Nano-Electromechanics

The field of nano-electromechanics explores the interaction of excitations in an electrical circuit with a displacement of a nano-mechanical object. The resulting sensing concept allows to investigate quantum mechanical phenomena in the literal sense, while interaction itself can be harnessed to synthesize quantum states in the electrical and mechanical entity. We realize nano-electromechanical systems in the form of nano-strings coupled to superconducting quantum circuits. The displacement of the nano-string controls the resonance frequency of the superconducting microwave circuit, realizing this interaction. While this coupling concept is vastly utilized in sensing applications ranging from simple force sensors to gravitational wave detectors, the nature of the coupling also allows for controlling and preparing mechanical oscillation states down to the quantum regime.
ICON project
Recent projects
Rudolf Gross, Stefan Filipp, Hans Huebl, Matthias Althammer, Kirill Fedorov, Florian Fesquet, Kedar Honasoge, Achim Marx, Nadezhda Kukharchyk, Stephan Geprägs, Thomas Luschmann, Ana Strinić
Hans Huebl, Stephan Geprägs, Matthias Opel, Matthias Althammer
Stefan Filipp, Rudolf Gross, Hans Huebl, Kirill Fedorov
ICON publication
Recent publications
Thomas Luschmann, Tahereh Sadat Parvini, Lukas Niekamp, Achim Marx, Rudolf Gross, Hans Huebl
Research Article | arXiv:2512.05873
Shivangi Dhiman, K. Rubenbauer, T. Luschmann, A. Marx, A. Metelmann, H. Huebl
Research Article | arXiv:2510.01775
Timo Sommer, Aditya, Rudolf Gross, Matthias Althammer, Menno Poot
Research Article | Applied Physics Letters 126, 043508  (2025)
Mikhail Cherkasskii, Fabian Engelhardt, Manuel Müller, Johannes Weber, Matthias Althammer, Sebastian T. B. Goennenwein, Hans Huebl, Silvia Viola Kusminskiy
Research Article | Journal of Applied Physics 138, 043906  (2025)
Preprint: arXiv:2503.22302
Joachim Hofer, Rudolf Gross, Gerard Higgins, Hans Huebl, Oliver F. Kieler, Reinhold Kleiner, Dieter Koelle, Philip Schmidt, Joshua A. Slater, Michael Trupke, Kevin Uhl, Thomas Weimann, Witlef Wieczorek, Markus Aspelmeyer
Research Article | Physical Review Letters 131, 043603  (2023)
Preprint: arXiv:2211.06289

At the Walther-Meissner-Institute, we explore two coupling stategies for the realisation of the nano-electromechanical interaction:

  1. a capacitive coupling scheme, where the displacement of the nano-string resonator changes the overall capacitance of the superconducting electronic circuit, and
  2. an inductive coupling scheme, where we utilize the tunable inductance of a superconducting interference device to realize this purpose.

With these integrated nano-electromechanical devices, we have demonstrated force sensitivities down to aN/sqrt(Hz) and coupling rates in the tens of kHz range. We utilize these platforms to investigate and understand the interaction itself, study the mechanical properties of the materials involved and realize literal quantum mechanical states.