Quantum Optimal Control

The primary focus of this line of research is on the design, optimal characterization and control of multi-qubit superconducting devices in a circuit QED architecture. We use closed-loop measurements to optimize the tune-up of the system and to obtain high-fidelity quantum gates. Moreover, we address the question how to tailor control and measurements of a complex multi-qubit quantum processor in order to obtain targeted information in the most efficient and robust way. We study experimental techniques to optimize gate operations at the pulse level. Combining these with advanced calibration and characterization methods will allow us to prepare quantum states and run algorithms with high fidelity.