Date: Friday, 16 June 2023, 11:15 h

Speaker: PD Dr. Timo Kuschel

Faculty of Physics, Bielefeld University

Title: Quadratic and cubic magneto-optic Kerr effect in magnetic thin films

Abstract:
The magneto-optic Kerr effect (MOKE) describes the change of polarization state upon reflection of polarized light from a magnetized sample [1]. Initially this effect has been assumed to be proportional to the magnetization M of the investigated sample and, thus, became a standard tool to study magnetic thin-film systems [2]. However, in the last two decades contributions of second order in M have been explored [3]. The so-called quadratic MOKE (QMOKE) is proportional to M^2 and is, e.g., utilized to study antiferromagnetic materials [4] since the MOKE linear in M (LinMOKE) vanishes here.

In my talk, I will introduce higher-order MOKE effects and discuss recent examples. We have investigated the QMOKE in Fe [5] and Heusler compound thin films [6], and confirmed the linear dependence of the QMOKE on the structural order of the Heusler compound in a wide spectral range. Furthermore, we explored the third-order MOKE called cubic MOKE (CMOKE) being proportional to M^3 in Ni(111) thin films [7]. We found a strong dependence of the CMOKE on the structural domain twinning of the Ni thin films characterized by off-specular x-ray diffraction mappings. Thus, this effect could be of future use in MOKE microscopy and time-resolved MOKE to determine the creation and manipulation of structural domain twins in space and time.

References