Superconducting Quantum Local Area Networks

The SuperQuLAN project addresses the long-term goal of realizing large-scale Quantum Local Area Networks (QuLANs), where many individual superconducting quantum computing modules are linked by coherent quantum communication channels in a modular way. Through this approach, QuLANs can overcome the physical limitations of existing isolated quantum processors by simply integrating multiple processing and storage modules into a cluster of computing devises of increasing size.

Superconducting quantum circuits are one of the most promising platforms for realizing large-scale quantum computing devices, where in the near future a coherent integration of 100-1000 quantum bits (qubits) is feasible. However, the required temperatures of only a few mK currently restrict quantum operations to qubits that are located within a single, heavily shielded dilution refrigerator. This imposes a serious constraint on the realization of even larger quantum processors or the implementation of local- and wide-area quantum networks based on this technology.

The project SuperQuLAN is set out to address this important open problem and to demonstrate a first operational prototype quantum local area network (QuLAN) of separated superconducting quantum processors. This work will be carried out by a multi-national team of scientists and industry partners who will develop key network components and quantum communication protocols that will facilitate in the long term the realization of large quantum computing clusters or even city-wide quantum networks using superconducting circuits.

Rabl, Peter
To project list