

Walther-Meißner-Institut Bayerische Akademie der Wissenschaften

WS 2024/2025

Walther-Meißner-Seminar

Walther-Meißner-Institute, Seminar Room 143

Date: Friday, 25 October 2024, 11:15 h

Speaker: Dr. Takahiko Sekine

MPI FKF, Heisenbergstraße 1, 70569 Stuttgart, Germany

Title: Site-selective NMR investigation of local spin susceptibility in α -(BETS)₂I₃

Abstract:

Dirac fermions are pseudo-relativistic massless quasiparticles in solids, which are expected to present exotic physical properties. α -D2I3 (D = BEDT-TTF, BETS) are candidates for a Dirac-fermion system with strong electron correlations. Due to the correlations, α -(BEDT- TTF)2I3 shows a charge-ordered insulator transition [1]. Although a selenium-analog α - (BETS)2I3 also shows a metal-insulator transition, recent X-ray diffraction experiments have demonstrated that an insulator state in α -(BETS)2I3 is not a charge-ordered state [2]. This finding indicates that an electronic state in α -(BETS)2I3 is distinct from that in α -(BEDE- TTF)2I3. An urgent task is to elucidate an electronic state in α -(BETS)2I3, which hosts the potential to discover novel physics in the Dirac fermion system.

We performed ¹³C-NMR measurements using a single-crystal α -(BETS)2I3. The central double-bonded carbons on BETS molecules are enriched by ¹³C isotopes. There are three independent molecular sites, A (= A'), B, and C, in the unit cell. The NMR spectra from the ¹³C spins on every site did not show splitting on cooling down to 2 K, indicating the absence of a charge-ordered or a magnetic-order state as indicated in the previous study [3]. From the NMR spectral shifts, we successfully estimated local spin susceptibilities, χ^{μ} , on each site. The site dependence ($\chi^{C} > \chi^{A,A'} > \chi^{B}$) and the temperature dependence are similar to those in α -(BEDT-TTF)2I3 under high pressure with the Dirac-cone band [4]. This suggests that the characteristics of their bands are relatively common. Given that α -(BETS)2I3 exhibits insulating resistivity at low temperatures, a small band gap opens around Dirac points, which is likely provided by spin-orbit interactions enhanced by selenium substitution.

Walther Meißner Institut QUANTUM

M

References

[1] M. Inokuchi et al., Bull. Chem. Soc. Jpn. 68, 547 (1995).

- [2] S. Kitou et al., PRB **103**, 035135 (2021).
- [3] T. Konoike et al., JPSJ **91**, 043703 (2022).
- [4] M. Hirata et al., Nat. Commun. 7, 12666 (2016).