57) is an approximation. For β � 1 , this approximation is

still reasonable to describe the flux dependence of both the SQUID inductance and

the JPA resonance frequency. However, for Q600 JPA, this approximation is not

applicable. We use the following method based on the resistively and capacitively

shunted junctions model to describe a SQUID [62,89],

1

ω2
p1

ϕ̈1 +
1

ωc

ϕ̇1 =− sinϕ1 + j − 1

πβ
(ϕ1 − ϕ2 − 2πϕext) , (5.6)

1

ω2
p2

ϕ̈2 +
1

ωc

ϕ̇2 =− sinϕ2 + j +
1

πβ
(ϕ1 − ϕ2 − 2πϕext) . (5.7)

Here, j = Ib/(2Ic) is the normalized bias current through the dc-SQUID, ϕext =

Φext/Φ0 is the normalized external flux, ωp1,p2 =
√

2eIc/~Cj is the plasma frequency

of each junction, and ωc = 2eRjIc/~ is the characteristic frequency of the junctions,

with Rj and Cj the normal resistance and capacitance of each junction, and e the
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elementary charge.
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Figure 5.3: Color plots of the two-dimensional potential in Eq. (5.8) for different
external flux values ϕext = Φext/Φ0 and β = 0.5 . The potential is 2π periodic versus
(ϕ1 +ϕ2)/2 and (ϕ1−ϕ2)/2 (not shown in the figure). The phase particle is initially
located in a local minimum (red dot in (a)). When the external flux increases, the
particle’s position is preserved (b, c) until the barrier to the closest local minimum
(green dot in (c)) disappears. Then the particle jumps to the position marked by
the green dot (c).

Similar to a single Josephson junction, the motion of the SQUID “phase particle”

with coordinates ϕ1 and ϕ2 is analogues to that of a particle with a certain mass

moving in a two-dimensional washboard potential. The bias current Ib tilts the

potential. This potential has the form,

v(Φ−,Φ+) = 2− 2 cos (Φ+) cos (Φ−)− 2jΦ+ +
2

πβ
(Φ− − πϕext)

2 . (5.8)

Because of the flux quantization law (Eq. (5.5)), the Φ− terms depend on the external

flux. The potential is 2π periodic versus Φ+ and Φ− . When Φ− = 2nπ , the local

minima are located at Φ+ = 2mπ with n,m ∈ Z . When Φ− = (2n+ 1)π , the local

minima are at Φ+ = (2m+1)π . When Φ− increases from 2nπ to (2n+1)π, the local
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minima at Φ+ = 2mπ disappear and (2m + 1)π local minima appear. At a certain

external flux value, the potential barrier between the Φ+ = 2mπ and (2m + 1)π

local minima vanishes, and the phase particle jumps to the next local minimum.

This jump leads to a discontinuity of the dependence of the SQUID critical current

on the applied external flux and therefore a discontinuity of the dependence of the

SQUID inductance Lsquid on the applied external flux. In the end, the jumps of the

phase particle correspond to the jumps of the resonance frequency of a JPA when

the external flux is varied.

Four color plots of the SQUID potential for different external flux values ϕext = 0 ,

0.5 , 0.74 , 1 , and β = 0.5 are shown in Fig 5.3 to illustrate this process. We start

with ϕ = 0 (Fig 5.3(a)). The phase particle is located at the position marked by

the red dot with coordinates Φ− = Φ+ = 0. As ϕext increases, the potential at the

red dot gets shallower, and new local minima at Φ+ = ±π appear and get deeper.

When ϕext = 0.74 ≡ ϕjump , the potential barrier between the two nearest local

minima (red and green dots) vanishes, and the phase particle jumps to the position

marked by the green dot. Because of the periodicity along the Φ+ direction, the

phase particle jumps at ϕext = ϕjump +n . When the flux sweep direction is reversed,

which means Φ− decreases, the phase particle jumps at ϕext = −ϕjump + n + 1. In

the flux window −ϕjump + (n + 1) < ϕext < ϕjump + n the SQUID critical current

Isquid has different values for flux up-sweep and down-sweep, which gives different

Lsquid and different resonance frequency f0 of a JPA. In the flux window ϕjump +n <

ϕext < −ϕjump + 2 + n , the flux up-sweep and down-sweep lead to the same Isquid

and thus to the same f0 . Altogether, this explains the hysteretic behavior of the flux

dependence of the resonance frequency. When β approaches zero, ϕjump approaches

0.5 , and the hysteresis window −ϕjump + (n+ 1) < ϕext < ϕjump + n gets narrower.

Near ϕext = 0.5 , the JPA is very sensitive to even a small amount of flux noise. Here,

it is experimentally difficult to detect the hysteretic dependence of the resonance

frequency on the external magnetic flux. Our approach shows that the dependence of

the critical current of a dc-SQUID on the external flux becomes hysteretic for β 6= 0 .

Usually one says that the internal (flux in the loop) versus externally applied flux

characteristic becomes multi-valued for β > 2/π . This statement is still valid. The

reason is that, in our case, the phase particle can jump between different Φ+ values,

whilst the textbook statement refers to the case when the phase particle is fixed to

a constant Φ+ . The difference arises from different measurement schemes. In our

case, the dependence of the critical current of a dc-SQUID on the external flux is

deduced from the JPA reflection measurements. The textbook statement refers to
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a direct voltage-current measurement scheme.

The normalized dc-SQUID critical current (jc = Isquid/2Ic) at a certain external

flux value depends on the potential landscape. Fig 5.4 demonstrates how jc is

determined. The washboard potential becomes tilted when the bias current j 6= 0 .

At a fixed β and ϕext, j is increased until all the local minima disappear. This j

value is the normalized critical current jc . The same calculation is done for different

ϕext at a fixed β. From Eq. (2.58), the SQUID inductance Lsquid is obtained. The

dependence of the JPA resonance frequency f0 on Lsquid can be written as [63],

πf0

2fcav

tan
πf0

2fcav

=
Lcav

Lsquid + Lloop

. (5.9)

Here, Lcav and Lloop are the cavity and SQUID loop inductance, respectively, and

fcav is the cavity resonance frequency without a SQUID. Fitting Eq. (5.9) to the

experimental data (Fig 5.5), we estimate β = 0.59 , and the critical current of one

junction Ic = 26µA , which gives a Josephson coupling energy EJ = h×13×103 GHz .

For fitting, the cavity inductance Lcav is fixed to 2 nH .
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Figure 5.4: The SQUID potential in Eq. (5.8) versus (ϕ1 + ϕ2)/2π with β = 0.5 ,
and (ϕ1 − ϕ2)/2 = 0 and ϕext = 0 . j = Ib/(2Ic) . j is increased until all
the local minima disappear, and this j is the normalized dc-SQUID critical current
jc = Isquid/(2Ic) .
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Figure 5.5: Fitting results of resonance frequency versus external magnetic flux
Φext/Φ0 for Q600 JPA. Blue color denotes a flux up-sweep. Red color denotes a flux
down-sweep. The lines show theory fits according to Eq. (5.9). The squares depict
experimental data (Fig. 5.2).

5.1.2 Multi-wave mixing

Parametric amplification can be viewed as a three-wave mixing process [90]. The

interaction between a signal mode and a pump mode causes the splitting of a pump

photon into a signal photon and an idler photon. During this process, energy and

momentum are conserved. Energy conservation requires fpump = fsignal + fidler . Mo-

mentum conservation means that the phases of signal, idler and pump modes have

a well defined relation. When fsignal 6= fidler, which is the non-degenerate case, the

JPA is a phase-insensitive amplifier, which means signals with arbitrary phase are

equally amplified. For an ideal JPA without losses, the noise added to the signal

mode is a thermal state corresponding to the JPA physical temperature. When

fsignal = fidler, the JPA is in the degenerate mode and it acts as a phase-sensitive

amplifier, which means that the anti-squeezed quadrature gets amplified. In this

case, for an ideal JPA without losses, the added noise is zero. If the pump power

is further increased, the situation gets complicated and additional phenomena, such

as multi-wave mixing, appear [91, 92]. Fig. 5.6(a) is a color map of power spec-

tra detected with a spectrum analyzer at different pump powers, where a spectrum

with zero pump power is used as a reference. The pump tone has a fixed frequency.

Fig. 5.6(b) shows four horizontal cuts of Fig. 5.6(a). The input signal, which is

marked by a red tick in Fig. 5.6(a) and at mode 2 in Fig. 5.6(b), has a power of

about −133 dBm estimated at the sample box input. An idler mode (mode 4) is

generated at fidler = fpump − fsignal . When the pump power is below the bifurca-
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Figure 5.6: (a) Power spectra detected with a spectrum analyzer at different pump
powers. The noise background is subtracted from the spectra. The pump power is
estimated at the JPA box input. The red tick marks the input signal frequency. The
power of the input signal is about −133 dBm referred to the JPA box input. (b)
Horizontal cuts of (a) whose positions are marked by dashed white lines. The green,
red and blue spectra are shifted by 10, 20, 30 dB , respectively for clarity.

tion point [93, 94], the signal and idler modes grow with increasing pump power.

Across the bifurcation point, the process changes from parametric amplification to

parametric oscillation [95, 96]. Meanwhile, multi-wave mixing occurs. For example,

for mode 5, 2f5 = 3fpump − 4fsignal , three pump photons and four signal photons

generate two photons of mode 5.

5.2 Q200 JPA

5.2.1 Flux dependence of the resonance frequency

The flux dependence of the Q200 JPA resonance frequency measured with VNA does

not show hysteretic behavior. Based on the model discussed in Sec. 5.1.1, for small

β , the jumps of the JPA resonance frequency f0 appear close to Φext = (n+ 1/2)Φ0

with n ∈ Z . At these positions, the cavity is very sensitive to flux fluctuations.

Therefore, it is much more difficult to observe the hysteretic behavior experimentally.

The same approach as discussed in Sec. 5.1.1 is used to fit the flux dependence of

the JPA resonance frequency for the Q200 sample. The results are shown in Fig 5.7.

From the fit, we can estimate β = 0.24 and the critical current of one junction

Ic = 6µA which gives a Josephson coupling energy EJ = h× 3× 103 GHz .
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Figure 5.7: Flux dependence of the resonance frequency for Q200 JPA. The lines
are fits of the experimental data (squares) according to Eq. (5.9) for flux up-sweep
and down-sweep.

5.2.2 Non-degenerate gain
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Figure 5.8: (a) Signal (dots) and idler (crosses) gains measured with a spectrum
analyzer at different pump powers. Lines depict Lorentzian fits. (b) GBP as a
function of the signal voltage gain in linear units. Error bars show 95% confidence
bounds from fittings. GBP: product of the voltage gain in linear units and the
bandwidth in MHz. The cavity frequency without a pump tone is f0 = 5.8545 GHz .
The power of the input signal is about −160 dBm .

When a JPA is operated in the non-degenerate mode, which means the signal

frequency is detuned from half the pump frequency, signal and idler modes have
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different frequencies. In this case, both modes can be observed individually. When

the pump power is increased, signal and idler gains grow until they converge. In

Fig. 5.8(a), the signal and idler gain measured with a spectrum analyzer are shown.

For these measurements, the flux is set to a value corresponding to f0 = 5.8545 GHz

and the pump frequency is set to 2f0 .
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Figure 5.9: Reflection of Q200 JPA measured with a VNA with different pump
frequencies (a)-(e). The cavity resonance frequency with the pump switched off is
5.8895 GHz . Vertical dashed lines mark half of the pump frequency. Red (blue)
lines depict measurements for a pump power of −42 dBm (−39 dBm).

The bandwidth decreases, if the gain increases. In the high-gain limit, the mea-

sured gain-bandwidth-product (GBP) (Fig. 5.8(b)), which is the product of the volt-

age gain in linear units and the bandwidth, approaches a constant value, f0/Qext .

However, in the low-gain limit, the measurements deviate from theory. Since the

signal gain is calibrated against a pump-off condition, theoretically the signal gain is

expected to approach 0 dB , the signal bandwidth goes to infinite, and the idler gain
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Figure 5.10: Signal gain versus JPA input signal power measured with a VNA.
The input signal power and pump power are estimated at the JPA sample-box.
Cavity frequency without a pump tone f0 = 5.8545 GHz . The pump frequency is
fpump = 2f0 .

vanishes. Therefore, we expect an increase of the signal GBP and a decrease of the

idler GBP. The deviation between experiments and theory is due to the fact that

the measurements are very sensitive to the calibration data in the low-gain limit.

The previous discussion in this section was based on a fixed pump frequency.

Next, we discuss the response of the JPA to pump frequency. Fig. 5.10 shows Q200

JPA reflection measurements with a VNA for different pump frequencies. fpump/2 is

marked by vertical dashed lines. When fpump/2 is far from the cavity frequency f0

(Fig. 5.10(a)(e)), the JPA reflection shows a Lorentzian dip. The JPA shows signal

gain when fpump = 2f0 (Fig. 5.10(c)). When fpump approaches 2f0, the JPA reflection

shows a peak and dip structure (Fig. 5.10(b)(d)). For different pump powers (red

and blue lines), the response of the JPA to the pump frequency is similar.

5.2.3 1 dB-compression point

The 1 dB-compression point is an important parameter for a JPA used as an ampli-

fier [31]. Input signals with power below the compression point get amplified with

a constant gain. The gain of input signals with power above the compression point

starts to decrease as the input signals’ power increases. Fig. 5.10 shows the signal

gain as a function of input signal power for two pump powers. The pump frequency

is set to 2f0 . For a pump power of Ppump = −41.3 dBm , the 1 dB-compression

point is estimated to be −127 dBm . When Ppump = −40.3 dBm , it is difficult to

get the maximal gain from this measurement. From the figure, it is clear that the
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Figure 5.11: Power detected by a spectrum analyzer as a function of the noise source
temperature. Black lines denote theoretical fits according to Eq. (5.10). Blue dots
represent experimental data for chain 1 which corresponds to the fridge output 1.
Red dots are experimental data for chain 2 which corresponds to the fridge output
5. The resolution bandwidth is 200 kHz , and the video bandwidth is 500 kHz . The
JPA temperature is stabilized at 50.45 mK .

1dB-compression point is lower if the JPA is operated with a higher pump power.

5.2.4 Noise properties in the non-degenerate mode

A low noise temperature is essential for quantum limited amplification. We have

used spectrum analyzer based measurements to estimate the noise temperature of

the Q200 JPA operating in the non-degenerate mode. The JPA pump power is set

to a value which gives 10.7 dB signal gain. The JPA resonance frequency with pump

off is f0 = 5.894 GHz . The temperature of the 30 dB-attenuator, which is connected

to the input of the JPA measurement circulator via a short coaxial cable 1 (see

Fig. 4.2), is varied from 50 to 800 mK . This attenuator emits a thermal state

corresponding to its temperature. This thermal state gets amplified by the JPA and

the detection chain. The total noise power P detected by a spectrum analyzer at

1The coaxial cable in these measurements is a 17 mm stainless steel cable, not a NbTi/NbTi
superconducting cable as indicated in Fig. 4.2. The total cable and connector loss is estimated to
1.5 dB .
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room temperature is

P (Tatt) = GB

{
hf0

2
coth

[
hf0

2kB (Tatt + δT )

]
+ kBTtotal

}
, (5.10)

where G denotes the total gain, B is the detection bandwidth, h = 6.626×10−34 J · s

is the Planck constant, kB = 1.38 × 10−23 J/K is the Boltzmann constant and Ttotal

is the total noise temperature of the complete detection chain, which includes the

measurement circulator, the JPA, the hybrid ring and the detection chain. The first

term in Eq. (5.10) represents thermal fluctuations and vacuum fluctuations according

to Ref. [97]. δT denotes a possible deviation between the electronic temperature of

the attenuator and the measured temperature (the phononic temperature). The

cable and connector losses of the attenuator and the measurement circulator are

considered with the beam splitter model. By fitting our experimental data with

Eq. (5.10) (Fig. 5.11), we estimate Ttotal1 = 232 ± 5 mK and Ttotal2 = 446 ± 6 mK,

which correspond to ntotal1 = 0.82 ± 0.02 and ntotal2 = 1.58 ± 0.02 for chain 1 and

chain 2, respectively. The uncertainties are derived from 95% confidence bounds of

the fits. These values are close to the standard quantum limit for phase-insensitive

amplifiers of 0.5 photons. The deviation of the number of noise photons in the

whole detection chains from the standard quantum limit has mainly two reasons.

First, JPA noise contributes to additional noise photons. Second, the detection

chains without the JPA, including the hybrid ring, HEMT amplifiers, circulators

and room temperature amplifiers, add additional noise photons. We also notice

that the number of noise photons in chain 2, ntotal2 , is twice that of chain 1, ntotal1 .

The reason is that the detection chain 2 without the JPA adds more noise photons

than chain 1.
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Chapter 6

Displacement

A linear transformation is an important building block in remote state prepara-

tion, quantum teleportation, quantum state engineering, etc. In phase space, it

corresponds to a displacement operation. In this chapter, we study the displace-

ment of microwave states in the context of squeezed coherent states and coherent

squeezed states. In Sec. 2.4.2, we have discussed two ways to generate a squeezed

coherent state. Depending on the order of the squeeze operator Ŝ (ξ) and the dis-

placement operator D̂ (α) applied on a vacuum state, the final states Ŝ (ξ) D̂ (α) |0〉
and D̂ (α) Ŝ (ξ) |0〉 can be different. To distinguish between them, we call the former

a squeezed coherent state, and the latter a coherent squeezed state.

Experimentally, a squeezed coherent state can be generated by sending a coherent

signal into a JPA. In this case, in order to get a squeezed coherent state the number

of photons in the coherent signal is limited by the JPA compression. A coherent

squeezed state can be generated by sending a squeezed state generated by a JPA into

a directional coupler (Sec. 2.3), whose coupled port is biased with a coherent signal.

The directional coupler applies a displacement operation on the squeezed state. In

principle, this displacement operation can be applied to any quantum state incident

at the input port. In this case, the maximal displacement that could be achieved is

not limited by the JPA compression. In this chapter, both situations are discussed

in detail.

Squeezed coherent states are investigated with Q300 JPA. The measurements

have been performed with an FPGA-based dual-path setup (Appendix A). To be

more specific, both I and Q outputs of the IQ-mixers are digitized with ADCs at

a sampling rate of 150 MHz . Digital down-conversion, Cascaded Integrator Comb

(CIC) and Finite Impulse Response (FIR) digital filters and the calculation of the

moments are performed in real time. All the measurements with the Q300 JPA

77
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have been performed at an operation point frequency f0 = 5.637 GHz . Coherent

squeezed state experiments are performed with the Q200 JPA. The Acqiris card

based dual-path setup (Sec.4.2) has been used. This means only one output of each

IQ mixer is digitized with an ADC (Appendix B). I and Q calculations, FIR digital

filters and the calculation of the moments are performed on a CPU. Because of the

limited acquisition memory and data transfer rate, this setup is about a factor of

70 less efficient compared with the FPGA based setup. At the end of this chapter,

main results of a following up project on coherent squeezed states performed with

a “new JPA” sample are briefly presented.

6.1 Squeezed coherent states (Q300 JPA)

6.1.1 Photon number conversion factor (PNCF) calibration

The quadrature moments 〈Ij
′

1 I
k′
2 Q

m′
1 Qn′

2 〉 with 0 < j′ + k′ + m′ + n′ ≤ 4 , and

j′, k′,m′,n′ ∈ N0, detected either using an FPGA or an Acqiris card based dual-

path receiver have a unit of V 2 . While the signal moments referred to the hybrid

ring input, 〈(â†)lâm〉 with 0 < l + m ≤ 4 and l,m∈N0 , from the dual-path state

reconstruction (Appendix D) have a unit of photon number. Before Wigner function

reconstruction, the Photon Number Conversion Factors (PNCFs), which relate the

measured autocorrelations 〈I2
1,2〉 and 〈Q2

1,2〉 to the number of photons at frequency

f0 at the hybrid ring input, are needed. With a thermal state at the hybrid ring

input, the total power of each detection chain detected at the ADCs is

P1,2(Tatt) =
〈I2

1,2〉+ 〈Q2
1,2〉

R

=
κG1,2

R

[
1

2
coth

(
hf0

2kBTatt

)
+ n1,2

]
, (6.1)

where R = 50 Ω is the input resistance of the ADCs, h = 6.626 × 10−34 J · s is the

Planck constant and kB = 1.38×10−23 J/K is the Boltzmann constant. The products

of the gains G1,2 and κ , κ≡R×2×B×hf0 = 1.83×10−16 V2 , are the PNCFs of the

whole detection chains from the hybrid ring inputs to the ADCs with B as the

detection bandwidth. n1,2 is the number of noise photons in the corresponding

detection chain. By sending thermal states of different temperatures to the hybrid

ring and detecting 〈I2
1,2〉 and 〈Q2

1,2〉, we can evaluate the PNCFs and n1,2 . For PNCF

measurement, the pump of the JPA is off.

Experimentally, a 30 dB-attenuator is used as a broadband microwave black-



6.1 Squeezed coherent states (Q300 JPA) 79

body emitter. However, this attenuator is not directly installed at the hybrid ring

input. Instead it is connected at the JPA measurement circulator input with a

short coaxial cable. The connection losses, including cable losses, connector losses,

JPA insertion loss, circulator losses, etc., between the attenuator and the input of

the hybrid are considered using a beam splitter model. The temperature gradient

between the 30 dB-attenuator and the measurement circulator is also considered by

dividing the cable into 100 pieces with 100 temperatures.

Fig. 6.1 shows a PNCF measurement for channel I1 . The measurements for Q1 ,

I2 and Q2 are similar. From the PNCF fitting, the number of noise photons in two

detection chains can be determined. The results are shown in Tab. 6.1. A dual-path

reconstruction [39, 43] (Appendix D) of the noise moments of two detection chains

also provide the information of the number of noise photons. Both methods show

consistent results.

Table 6.1: Number of noise photons in the two detection chains calculated from
PNCF fitting and dual-path reconstruction. The uncertainties from PNCF fitting are
95% confidence bounds. The uncertainties from dual-path reconstruction are based
on the statistics of 32 measurements. Each measurement is averaged over 5×105

traces. One trace contains 512 samples after digital filters in the FPGA logic. The
measurement bandwidth is 978 kHz .

Number of noise photons
PNCF fitting Dual-path reconstruction

Chain 1
I1 channel 24.22± 0.23

24.54± 0.02
Q1 channel 24.24± 0.23

Chain 2
I2 channel 27.08± 0.17

27.27± 0.02
Q2 channel 27.07± 0.18

6.1.2 Measurement sequence

Fig. 6.2 shows typical averaged time traces of selected first and second moments

from a single measurement, which corresponds to the situation in Fig. 2.3(c). Four

Wigner function reconstructions are placed on top of the time trace. When both

the JPA pump and the coherent signal at the JPA input are off, we can clearly

identify the Wigner function of a vacuum state with its maximum centered at the

origin of phase space. Once we turn on the coherent signal at the JPA input, which

corresponds to a displacement operation, the vacuum state is equally displaced along

the p- and q-quadratures and becomes a coherent state with a phase Θ = 45◦ referred

to the hybrid ring input. Next, keeping the coherent signal on, we turn on the JPA
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Figure 6.1: PNCF measurements for channel I1 . 〈I2
1 〉 is plotted versus the tempera-

ture of the 30 dB-attenuator. Red dots denote experimental data. Blue line indicates
a theoretical fit. For each temperature value, (5 × 106 traces)× (512 samples) are
measured. The JPA temperature is stabilized at 60 mK .

pump which squeezes the p-quadrature and anti-squeezes the q-quadrature (γ= 90◦).

This results in a suppression of the displacement of the state along the p-quadrature

and a corresponding amplification of the displacement along the q-quadrature. Also

the p-quadrature variance is squeezed and the q-quadrature variance is amplified,

turning the circular profile of the Wigner functions of the vacuum and coherent

states into an elliptic profile. Thus, the state becomes a squeezed coherent state

with a squeezing level S = 4.3 dB below vacuum. Finally, keeping the pump on, we

turn off the coherent signal to generate a squeezed vacuum state with a squeezing

level S = 4.7 dB .

6.1.3 Displacement of squeezed coherent states

In this context, we would like to point out the following experimental aspect. For

the phase of a coherent state, both Θ and θ are defined as the angle between the

displacement direction and the p-axis. Θ is the phase of a coherent state referred to

the hybrid ring input. θ is the phase of the coherent state before applying the squeeze

operator, which means θ is referred to the JPA input. During the propagation of the

coherent state from the input of the JPA to the input of the hybrid ring, the phase

of the coherent state evolves. We account for this effect by considering a constant
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Figure 6.2: Average over 5×105 traces of selected first and second moments from a
squeezed coherent state measurement. The phase of the coherent state is Θ = 45◦,
and the anti-squeezed angle of the squeezed vacuum state is γ= 90◦. The four color
maps above the time traces are the Wigner function reconstructions of the vacuum,
coherent, squeezed coherent and squeezed vacuum states referred to the input of
the hybrid ring. p and q are dimensionless quadrature variables spanning the phase
space. Reprinted figure from Ref. [32].

phase difference ∆Θ ≡ Θ− θ. For a squeezed state, γ=− ϕ̃/2 is the angle between

the anti-squeezed quadrature and the p-axis, where ϕ̃/2 is the angle between the

squeezed quadrature and q-axis. From theory [98], we expect the displacement of

a squeezed coherent state after the squeeze operation to depend on the angles as

Eq. (2.32), 〈â〉 =α cosh r−α?eiϕ̃ sinh r . Here, α= |α| exp [iπ (90◦− θ) /180◦] is the

complex amplitude of the coherent state before the squeeze operation and ϕ̃= − 2γ

is the angle of the complex squeeze parameter.

By fixing the anti-squeezing angle of squeezed vacuum states γ at 0◦, 45◦, 90◦,

and 135◦ and rotating the phase Θ of the coherent signal, we map out the dependence

of the displacement of a squeezed coherent state on γ and θ. In Fig. 6.3, we display

the displacement, which is the center of the individual states in phase space given

by their first moment 〈â〉 for various values of Θ and γ. The squeezed vacuum states

are centered at the origin, and the coherent states are located on a circle around
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Figure 6.3: Experimental displacement for Squeezed Vacuum (SV), Coherent (C)
and Squeezed Coherent (SC) states. The dashed red curves are fits of Eq. (2.32) to
the squeezed coherent states (SC) data. For each of the 32 Θ- and γ-combinations,
2×106 traces are measured. Reprinted figure from Ref. [32].

the origin. If we turn on the JPA pump and rotate the phase of the coherent signal

at the JPA input, the squeezed coherent state moves mainly along the γ direction.

The displacement of the squeezed coherent states reaches its maximum when γ and

θ fulfill γ= θ+ 2n × 90◦, where n ∈ Z. Geometrically, this means that the anti-

squeezed direction is collinear to the displacement vector pointing from the origin to

the center of the state. For our choice of γ, we obtain a characteristic star-shaped

pattern.

6.1.4 Photon numbers of squeezed coherent states

Similar to the center of the Wigner function, which represents the displacement,

the photon number of a squeezed coherent state varies when we rotate the phase of

the coherent signal Θ while keeping the anti-squeezed angle γ constant. Eq. (2.34)

assumes a perfect vacuum state before applying the operations. Here we include the

possible thermal photons present in the vacuum state at the JPA input with δN .

Then, the photon number of a squeezed coherent state becomes

〈
a†a
〉

=
(
|α|2 + δN

) (
cosh2 r + sinh2 r

)
− (α∗)2 eiϕ̃ cosh r sinh r

− α2e−iϕ̃ cosh r sinh r + sinh2 r, (6.2)
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Figure 6.4: Experimentally obtained photon numbers for Coherent states (C),
Squeezed Vacuum states (SV) and Squeezed Coherent states (SC) as a function of
the coherent state phase Θ. The statistical uncertainty is smaller than the symbol
size. The dashed curves are fits using Eq. (6.2). We note that the thermal contri-
bution δN ≈ 0.005 is vanishingly small. Furthermore, although this fit is performed
independently from the one in Fig. 6.3, the obtained fit parameters are consistent.
The data are from the same measurements as shown in Fig. 6.3. Reprinted figure
from Ref. [32].

where |α|2 is the number of photons in the coherent state. As we see from

Fig. 6.4, the photon number oscillates and reaches a maximum when γ and θ fulfill

γ= θ+ 2n × 90◦, n ∈ Z. Thus, the photon number is maximal when the displace-

ment of the squeezed coherent state is maximal. We emphasize that the various

states detected in our experiments are referred to the input of the hybrid ring. To

fit to theory (Eq. (6.2)), we need to shift the reference plane of the coherent state

from the hybrid ring input with phase Θ to the JPA input with phase θ. Fitting the

experimental data, we retrieve ∆Θ = 6.2± 0.2◦ and a squeezing factor r= 1.8± 0.1.

This r value equals the value rDP = 1.81 ± 0.01 from dual-path reconstruction for

individual states.

6.1.5 State statistics

From theory, we expect that the only difference between a squeezed coherent state

and the corresponding squeezed vacuum state is a displacement in phase space with-

out any rotation or deformation. Therefore, we analyze the statistics of the variances

(∆Xanti)
2 and (∆Xsq)2 of the anti-squeezed and squeezed quadratures and that of

the angle γ for the squeezed coherent states and squeezed vacuum states. As dis-

played in Tab. 6.2, our data show that no significant rotations or deformations are
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Table 6.2: Comparison between Squeezed Coherent states (SC) and Squeezed
Vacuum states (SV). The quantities B are obtained by pre-averaging over four
values taken from moment reconstructions in the corresponding regions of 5×105

traces each. The statistics is performed over the 32 Θ- and γ-combinations shown
in Fig. 6.3 and 6.4. Reprinted from Ref. [32].

B rms(BSC −BSV) mean(BSC)± std(BSC) mean(BSV)± std(BSV)

(∆Xanti)
2 0.21 9.1± 0.1 9.2± 0.03

(∆Xsq)2 0.007 0.095± 0.004 0.089± 0.002
γ 0.87◦ – –

present.

6.2 Coherent squeezed states (Q200 JPA)

6.2.1 PNCF calibration
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Figure 6.5: PNCF calibration for the channels I1 and I2. Detected 〈I2
1 〉 (a) and 〈I2

2 〉
(b) versus temperature of the 30 dB-attenuator. Red dots denote experimental data.
Blue lines indicate theoretical fits. A data point at each temperature represents an
average over 4× 108 samples. The JPA temperature is stabilized at 50.45 mK .

The same method as described in Sec. 6.1.1 is used to calibrate the PNCFs of

the setup for coherent squeezed state measurements. The experimental results and

theoretical fits for the channels I1 and I2 are shown in Fig. 6.5 1. The number of noise

photons in the two detection chains from PNCF fitting and dual-path reconstruction

1The loss from the 30-dB attenuator to the measurement circulator is estimated as 1.5 dB . The
loss from the measurement circulator to the input of the hybrid ring, including the JPA insertion
loss, is estimated as 3 dB .
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is shown in Tab. 6.3. In Sec. 5.2.4, we already find out that chain 2 has twice the

noise temperature as chain 1 when the JPA is operating in the non-degenerate

mode. It is not surprising that chain 2 is more noisy than chain 1 from PNCF

calibration. Later, we have found out that the main reason for this observation is

the bad thermalization of the output cables inside the cryostat.

Table 6.3: Number of noise photons in two detection chains calculated from PNCF
fitting and dual-path reconstruction. The uncertainties from PNCF fitting are 95%
confidence bounds. The uncertainties from dual-path reconstruction are based on
statistics of 400 measurements. One measurement is averaged over 4×108 samples.
The measurement bandwidth is about 500 kHz .

Number of noise photons
PNCF fitting Dual-path reconstruction

Chain 1
I1 channel 19.76± 0.83

20.33± 0.06
Q1 channel 19.99± 0.74

Chain 2
I2 channel 43.1± 4.4

45.26± 0.14
Q2 channel 46.6± 5.3

6.2.2 Squeezed vacuum states

The Q200 JPA is operated in the degenerate mode with an operation point f0 =

5.932 GHz and a pump power Ppump = −47.5 dBm which is estimated at the JPA

sample box input. The pump is operated in a pulsed regime so that around half of

the sample numbers in a segment correspond to the pump-on region. Both the JPA

input signal and the displacement signal are off. The phase stabilization protocol

described in Sec. 4.3 is implemented for the measurements. One iteration of phase

stabilization, including measurements, state reconstruction and phase correction,

takes about one minute. In total 400 measurements are performed for statistics.

In Fig. 6.6 (a), a histogram of anti-squeezed phase of the 400 measurements is

shown. Even with the phase stabilization protocol, the standard deviation of the

anti-squeezed phase is 3.6◦ . Later we have performed some tests, and found out that

phase fluctuations are mainly trigger problems with the Acqiris card. Therefore,

this type of phase fluctuations in the two detection chains are correlated, and the

dual-path method assumes the correlations arise from the state at the hybrid ring

input. When the input state is a vacuum or thermal state, the phase fluctuations

do not affect the state reconstruction. However, when the input state is a squeezed

state, the effect of phase fluctuations can be modeled as thermal photons added to

the input state from a single dual-path reconstruction. We denote the number of
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Figure 6.6: (a) Histogram of the anti-squeezed phase of 400 measurements. One
measurement contains an average over 4×108 samples. The pump tone is operated
in a pulsed mode. The pump-on region corresponds to about half of the samples in a
segment. (b) Histogram of the squeezing level of 400 measurements. (c) Histogram
of the squeezing level for measurements with the anti-squeezed phase in the range
of 44◦ − 46◦ . Numbers in (a)-(c) show the statistics of the corresponding quantity.
Statistics of the squeezing level is taken on a linear scale and converted into a
logarithm scale. (d) Wigner function based on dual-path reconstruction from the
selected measurements in (c). The inset shows the 1/e contour of the Wigner
functions for an ideal vacuum state (blue), experimental vacuum state (green), and
squeezed vacuum state (red). The numbers show the statistics of the squeezing level
and number of photons in the state. p and q are dimensionless quadrature variables
spanning the phase space. The JPA temperature is stabilized at 50.45 mK .
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thermal photons as nth for later discussions. Here we point out that the thermal

photons nth are added to the hybrid ring input state, not to the JPA input state.

A histogram of the squeezing level for these 400 measurements is shown in

Fig. 6.6. Due to the instability of the setup, the squeezing level also fluctuates.

Nevertheless from statistics it is clear that the state is squeezed below vacuum. The

average squeezing level is S = 0.84+0.62
−0.55 dB . Here, the statistics is performed on a

linear scale and converted into a logarithm scale. To reconstruct a Wigner function,

we select the measurements with the anti-squeezed phase within one degree offset

from the set value. A histogram of the squeezing level for selected measurements

is shown in Fig. 6.6(c). The reconstructed Wigner function averaged over selected

measurements is shown in Fig. 6.6(d). A squeezed vacuum state with anti-squeezed

phase γ = 45◦ is obtained. If we model the experimental squeezed vacuum state

with a thermal squeezed state 2, including the phase fluctuations of the anti-squeezed

quadrature as Gaussian noise, we find the number of thermal photons 3 nth = 0.24 ,

and the squeeze factor r = 0.55 . These thermal photons nth mainly come from

the phase fluctuations in measurements for a single dual-path reconstruction. They

are also partially from the JPA losses, the connection losses between the JPA and

hybrid ring, the spurious correlations in the detection setup and phase fluctuations

in multi dual-path reconstructions used for averaging. When nth ≈ 0 , r = 0.55 gives

a squeezing level of 4.8 dB .

6.2.3 Displaced squeezed vacuum states

The Q200 JPA is operated at the same operation point and pump power as in

Sec. 6.2.2, and the pump power is still operated in a pulsed mode. Now a coherent

signal is supplied at the coupled port of the directional coupler, which is installed

at the hybrid ring input. When the pump is off, a coherent signal is present at

the hybrid ring input. When the pump is on, a squeezed vacuum state generated

by the JPA is displaced by the coherent signal from the directional coupler, and

a coherent squeezed state is obtained. In Fig. 6.7, reconstructed Wigner functions

of experimental coherent squeezed state displaced in the direction of θ = 45◦ (a)

and θ = 135◦ (b) are presented. Sketches of 1/e contours of the coherent states

2A thermal squeezed state means that thermal photons are added to a squeezed state after
the squeeze operator. A squeezed thermal state means that the squeeze operator is applied to a
thermal state. For the former, thermal photons are added to the hybrid ring input (JPA output).
In contrast, for the latter thermal photons are added to the JPA input.

3For comparison, with the FPGA based dual-path setup for the squeezed state detection in
Sec. 6.1 the number of thermal photons is obtained to nth = 0.12 .
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Figure 6.7: (a)-(b), Reconstructed Wigner functions of coherent squeezed states
averaged over selected measurements out of 400 measurements. Each measurement
is averaged over 4 × 108 samples. A measurement is selected if 44 < θ < 46◦ and
44◦ < γ < 46◦ for (a), 134 < θ < 136◦ and 44◦ < γ < 46◦ for (b). The numbers
show the statistics of squeezing level and number of photons in the states. (c)-(d),
Sketch of 1/e contours of ideal vacuum states (blue), experimental coherent states
(green), experimental coherent squeezed states (red) in (a) and (b). The photon
number in the coherent state (green) is nC = 1.24± 0.04 for (c), nC = 1.25± 0.04
for (d). p and q are dimensionless quadrature variables spanning the phase space.
n , r , θ and φ are from Eqs. (2.32)-(2.42). Statistics of the squeezing level is taken
on a linear scale and converted into a logarithm scale. The JPA temperature is
stabilized at 50.45 mK .
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Figure 6.8: Sketch of 1/e contours of ideal vacuum states (blue), ideal coherent
states (green), coherent thermal squeezed states (red) and squeezed coherent ther-
mal states (magenta). r = 0.55 corresponds to 4.8 dB of squeezing without phase
fluctuations. The displacement photon number is n = 1.24 , and the thermal photon
number is nth = 0.24 . γ = 45 . θ = 45 for (a) and θ = 135 for (b). Phase fluctua-
tions with a standard derivation of 3.6◦ for the anti-squeezed angle and displacement
angle of coherent thermal squeezed states and squeezed coherent thermal states are
taken into account by Gaussian noise. p and q are dimensionless quadrature variables
spanning the phase space.

(green) and coherent squeezed states (red) are shown in (c) and (d). Blue circles

denote theoretical vacuum states. With different displacement angles (θ = 45◦ for

(a) and (c), and θ = 135◦ for (b) and (d)), the shape of the coherent squeezed

state remains the same as the squeezed vacuum state in Fig. 6.6(d). Now a coherent

thermal squeezed state, which is a displaced thermal squeezed state, is used to model

the experimental data (Fig. 6.7(a), (b)). This gives the number of thermal photon

nth = 0.24 and squeeze factor r = 0.55 , which corresponds to 4.8 dB of squeezing

with nth = 0 . These results are the same as for the experimental squeezed vacuum

state in Sec. 6.2.2.

In Fig. 6.8 we compare the difference between a thermal coherent squeezed state

and a thermal squeezed coherent state 4 with nth = 0.24 and r = 0.55 . The final

states in both cases have the same shape, but different locations in phase space. The

differences are also easy to understand from state moments in Eqs. (2.32)-(2.42).

6.2.4 Squeezing versus displacement

To understand how a coherent squeezed state depends on displacement including

the effect of phase noise, we have performed the simulations shown in Fig. 6.9. In

4For the former, thermal photons are added to a coherent squeezed state. For the latter, thermal
photons are added to a squeezed coherent state.
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Figure 6.9: Simulations of coherent squeezed states (a) and coherent states (b)
as a function of displacement in the presence of phase noise. (a) Superposition
of 7 Wigner functions of coherent squeezed states. Each state has γ = 45◦ and
r = 0.55 . The displacement directions are θ = 45◦ , 90◦ , and 135◦ with the
amount of displacement in photon number n = 0 , 50 and 200 . (b) Superposition
of 7 Wigner functions of coherent states with n = 0 , 50 and 200 . Gaussian noise is
added to γ and θ with a standard deviation of 3.6◦ . For each state, 2000 averages are
performed. Thermal photons during a single dual-path reconstruction are ignored,
nth = 0 .
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Fig. 6.9(a), a squeezed vacuum state with r = 0.55 and γ = 45 is displaced in

directions of θ = 45◦ , 90◦ , and 135◦ with an amount of displacement n = 0 , 50

and 200. Gaussian noise with a standard derivation of 3.6◦ has been added to γ

and θ . Similarly, different coherent states with n = 0 , 50 and 200, and θ = 45◦ ,

90◦ , and 135◦ including Gaussian noise added to θ are shown in Fig. 6.9(b). The

corresponding squeezing levels are listed in Tab. 6.4. The displacement phase noise

becomes more prominent at larger displacement. This leads to a decrease of the

squeezing level versus displacement.

Now we repeat the measurements in Fig. 6.7(b) with different powers of the dis-

placement signal. For each displacement power, 400 measurements are performed

and measurements that fulfill the conditions 134 < θ < 136◦ and 44◦ < γ < 46◦

are selected to calculate the squeezing level. The squeezing level versus displace-

ment for experimental coherent squeezed states and coherent states is presented in

Fig. 6.10(a) and (b), respectively. In contradiction to theory, the experiments show

an increase of the squeezing level versus displacement for both the coherent squeezed

states (Fig. 6.10(a)) and the coherent states (Fig. 6.10(b)).

Table 6.4: Simulations of the squeezing level (dB) of coherent squeezed states
and coherent states as a function of the displacement in the presence of phase
noise. Gaussian noise with a standard derivation of 3.6◦ is added to γ and θ .
The displacement in photon number is represented by n . Phase noise in a single
measurement effectively adds thermal photons to the input state based on the dual-
path method. This effect is considered through the number of thermal photons nth .
For coherent squeezed states, γ = 45◦ , r = 0.55 , which gives a squeezing level of
4.78 dB with nth = 0 .

Coherent squeezed states Coherent states
n=0 n=50 n=100 n=0 n=50 n=100

S(dB) θ = 45◦ 4.65 -0.37 -4.77 0 -0.006 -0.02
with θ = 90◦ 4.65 1.69 -0.69 0 -0.006 -0.02
nth = 0 θ = 135◦ 4.65 4.63 4.59 0 -0.006 -0.02

S(dB) θ = 45◦ 0.85 -2.04 -5.4 -1.703 -1.707 -1.72
with θ = 90◦ 0.85 -0.64 -2.2 -1.703 -1.707 -1.72

nth = 0.24 θ = 135◦ 0.85 0.84 0.81 -1.703 -1.707 -1.72

We expect this contradiction to arise from errors in the estimation of the PNCFs.

In Fig. 6.11, we scale the PNCF of chain 2 with a factor y . We have found out that

when y > 1.2 or y < 0.95 , the reconstructed Wigner functions of a squeezed co-

herent state is unphysical. When y increases from 0.95 to 1.08, the slope of the

squeezing level versus displacement curve decreases. For y = 1.08 the curve shows
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Figure 6.10: Squeezing level versus displacement for experimental coherent squeezed
states (a) and coherent states (b). Each data point is averaged over selected mea-
surements out of 400 measurements. Each measurement is averaged over 4 × 108

samples. A measurement is selected if 134 < θ < 136◦ and 44◦ < γ < 46◦ . The
pump is pulsed. Half of each measurement corresponds to a coherent squeezed state
and the other half corresponds to a coherent state. The lines are guides to the eye.
The JPA temperature is stabilized at 50.45 mK .

a slow decrease of the squeezing level depending on the displacement in agreement

with theory. When y increases from 1.08 to 1.2, the slope of the squeezing level

versus displacement curve again increases. At zero displacement, the experimental

coherent state is slightly squeezed below vacuum. This is mainly due to the spuri-

ous correlations in the setup. The dual-path method assumes perfect uncorrelated

noises, and considers that any spurious correlations in the setup originate from the

signal.

6.3 Coherent squeezed states (new JPA)

In this section, some of the main results of a follow up project with another JPA

sample (new JPA) are presented. The data presented here is discussed in detail in

the upcoming master thesis of Stefan Pogorzalek. The cryogenic setup is the same as

depicted in Fig. 4.2, except for a larger number of silver wires are used to thermalize

the output cables. A few modifications have been made to the room temperature se-

tups in Fig. 4.11. First, the minicircuit type room temperature amplifiers have been

replaced with Miteq type amplifiers and their temperatures are also PID controlled.

A bandpass filter (11.3− 11.7 MHz) is installed at each ADC input.
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Figure 6.11: Squeezing level versus displacement for experimental coherent squeezed
states (a) and coherent states (b) with different scaling factors y for PNCFs of chain
2. y = 1 gives the curves in Fig. 6.10. Error bars have similar scales as in Fig. 6.10.
They are omitted for clarity. The lines are guides to the eye.

After thermalizing the output cables with more silver wires, we could obtain

more reliable PNCF measurements. From the PNCF measurements 5 (Fig. 6.12),

we determine the number of noise photons added by the detection chains, including

the hybrid ring, HEMT amplifier, circulators, room temperature components, etc.,

is about 29.1 ± 1.2 for chain 1, and 27.9 ± 0.9 for chain 2 within a measurement

bandwidth of 800 kHz . The uncertainties are 95% confidence bounds from fitting.

Next we stabilize the 30-dB attenuator at 60 mK, and turn on the JPA pump

signal while keeping the displacement signal off. This measurement is performed

at different signal gains. At each signal gain, 150 measurements have been taken.

The measurements fulfilling 44◦ < γ < 46◦ are selected to calculate the statistics

of the squeezing level and photon number in the state. As shown in Fig. 6.13(a),

the increase of signal gain, which corresponds to an increase of pump power, causes

an increase of the squeezing level. At 1 dB of signal gain, we achieve a maximum

squeezing level of 1.43+0.77
−0.65 below vacuum. However, if we further increase the signal

gain, the state is more sensitive to phase noise and the squeezing level decreases

again. The dependence of the number of photons in the state on the signal gain

5The loss from the 30-dB attenuator to the measurement circulator is estimated as 0.15 dB . The
loss from the measurement circulator to the input of the hybrid ring, including the JPA insertion
loss, is estimated as 0.98 dB .
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Figure 6.12: PNCF calibration for new JPA measurement setup. Detected 〈I2
1 〉

(a) and 〈I2
2 〉 (b) versus the temperature of the 30 dB-attenuator. Red dots denote

experimental data. Blue lines indicate theoretical fits. Every data point at constant
temperature represents an average of 1.12× 109 samples. FIR digital filters are not
used. The measurement bandwidth is about 800 kHz . The JPA working point is
f0 = 5.51 GHz . The JPA temperature is stabilized at 40 mK .

shows a continuous increase (Fig. 6.13(b)).

Next the pump power is set to a value which corresponds to a 1 dB signal gain. A

displacement signal with θ = 135◦ is turned on. Therefore, a squeezed vacuum state

or a vacuum is displaced in the direction of θ = 135◦ . The squeezing level of the

experimental coherent squeezed states (Fig. 6.14(a)) stays almost constant up to a

displacement of 33 photons. The squeezing level of the experimental coherent states

(Fig. 6.14(b)) shows a slow decrease for increasing displacement. This means that

the quadrature variance of the coherent state increases for increasing displacement

due to phase fluctuations.

According to our previous studies [39,40], sending a squeezed state into a beam

splitter, the output state of the beam splitter contains path entanglement. Based

on the beam splitter relations (Eqs. (3.7)-(3.8)) and the signal moments recon-

structed with the dual-path method, the moments of the hybrid output state can

be evaluated. Therefore, the negativity kernel Ñ as a witness for arbitrary bipartite

entanglement (Appendix E) could be calculated. We calculate the corresponding

negativity kernel for the datasets in Fig 6.14(a), and plot the results in Fig. 6.15.

As expected, the output state of the hybrid ring shows path entanglement. Up to

a displacement of 33 photons of the coherent squeezed states, which is the hybrid

ring input state, the negativity kernel is almost constant.
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data point (dots) is averaged over 1.12 × 109 samples. The JPA working point
is f0 = 5.51 GHz . The The lines are guides to the eye. The error bars are of a
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Figure 6.14: Squeezing level of experimental coherent squeezed states (a) and co-
herent states (b) as a function of displacement. The 30 dB-attenuator temperature
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JPA working point is f0 = 5.537 GHz . The The lines are guides to the eye. The
error bars are of a statistical nature. The JPA temperature is stabilized at 40 mK .
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Chapter 7

Summary and outlook

Quantum teleportation with propagating microwave signals is an important appli-

cation in the scope of quantum communication and computation in the microwave

domain. In this work, we have investigated the displacement operation, which is

widely used in quantum teleportation, remote state preparation, etc., in the context

of squeezed coherent states and coherent squeezed states.

For the generation of squeezed states we have used flux-driven JPAs. Therefore,

we have carefully characterized two flux-driven JPAs, Q600 JPA and Q200 JPA.

Interestingly, the flux dependence of the resonance frequency for Q600 JPA shows a

hysteretic behavior. To explain this phenomenon, a method to determine the JPA

resonance frequency from an evaluation of the flux dependence of the dc-SQUID

critical current has been developed.

With an FPGA based dual-path setup, which splits a signal into two detection

chains, we can reconstruct the moment matrix of the signal and the noise added

by the two detection chains. By sending coherent states into a JPA (Q300 JPA)

operating in the degenerate mode, squeezed coherent states are obtained. The final

displacement and photon number of the squeezed coherent states depend on both

the anti-squeezed phase and displacement direction. When the anti-squeezed phase

is parallel to the displacement direction, the final displacement and photon number

are maximal. When the anti-squeezed phase is perpendicular to the displacement

direction, the final displacement and photon number are minimal. The squeezed co-

herent states with different displacements and anti-squeezed phases have an average

squeezing level of 4.2 dB below vacuum.

With an Acqiris card based dual-path setup, we have investigated the displace-

ment operation applied with a directional coupler, whose coupled port is biased

with a coherent signal. A squeezed state, generated with a JPA (Q200 JPA), gets

97
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displaced after passing through the directional coupler. Although with experimental

imperfections, such as the additional noise photons in chain 2, phase fluctuations,

and the limited detection efficiency, a squeezed vacuum state with S = 0.83+0.65
−0.56dB

gets displaced, and the squeezing level of the final coherent squeezed state becomes

S = 0.81+0.46
−0.42 dB with θ = 45◦ and displacement n = 1.24 , and S = 0.87+0.55

−0.49 dB

with θ = 135◦ and displacement n = 1.25 . For the Q200 JPA, we have observed

an increase of the squeezing level as a function of displacement due to an incorrect

estimate of the PNCFs. After improving the setups, more reliable PNCF measure-

ments can be obtained. With another JPA sample (new JPA), the squeezing level of

coherent squeezed states stays almost constant up to a displacement of 33 photons,

with γ = 45◦ and θ = 135◦ .

Due to setup imperfections, such as some spurious correlations of the two dual-

path detection chains, the quadrature variances of our experimental coherent states

do not equal 0.25 . At zero displacement n = 0 , experimental coherent states show

a squeezing level of S = 0.25 dB . The squeezing level of experimental coherent

states decreases as a function of displacement, which means the quadrature variances

increase with increasing displacement, due to the fact that at larger displacement,

the state gets more sensitive to phase noise.

In circuit-QED systems, 10 dB of squeezing level [29] has been achieved by us-

ing a SQUID-array in a cavity consisting of 480 Josephson junctions. Also, 12 dB of

squeezing level [34] has been realized with coupled nonlinear resonators. In our case,

one limiting factor of the detected squeezing level is the detection efficiency. For the

Acqiris card based dual-path setup, which is used for the Q200 JPA measurements,

the trigger problems with the Acqiris card lead to phase fluctuations with a standard

deviation of 3.6◦ . The phase fluctuations within a single dual-path reconstruction

can be modeled as thermal photons added to the squeezed states and significantly

reduce the squeezing level. At the same time, the phase fluctuations between dif-

ferent dual-path reconstructions which are used for averaging further reduce the

squeezing level. To improve the detection efficiency, first, the trigger problems need

to be solved. Second, FPGA instead of the Acqiris card can be used to process

the data in real time. Third, by reducing the losses of the output lines, such as

reducing the cable and connector losses, the detection efficiency can be improved.

Fourth, reducing the thermal photons added by the detection chains, such as using

a low noise JPA as the pre-amplifier of the HEMT amplifier, is another solution.

Meanwhile, both the cryogenic and room temperature setups have to be stabilized.

For example, more stable microwave sources can reduce the phase fluctuations and
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improve the detected squeezing level.

Another limiting factor of the detected squeezing level is the JPA sample. First,

reducing the internal losses of the JPA can increase the squeezing level. Second,

SQUID-arrays [34, 99] can be used to increase the maximum allowed input power,

and therefore increase the squeezing level.

In this work, the displacement operation, which is one of the building blocks

for quantum teleportation with propagating microwaves, has been studied. As the

next step, another building block for quantum teleportation namely the two-mode

squeezed state as EPR pair is highly interesting to be investigated. By sending

two squeezed states with orthogonal anti-squeezed quadratures into a 50/50 beam

splitter, a two-mode squeezed state can be generated. Quantum correlations exist

between the two modes propagating along the beam splitter outputs. The correlation

properties of the two-mode squeezed state for different time lags between the two

modes determine the configuration of a delay line for the application in quantum

teleportation and remote state preparation protocols.

Next, the classical communication from Alice to Bob could be investigated with

the remote state preparation protocol, which is described in this thesis. This protocol

also provides a method to remotely prepare a squeezed state. The squeezing level of

the squeezed state prepared with this protocol is determined by the squeezing level

of the input state and the setup configuration, such as the setup losses, noise photons

and temporal mode matching. A higher squeezing level of the input state can in turn

allows for larger setup losses and an increased number of thermal photons. Finally,

by combining all the building blocks — two-mode squeezed state generation, JPA

based low noise detection, classical communication and displacement operation with

a directional coupler — quantum teleportation with propagating microwaves could

come into experimental reach.
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Appendix A

FPGA based dual-path setup
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Figure A.1: Simplified schematic of the dual path setup for Q300 JPA. The triangular
symbols denote the detection chains, the circles with crosses are IQ-mixers and the
boxes labeled ADC are analog-to-digital converters. LO, pump, and signal denote
the microwave sources for local oscillator, pump, and signal frequency. The heatable
30 dB-attenuator is thermally weakly coupled to the sample stage. In addition to the
temperature control of this attenuator, the JPA sample temperature can be stabilized
independently. For simplicity, isolators, IF amplifiers and filters are omitted in the
sketch. Reprinted figure from Ref. [32].
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Appendix B

Acqiris card based dual-path

receiver
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Appendix C

Gaussianity and higher order

cumulants

The discussions in this section are based on the supplementary material from

Ref. [39]. In order to check whether the states we reconstruct are consistent with

Gaussian states, we evaluate the (l+m)th order cumulants 〈〈(â†)lâm〉〉 for l+m≤ 4

and l,m∈N0. Equivalently to the moments, the cumulants describe a probability

distribution. The definition of cumulant for a quantum state with density matrix ρ

can be written as [85,86]

〈〈(â†)lâm〉〉 ≡
∂l

∂(iβ∗)l
∂m

∂(iβ)m

[
ββ∗

2
+ ln Tr

(
e(iβ∗â†+iβâ)ρ

)]
β,β∗=0

. (C.1)

Only Gaussian states have a finite number of nonzero cumulants. More specifically,

all their cumulants vanish for l+m> 2. In other words, finding a nonzero cumulant

of 3rd or higher order implies that the state is not Gaussian. Despite not being a

strict proof, the fact that the 3rd and 4th order cumulant are very small or van-

ish in an experimental reconstruction constitutes a reasonable indication that the

reconstructed state is Gaussian.
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Appendix D

Dual-path state reconstruction

The discussions in this section are based on the supplementary material from

Ref. [39]. Based on the recorded noisy quadrature moments 〈Ij1Ik2Qm
1 Q

n
2 〉 , where

j, k,m, n∈N0 , the reconstructed signal moments are

〈
(â†)lâm

〉
l1,m1

= (−1)l−l1+m−m1
〈
(Ŝ†1)l1(Ŝ†2)l−l1Ŝ

m1
1 Ŝ
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2

〉
−
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, (D.1)

where l,m, l1,m1 ∈N0 .

107



108 Appendix D Dual-path state reconstruction

The noise moments for both chains are

〈
V̂ r
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(â†)k

′
1 âj
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where r+ s> 1 and r, s∈N0 .

The squeezing below the vacuum in decibel is written as

S = −10 log10

(
− 〈â2〉e−iφ − 〈(â†)2〉eiφ + 2〈â†â〉+ 1

+ 〈â〉2e−iφ + 〈â†〉2eiφ − 2〈â†〉〈â〉
)
. (D.4)

Here, the angle φ is defined via the relation 〈â2〉− 〈â〉2 = |〈â2〉− 〈â〉2|eiφ . The argu-

ment of the logarithm is the ratio between the variance of the squeezed quadrature

and the vacuum variance, (∆Xsq)2/0.25 .

In the case of infinitely many reconstructed moments 〈(â†)lâm〉, the Wigner func-

tion W (q, p) of an arbitrary state can be completely reconstructed. For Gaussian

states, we are allowed to restrict ourselves to moments with l+m≤ 2 . This enables

us to use an analytical approach [100,101], which yields

W (q, p) =

1

π
√

(ν + 1/2)2 − |µ|2
exp

[
−(ν + 1/2)|ζ − 〈â〉|2 − (µ∗/2)(ζ − 〈â〉)2 − (µ/2)(ζ∗ − 〈â†〉)2

(ν + 1/2)2 − |µ|2

]
,

(D.5)

with ζ ≡ q+ ip, µ≡〈â2〉− 〈â〉2, and ν≡〈â†â〉− |〈â〉|2.



Appendix E

Negativity

The discussions in this section are based on the supplementary material from

Ref. [39]. For a bipartite system, the amount of entanglement between the sub-

systems A and B can be quantified by means of the negativity

N (ρ) ≡ ||ρ
TB ||1 − 1

2
, (E.1)

where ρ is the density matrix of the total system, and ||ρTB ||1 = Tr|ρTB | is the trace

norm of the partial transpose of ρ with respect to subsystem B, ρTB . If N (ρ)> 0,

the state is entangled. For a maximally entangled state, N (ρ)→∞.

In the case of Gaussian states, all measures of entanglement are equivalent, and

they are defined by the covariance matrix

σ =

(
α γ

γT β

)
. (E.2)

Annihilation and creation operators, s1,2 and s†1,2 , are used to represent the two

subsystems. We define the matrices

α ≡

(
α1 α3

α3 α2

)
, β ≡

(
β1 β3

β3 β2

)
, γ ≡

(
γ11 γ12

γ21 γ22

)
(E.3)
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with

α1 = 〈ŝ2
1〉+ 〈(ŝ†1)2〉+ 2〈ŝ†1ŝ1〉 − 〈ŝ1 + ŝ†1〉2 + 1 (E.4)

α2 = −〈ŝ2
1〉 − 〈(ŝ

†
1)2〉+ 2〈ŝ†1ŝ1〉+ 〈ŝ1 − ŝ

†
1〉2 + 1 (E.5)

α3 = i
(
− 〈ŝ2

1〉+ 〈(ŝ†1)2〉+ 〈ŝ1〉2 − 〈ŝ
†
1〉2
)

(E.6)

β1 = 〈ŝ2
2〉+ 〈(ŝ†2)2〉+ 2〈ŝ†2ŝ2〉 − 〈ŝ2 + ŝ†2〉2 + 1 (E.7)

β2 = −〈ŝ2
2〉 − 〈(ŝ

†
2)2〉+ 2〈ŝ†2ŝ2〉+ 〈ŝ2 − ŝ

†
2〉2 + 1 (E.8)

β3 = i
(
− 〈ŝ2

2〉+ 〈(ŝ†2)2〉+ 〈ŝ2〉2 − 〈ŝ
†
2〉2
)

(E.9)

γ11 = 〈ŝ1ŝ2 + ŝ1ŝ
†
2 + ŝ†1ŝ2 + ŝ†1ŝ

†
2〉/2

+ 〈ŝ2ŝ1 + ŝ2ŝ
†
1 + ŝ†2ŝ1 + ŝ†2ŝ

†
1〉/2

− 〈ŝ1 + ŝ†1〉〈ŝ2 + ŝ†2〉 (E.10)

γ12 = 〈ŝ1ŝ2 − ŝ1ŝ
†
2 + ŝ†1ŝ2 − ŝ

†
1ŝ
†
2〉/2i

+ 〈ŝ2ŝ1 + ŝ2ŝ
†
1 − ŝ

†
2ŝ1 − ŝ

†
2ŝ
†
1〉/2i

+ i〈ŝ1 + ŝ†1〉〈ŝ2 − ŝ
†
2〉 (E.11)

γ21 = 〈ŝ1ŝ2 + ŝ1ŝ
†
2 − ŝ

†
1ŝ2 − ŝ

†
1ŝ
†
2〉/2i

+ 〈ŝ2ŝ1 − ŝ2ŝ
†
1 + ŝ†2ŝ1 − ŝ

†
2ŝ
†
1〉/2i

+ i〈ŝ1 − ŝ
†
1〉〈ŝ2 + ŝ†2〉 (E.12)

γ22 = 〈−ŝ1ŝ2 + ŝ1ŝ
†
2 + ŝ†1ŝ2 − ŝ

†
1ŝ
†
2〉/2

+ 〈−ŝ2ŝ1 + ŝ2ŝ
†
1 + ŝ†2ŝ1 − ŝ

†
2ŝ
†
1〉/2

+ 〈ŝ1 − ŝ
†
1〉〈ŝ2 − ŝ

†
2〉 (E.13)

and γT being the transpose of γ. Finally, the negativity becomes [102]

N = max

{
0,

1− ν
2ν

}
≡ max

{
0, Ñ

}
, (E.14)

where ν≡
√(

∆(σ)−
√

∆2(σ)− 4 detσ
)
/2 and ∆(σ)≡ detα + detβ − 2 detγ.

Note that, despite not being a measure, the negativity kernel Ñ is a witness for

arbitrary bipartite entanglement. In fact, if a non-Gaussian state has the same

first and second moments as an entangled Gaussian state, it is entangled [103].

Consequently, Ñ > 0 implies entanglement for any bipartite state.
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