Microwave Quantum Networks

Microwave quantum networks are one technological cornerstone of many quantum microwave applications. For superconducting circuit architectures and quantum microwaves, such networks must currently operate at millikelvin temperatures. Since superconducting quantum information processors come with a proper cryostat, a so-called dilution refrigerator, anyways, care has to be taken only with respect to the proper design of a connection between such cryostats. At WMI, we have set up such a point-to-point connection [link Installation video] between two dilution refrigerators as a testbed for quantum communication and cryptography protocols. Equipped with low-loss superconducting transmission line cables, our installation can be viewed as a quantum local area network (Q-LAN) cable [link installation video] . The transmission losses of few dB/km are comparable to those in standard optical fibers. Through this Q-LAN cable, we plan to run microwave quantum communication and cryptography protocols. Furthermore, we aim to investigate the expected tolerance of our Q-LAN cable to higher temperatures experimentally. In a long-term perspective, we envision a quantum local area network with high connectivity between multiple nodes.